JPH0985653A - Robot manipulator - Google Patents

Robot manipulator

Info

Publication number
JPH0985653A
JPH0985653A JP25119195A JP25119195A JPH0985653A JP H0985653 A JPH0985653 A JP H0985653A JP 25119195 A JP25119195 A JP 25119195A JP 25119195 A JP25119195 A JP 25119195A JP H0985653 A JPH0985653 A JP H0985653A
Authority
JP
Japan
Prior art keywords
freedom
acting pneumatic
equation
direct
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25119195A
Other languages
Japanese (ja)
Other versions
JP2736327B2 (en
Inventor
Takashige Kitagaki
高成 北垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7251191A priority Critical patent/JP2736327B2/en
Publication of JPH0985653A publication Critical patent/JPH0985653A/en
Application granted granted Critical
Publication of JP2736327B2 publication Critical patent/JP2736327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a robot manipulator provided with an actuator having compliance. SOLUTION: A robot manipulator uses direct acting pneumatic cylinders 14A, 14B as an actuator, and is composed by joining modules 10 which are severally composed by joining direct acting pneumatic cylinders 14A, 14B and a supporting column 12 to substrates 11A, 11B through a joint 13 having two degree of freedom joint 13 and have each degree of two freedoms as many as required in line, and can easily secure the required degree of freedom. In addition, since a driving source is air pressure, its pressure is controlled to alter compliance for absorbing high frequency disturbance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ロボットマニピュレー
タに関し、特にコンプライアンスを有するアクチュエー
タを備えたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a robot manipulator, and more particularly to a robot manipulator provided with a compliant actuator.

【0002】[0002]

【従来の技術】従来この種の装置としては、図6に示さ
れるアクチュエータ拮抗型1自由度機構を組合わせてな
るマニピュレータが知られている。すなわち、図6にお
いて、1は基板で、支柱2の下端で植立されており、支
柱2の上端には軸受3が固着され、この軸受3に歯車4
が回動自在に取付けられる。歯車4には出力軸5が固定
される。6A,6Bは直動型アクチュエータで、下端は
いずれもロッド7を介して基板1に固着され、上端はチ
ェーン8の両端が固着される。このチェーン8はピスト
ン9に接続され、かつ歯車4に係止しており、直動型ア
クチュエータ6Aの駆動部材であるピストン9が下方に
移動し、直動型アクチュエータ6Bの駆動部材であるピ
ストン9が上方に移動したときは歯車4は矢印A方向に
回動し、両直動式アクチュエータ6A,6Bの駆動状態
が上述と反対になると、歯車4は矢印B方向に回動す
る。このようにして出力軸5を矢印AまたはBの方向に
回動駆動する。
2. Description of the Related Art Conventionally, as this type of device, a manipulator is known which is a combination of an actuator antagonistic type one-degree-of-freedom mechanism shown in FIG. That is, in FIG. 6, reference numeral 1 denotes a substrate, which is erected at the lower end of the column 2, and a bearing 3 is fixedly attached to the upper end of the column 2, and a gear 4 is attached to the bearing 3.
Is rotatably attached. An output shaft 5 is fixed to the gear 4. Reference numerals 6A and 6B denote direct-acting actuators, both lower ends of which are fixed to the substrate 1 via rods 7, and upper ends of which are attached to both ends of a chain 8. The chain 8 is connected to the piston 9 and is locked to the gear 4, so that the piston 9 which is the driving member of the linear actuator 6A moves downward and the piston 9 which is the driving member of the linear actuator 6B is moved. Is moved upwards, the gear 4 rotates in the direction of arrow A. When the driving states of the double-acting actuators 6A and 6B are opposite to those described above, the gear 4 rotates in the direction of arrow B. In this way, the output shaft 5 is rotationally driven in the direction of arrow A or B.

【0003】また、ロボットマニピュレータのモジュー
ルを構成するのに、油圧シリンダを2個と、支柱1本を
用いて2自由度としたものは知られている。すなわち、
2自由度を確保する手段として差動ギヤーを使用する装
置や、両側に1自由度を設けた歯車装置がある。
Further, it is known that a robot manipulator module is configured to have two degrees of freedom by using two hydraulic cylinders and one support column. That is,
As a means for ensuring two degrees of freedom, there are a device using a differential gear and a gear device having one degree of freedom on both sides.

【0004】[0004]

【発明が解決しようとする課題】前者の従来例では、マ
ニピュレータの関節の自由度を増すためにモジュールを
接続しようとすると、機構が複雑になるという欠点があ
った。
The former conventional example has a drawback in that the mechanism becomes complicated when modules are connected to increase the degree of freedom of the joints of the manipulator.

【0005】また、後者の従来例では、パルス変調コン
トローラを用いることで油圧剛性を高めることを可能と
し、ペイロードの大きなマニピュレータを構成できる利
点を有してはいるが、しかし、壊れやすいものや柔らか
いものをソフトウェアフィードバックなしにはハンドリ
ングすることができないという欠点があった。
Further, the latter conventional example has an advantage that it is possible to increase hydraulic rigidity by using a pulse modulation controller and to construct a manipulator having a large payload, but it is fragile or soft. It had the drawback of not being able to handle things without software feedback.

【0006】本発明は、上述した従来のマニピュレータ
の機構が複雑になるという欠点や、アクチュエータとア
ームとのバックラッシュが存在するという欠点を克服
し、柔らかいマニピュレーションを実現するロボットマ
ニピュレータを得ることを目的とするものである。
An object of the present invention is to overcome the drawbacks that the mechanism of the conventional manipulator described above is complicated and the drawback that there is backlash between the actuator and the arm, and obtain a robot manipulator that realizes a soft manipulation. It is what

【0007】[0007]

【課題を解決するための手段】本発明者は、上記従来の
課題について鋭意研究を重ねた結果、2自由度モジュー
ルを直列に結合する機構をとり、駆動力として空気圧を
利用すれば課題を解決しうることを見いだし、この知見
に基づいて本発明をなすに至った。
As a result of intensive studies on the above-mentioned conventional problems, the present inventor has solved the problems by adopting a mechanism for connecting two-degree-of-freedom modules in series and utilizing air pressure as a driving force. Therefore, the present invention has been completed based on this finding.

【0008】すなわち、支柱の一端面に基板を固着し、
他端面に2自由度のジョイントを介して他の基板を取付
け、前記両基板間に直動式空気圧シリンダを2個前記支
柱と平行に配置し、これらの直動式空気圧シリンダの両
端をそれぞれ2自由度のジョイントを介して前記両基板
に取付けてモジュールを構成し、このモジュールを複数
個直列に接続したものである。
That is, the substrate is fixed to one end surface of the support,
Another board is attached to the other end surface via a joint having two degrees of freedom, two direct acting pneumatic cylinders are arranged in parallel with the support between the two boards, and both ends of these direct acting pneumatic cylinders are 2 respectively. A module is constructed by attaching to both substrates via a joint having a degree of freedom, and a plurality of the modules are connected in series.

【0009】[0009]

【作用】本発明によれば、マニピュレータがモジュール
化されているため、このモジュールを必要な数だけ直列
接続するだけで、必要な自由度を容易に確保することが
実現可能である。また、駆動源が直動式空気圧シリンダ
となっているため、その圧力を制御しアクチュエータそ
のもののコンプライアンスを変化させることにより、セ
ンサを用いたソフトウェアサーボでは制御不可能な高周
波数の外乱を吸収することが実現可能となる。
According to the present invention, since the manipulator is modularized, it is possible to easily secure the required degree of freedom by connecting the required number of modules in series. In addition, since the drive source is a direct-acting pneumatic cylinder, by controlling the pressure and changing the compliance of the actuator itself, it is possible to absorb high-frequency disturbances that cannot be controlled by software servos using sensors. Can be realized.

【0010】[0010]

【実施例】図1は、本発明の一実施例を示す外観図であ
る。この図において、10は2自由度のモジュールを示
し、この実施例は3個のモジュール10を直列に接続し
て、6自由度のロボットマニピュレータとしたものであ
り、下端はロボットが作業対象に直接働きかける機能を
有するクリッパ,ハンド等の末端効果機へ接続され、上
端はマニピュレータを固定する本体部分に接続される。
1 is an external view showing an embodiment of the present invention. In this figure, reference numeral 10 denotes a module having two degrees of freedom. In this embodiment, three modules 10 are connected in series to form a robot manipulator having six degrees of freedom. It is connected to an end effector such as a clipper, hand, etc. that has a function to work, and the upper end is connected to the main body part that fixes the manipulator.

【0011】図2は、図1の実施例におけるモジュール
10の詳細構成を示す図である。この図において、11
A,11Bは上,下の基板、12は剛体の支柱で、一端
は基板11Aに植立され、他端は2自由度のジョイント
13を介して基板11Bに接続されている。14A,1
4Bはコンプライアンスの調節可能な直動式空気圧シリ
ンダで、支柱12と平行に配置されており、シリンダ1
4A,14B内の圧力差でピストン15とピストンロッ
ド16とが直動する。直動式空気圧シリンダ14A,1
4Bの下方はロッド17を介して基板11Aに固着さ
れ、上端は2自由度のジョイント13を介して基板11
Bに接続される。
FIG. 2 is a diagram showing the detailed structure of the module 10 in the embodiment of FIG. In this figure, 11
A and 11B are upper and lower substrates, and 12 is a rigid support, one end of which is erected on the substrate 11A and the other end of which is connected to the substrate 11B via a joint 13 having two degrees of freedom. 14A, 1
4B is a direct-acting pneumatic cylinder with adjustable compliance, which is arranged in parallel with the column 12 and has a cylinder 1
The piston 15 and the piston rod 16 move linearly due to the pressure difference in 4A and 14B. Direct acting pneumatic cylinders 14A, 1
The lower part of 4B is fixed to the substrate 11A via a rod 17, and the upper end is connected to the substrate 11 via a joint 13 having two degrees of freedom.
Connected to B.

【0012】次に、図2のモジュール10の動作につい
て説明する。基板11Bは支柱12の上端のジョイント
13を支点として、直動式空気圧シリンダ14A,14
Bのピストン15の移動によるピストンロッド16の伸
長と縮小の組合わせにより、X軸,Y軸に関して所要範
囲で回動可能な2自由度のモジュール10となる。した
がって、図2のモジュール10を図1のように3個直列
に、つまり、はじめのモジュール10の基板11Bと次
のモジュール10の基板11Aとを接続するというよう
に順次接続することにより、所要の自由度をもつロボッ
トマニピュレータが構成される。
Next, the operation of the module 10 shown in FIG. 2 will be described. The base plate 11B uses the joint 13 at the upper end of the column 12 as a fulcrum, and the direct acting pneumatic cylinders 14A, 14
The combination of the expansion and contraction of the piston rod 16 by the movement of the B piston 15 provides the module 10 with two degrees of freedom that can rotate about the X axis and the Y axis within a required range. Therefore, by connecting the three modules 10 of FIG. 2 in series as shown in FIG. 1, that is, by sequentially connecting the board 11B of the first module 10 and the board 11A of the next module 10, A robot manipulator with a degree of freedom is constructed.

【0013】次に、直動式空気圧シリンダ14A(14
B)の空気圧とコンプライアンスとの関係について説明
する。
Next, the direct-acting pneumatic cylinder 14A (14
The relationship between air pressure and compliance in B) will be described.

【0014】図3は、図2の直動式空気圧シリンダ14
A(14B)の側断面略図である。この図において、直
動式空気圧シリンダ14A(14B)内のピストン15
の左右の圧力をpi 、体積をVi 、ピストン15の断面
積をAi 、直動式空気圧シリンダ14A(14B)内端
面からピストン15までの距離をli とおき(i=0,
1)、気体の比熱比をγとすると、幾何学的拘束条件よ
り、下記〔数1〕が得られる。
FIG. 3 shows the direct-acting pneumatic cylinder 14 of FIG.
It is a schematic side sectional view of A (14B). In this figure, the piston 15 in the direct-acting pneumatic cylinder 14A (14B) is
The pressures on the left and right of the piston are p i , the volume is V i , the cross-sectional area of the piston 15 is A i , and the distance from the inner end surface of the direct acting pneumatic cylinder 14A (14B) to the piston 15 is l i (i = 0,
1) If the specific heat ratio of the gas is γ, the following [Equation 1] can be obtained from the geometric constraint condition.

【0015】[0015]

【数1】 ピストン15に加わる力をfとすると、f=0における
平衡状態では、〔数2〕となる。ただし、f0は平衡力
である。
[Equation 1] Assuming that the force applied to the piston 15 is f, [Equation 2] in the equilibrium state at f = 0. However, f 0 is a balance force.

【0016】[0016]

【数2】 外部からピストン15に力fが加わった時、直動式空気
圧シリンダ14A(14B)内の気体は断熱変化すると
仮定すると、〔数3〕となる。
[Equation 2] Assuming that the gas in the direct-acting pneumatic cylinder 14A (14B) adiabatically changes when a force f is applied to the piston 15 from the outside, [Equation 3] is obtained.

【0017】[0017]

【数3】 i =Aii の関係から、〔数4〕が得られる。(Equation 3) [Equation 4] is obtained from the relationship of V i = A i l i .

【0018】[0018]

【数4】 力が加わった時の変位をΔl,圧力変化をΔpi とすれ
ば、
[Equation 4] If the displacement when a force is applied is Δl and the pressure change is Δp i ,

【0019】[0019]

【数5】 (Equation 5)

【0020】[0020]

【数6】 となる。ここで、(Equation 6) Becomes here,

【0021】[0021]

【数7】 である。(Equation 7) It is.

【0022】〔数5〕,〔数6〕を〔数7〕に代入し、
〔数2〕の関係を用いれば、〔数8〕に示すように
Substituting [Equation 5] and [Equation 6] into [Equation 7],
If the relationship of [Equation 2] is used, as shown in [Equation 8],

【0023】[0023]

【数8】 となる。(Equation 8) Becomes

【0024】例えば、l0 =l1 のとき、x=Δl/l
0 とおけば、〔数9〕に示すように、
For example, when l 0 = l 1 , x = Δl / l
If you write 0 , as shown in [Equation 9],

【0025】[0025]

【数9】 となる。これをグラフにすると、図4に示す特性図のよ
うになる。
[Equation 9] Becomes When this is made into a graph, the characteristic diagram shown in FIG. 4 is obtained.

【0026】また、外力による変形が小さい領域(x∈
[0,0.2])では、〔数10〕のように直線近似す
ることができ、図5に示すようになる。
In addition, a region (xε
[0, 0.2]) can be linearly approximated as shown in [Equation 10], as shown in FIG.

【0027】[0027]

【数10】 以上より、外力が加わったとき、ピストン15の変位が
大きくない場合には、空気の圧縮性によりあたかもばね
のような挙動を示すことがわかる。また、ばね係数は初
期状態での平衡力f0 を変えることで制御することが可
能であることがわかる。
(Equation 10) From the above, it can be seen that when the displacement of the piston 15 is not large when an external force is applied, it behaves like a spring due to the compressibility of air. Further, it can be seen that the spring coefficient can be controlled by changing the balance force f 0 in the initial state.

【0028】次に、コンプライアンスと吸収する外乱の
周波数との関係について説明する。上記では圧縮空気に
よるばねの効果について述べたが、ピストン15の摺動
部の摩擦、駆動部の質量も無視することはできない。そ
れらをまとめると、〔数11〕で表される2次システム
で近似できる。
Next, the relationship between the compliance and the frequency of the disturbance to be absorbed will be described. Although the effect of the spring by the compressed air has been described above, the friction of the sliding portion of the piston 15 and the mass of the driving portion cannot be ignored. If they are put together, they can be approximated by a quadratic system represented by [Equation 11].

【0029】[0029]

【数11】 したがって、パラメタkを〔数11〕で導出された方法
で設定することにより、吸収可能な外乱周波数を制御す
ることができる。
[Equation 11] Therefore, the disturbance frequency that can be absorbed can be controlled by setting the parameter k by the method derived from [Equation 11].

【0030】[0030]

【発明の効果】本発明は、以上説明したように支柱の一
端面に基板を固着し、他端面に2自由度のジョイントを
介して他の基板を取付け、前記両基板間に直動式空気圧
シリンダを2個前記支柱と平行に配置し、これらの直動
式空気圧シリンダの両端をそれぞれ2自由度のジョイン
トを介して前記両基板に取付けてモジュールを構成し、
このモジュールを複数個直列に接続したので、シンプル
な機構によりコンプライアンス制御が行えるロボットマ
ニピュレータが得られる。そして、直動式空気圧シリン
ダの空気圧を制御し、そのコンプライアンスを変えるこ
とにより高周波の外乱を吸収することができる。
As described above, according to the present invention, a substrate is fixed to one end face of a column, another substrate is attached to the other end face via a joint having two degrees of freedom, and a direct acting pneumatic pressure is provided between the both substrates. Two cylinders are arranged in parallel with the support column, and both ends of these direct-acting pneumatic cylinders are attached to the both substrates through joints having two degrees of freedom to form a module,
Since a plurality of these modules are connected in series, a robot manipulator capable of compliance control with a simple mechanism can be obtained. Then, by controlling the air pressure of the direct-acting pneumatic cylinder and changing its compliance, high-frequency disturbance can be absorbed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す外観斜視図であ
る。
FIG. 1 is an external perspective view showing the configuration of an embodiment of the present invention.

【図2】本発明に用いる基本モジュールの構成を示す斜
視図である。
FIG. 2 is a perspective view showing a configuration of a basic module used in the present invention.

【図3】図2の直動式空気圧シリンダの側断面図であ
る。
3 is a side sectional view of the direct acting pneumatic cylinder of FIG.

【図4】図3の直動式空気圧シリンダの圧力特性を示す
グラフである。
FIG. 4 is a graph showing pressure characteristics of the direct-acting pneumatic cylinder of FIG.

【図5】図4において空気圧による変形が小さい領域に
おける特性を示すグラフである。
5 is a graph showing characteristics in a region in which deformation by air pressure is small in FIG.

【図6】従来のアクチュエータ拮抗型1自由度のマニピ
ュレータの構成を示す斜視図である。
FIG. 6 is a perspective view showing a configuration of a conventional actuator antagonistic type one-degree-of-freedom manipulator.

【符号の説明】[Explanation of symbols]

10 モジュール 11A 基板 11B 基板 12 支柱 13 ジョイント 14A 直動式空気圧シリンダ 14B 直動式空気圧シリンダ 15 ピストン 16 ピストンロッド 17 ロッド 10 Modules 11A Substrate 11B Substrate 12 Support 13 Joint 14A Direct Acting Pneumatic Cylinder 14B Direct Acting Pneumatic Cylinder 15 Piston 16 Piston Rod 17 Rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 支柱の一端面に基板を固着し、他端面に
2自由度のジョイントを介して他の基板を取付け、前記
両基板間に直動式空気圧シリンダを2個前記支柱と平行
に配置し、これらの直動式空気圧シリンダの両端をそれ
ぞれ2自由度のジョイントを介して前記両基板に取付け
てモジュールを構成し、このモジュールを複数個直列に
接続したことを特徴とするロボットマニピュレータ。
1. A substrate is fixed to one end surface of a column, another substrate is attached to the other end surface through a joint having two degrees of freedom, and two direct-acting pneumatic cylinders are provided between the two substrates in parallel with the column. A robot manipulator, wherein the robot manipulators are arranged, and both ends of these direct-acting pneumatic cylinders are attached to both the substrates via joints having two degrees of freedom to form a module, and a plurality of the modules are connected in series.
JP7251191A 1995-09-28 1995-09-28 Robot manipulator Expired - Lifetime JP2736327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7251191A JP2736327B2 (en) 1995-09-28 1995-09-28 Robot manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7251191A JP2736327B2 (en) 1995-09-28 1995-09-28 Robot manipulator

Publications (2)

Publication Number Publication Date
JPH0985653A true JPH0985653A (en) 1997-03-31
JP2736327B2 JP2736327B2 (en) 1998-04-02

Family

ID=17219046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7251191A Expired - Lifetime JP2736327B2 (en) 1995-09-28 1995-09-28 Robot manipulator

Country Status (1)

Country Link
JP (1) JP2736327B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624217B1 (en) * 2005-06-27 2006-09-15 (주)스맥 Coupled close loop link mechanism for joints of robot
CN100413656C (en) * 2006-10-13 2008-08-27 燕山大学 Spacial non-symmetric two freedom rotary parallel mechanism
CN103878764A (en) * 2014-03-21 2014-06-25 浙江大学 Three-degree-of-freedom pneumatic combination drive parallel platform
JP2015036161A (en) * 2013-08-12 2015-02-23 国立大学法人富山大学 Joint mechanism
CN108818523A (en) * 2018-06-25 2018-11-16 江苏大学 A kind of multi-arm soft robot
CN109807925A (en) * 2017-11-20 2019-05-28 上海交通大学 Can active deformation the submissive hinge of air-driven type alternating axis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112194A (en) * 1990-08-31 1992-04-14 Tadano Ltd Multiple articulated arm
JPH04352961A (en) * 1991-05-31 1992-12-08 Kawasaki Heavy Ind Ltd Walk assisting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112194A (en) * 1990-08-31 1992-04-14 Tadano Ltd Multiple articulated arm
JPH04352961A (en) * 1991-05-31 1992-12-08 Kawasaki Heavy Ind Ltd Walk assisting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624217B1 (en) * 2005-06-27 2006-09-15 (주)스맥 Coupled close loop link mechanism for joints of robot
CN100413656C (en) * 2006-10-13 2008-08-27 燕山大学 Spacial non-symmetric two freedom rotary parallel mechanism
JP2015036161A (en) * 2013-08-12 2015-02-23 国立大学法人富山大学 Joint mechanism
CN103878764A (en) * 2014-03-21 2014-06-25 浙江大学 Three-degree-of-freedom pneumatic combination drive parallel platform
CN109807925A (en) * 2017-11-20 2019-05-28 上海交通大学 Can active deformation the submissive hinge of air-driven type alternating axis
CN109807925B (en) * 2017-11-20 2021-10-19 上海交通大学 Pneumatic staggered shaft flexible hinge capable of actively deforming
CN108818523A (en) * 2018-06-25 2018-11-16 江苏大学 A kind of multi-arm soft robot
CN108818523B (en) * 2018-06-25 2021-09-10 江苏大学 Multi-arm soft robot

Also Published As

Publication number Publication date
JP2736327B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
Sharon et al. The macro/micro manipulator: An improved architecture for robot control
KR100334902B1 (en) 6 Degree-of-freedom Parallel Mechanism for Micro-positioning Task
US8215199B2 (en) Parallel kinematic positioning system
US4921393A (en) Articulatable structure with adjustable end-point compliance
US6729202B2 (en) Cartesian parallel manipulators
US5313854A (en) Light weight robot mechanism
US5673595A (en) Four degree-of-freedom manipulator
US20080295637A1 (en) Parallel manipulator
JP2008506545A (en) Parallel robot having means for moving a movable element comprising two subassembly means
JPS6056893A (en) Active follow-up type joint device
JP5212797B2 (en) Haptic manipulator
US5377950A (en) Platform mountings
JPH1190867A (en) Micromanipulator
JPH06328374A (en) Micromanipulator
Ozcan et al. Powertrain selection for a biologically-inspired miniature quadruped robot
JPH0985653A (en) Robot manipulator
JPH0811081A (en) Drive device having 3 and 4 degrees of freedom in space
JP2569277B2 (en) Drive with three degrees of freedom in space
JP4062040B2 (en) Micromotion control method and micromotion stage
JPH06170761A (en) Micromanipulator
JP3169484B2 (en) Parallel link manipulator
JPH0714279B2 (en) Linear actuator
Ballhaus et al. End-point control of a two-link flexible robotic manipulator with a mini-manipulator: Initial experiments
JP2003275980A (en) Transfer robot
Giberti et al. Design and experimental test of a pneumatic translational 3dof parallel manipulator

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term