JPH0982858A - Semiconductor device and metal support plate thereof - Google Patents

Semiconductor device and metal support plate thereof

Info

Publication number
JPH0982858A
JPH0982858A JP7239501A JP23950195A JPH0982858A JP H0982858 A JPH0982858 A JP H0982858A JP 7239501 A JP7239501 A JP 7239501A JP 23950195 A JP23950195 A JP 23950195A JP H0982858 A JPH0982858 A JP H0982858A
Authority
JP
Japan
Prior art keywords
support plate
plate
metal support
semiconductor device
supporting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7239501A
Other languages
Japanese (ja)
Inventor
Takashi Fukumaki
孝 服巻
Akira Tanaka
明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7239501A priority Critical patent/JPH0982858A/en
Publication of JPH0982858A publication Critical patent/JPH0982858A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the thermal deformation of a metal support plate and to make it possible to increase remarkably the thermal fatigue-resistant characteristics of the support plate by a method wherein the metal support plate consists of a composite metal support plate jointed by pressing with high heat conductivity materials at places, where are positioned directly under semiconductor elements, in a rigid metal support plate or in the vicinities of the places. SOLUTION: Withstand-voltage insulating plates 2 are bonded on a composite metal support plate 5, semiconductor elements 1 are respectively bonded on the plates 2 and a resin-sealing is performed. A composite metal support plate is jointed by pressing with high-heat conductivity mateirals 7 at places, where are positioned directly under the elements 1, in a rigid metal support plate 6 or in the vicinities of the places. Then, the jointing-finished composite metal support plate is performed a processing into a prescribed form and is applied to a module as the plate 5. Moreover, when the materials 7 are pushed in, the materials 7 are heated at a high temperature 400 to 600 deg.C and are pushed in. Thereby, as a metal support plate can maintain a structure, which is superior in thermal fatigue resistance, the thermal fatigue-resistant characteristics of the metal support plate can be remarkedly increased to a thermal fatigue life cycle due to an ON-OFF control of an electrical current conduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、IGBT,ダイオード
等の電力制御用半導体装置により係り、金属支持板の信
頼性を有し、特に実機使用時の加熱冷却の温度サイクル
に対しても熱特性の劣化が少なく、且つ安価で高信頼性
を有する半導体装置とその金属支持板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power control semiconductor device such as an IGBT or a diode, which has the reliability of a metal support plate, and particularly has a thermal characteristic even with respect to a heating / cooling temperature cycle when an actual machine is used. The present invention relates to a semiconductor device and a metal supporting plate therefor, which have low deterioration, are inexpensive, and have high reliability.

【0002】[0002]

【従来の技術】従来、半導体装置の支持部材は半導体装
置の−電極を兼ねる場合が多かった。このため半導体基
板は支持部材上に導電的に接続される必要があり、例え
ばPb−Sn系はんだの軟ろうで接合されている。ま
た、半導体装置が作動する際には電力損失が避けられ
ず、これに伴い半導体基板に発熱が生じる。半導体装置
を安全且つ安定に作動させるためには、半導体装置の動
作時に生じる熱をパッケージ外部に有効に発散させる必
要がある。この熱放散は通常、発熱源である半導体素子
基板からこれと連なる各部材を通じ気中へ熱伝導される
ことで達成される。この熱伝導経路の主要部には上述の
Pb−Sn系の軟ろうで接合された部分や支持部材を含
む。
2. Description of the Related Art Conventionally, a supporting member of a semiconductor device often serves as a negative electrode of the semiconductor device. For this reason, the semiconductor substrate needs to be electrically conductively connected to the support member, and is joined by, for example, a soft solder of Pb—Sn solder. Further, when the semiconductor device operates, power loss is unavoidable, which causes heat generation in the semiconductor substrate. In order to operate the semiconductor device safely and stably, it is necessary to effectively dissipate the heat generated during the operation of the semiconductor device to the outside of the package. This heat dissipation is usually achieved by conducting heat from the semiconductor element substrate, which is a heat source, into the air through each member connected to the semiconductor element substrate. The main part of this heat conduction path includes the above-mentioned Pb—Sn-based soft solder-bonded part and a supporting member.

【0003】半導体装置用金属支持板は熱伝導体基板の
特性が要求されることから、適用される材料はCuが一
般的に多い。しかし、Cu材は大気中に放置されると酸
化、及び腐食の問題がありその対策として通常Niめっ
きが施される。
Since the metal supporting plate for a semiconductor device is required to have the characteristics of a heat conductor substrate, Cu is generally used as a material to be applied. However, the Cu material has problems of oxidation and corrosion when left in the atmosphere, and Ni plating is usually applied as a countermeasure against it.

【0004】従来の半導体装置は、改善が見られ図4に
示すような構成と成っている。即ち、21は半導体素子
(Siチップとも呼ぶ)、22はAlN(チッカアルミ
ニウム)からなる絶縁板、25はCuベースからなる支
持板、であり、これら部材の間は軟ろうのはんだで接合
された接合部28,29で接合されている。接合は実機
適用に当たっては、全面にNiめっきを介して接合され
ている。めっき厚さは夫々の材料によって異なるが大体
3から5μmほどである。この構造の半導体装置は特開
昭60−257141号のSiチップ/Mo熱応力緩衝材/Cu
放熱板/アルミナ絶縁板/Cu支持板で、材料の界面が
4層であるのに比べると2層と半分となり、それに伴っ
て接合部も2層と半分になる。即ち、接合部が少なくな
ると信頼性的には有利ではあるが、AlNの絶縁板とC
uの支持板との熱膨張差が大きく、はんだによる接合部
に応力が掛かり長期使用に対し信頼性に欠ける問題点が
あった。
The conventional semiconductor device has been improved and has a structure as shown in FIG. That is, 21 is a semiconductor element (also referred to as Si chip), 22 is an insulating plate made of AlN (ticker aluminum), 25 is a support plate made of Cu base, and these members are joined by soft solder solder. They are joined at the joining portions 28 and 29. When applied to an actual machine, the entire surface is joined with Ni plating. The plating thickness varies depending on each material, but is about 3 to 5 μm. A semiconductor device having this structure is disclosed in Japanese Patent Application Laid-Open No. 60-257141, Si chip / Mo thermal stress buffer / Cu.
The heat dissipation plate / alumina insulating plate / Cu support plate has two layers and half as compared with four layers of material interfaces, and accordingly, the bonding portion also has two layers and half. That is, although it is advantageous in terms of reliability that the number of joints is reduced, an AlN insulating plate and C
There is a problem that the difference in thermal expansion between u and the support plate is large, stress is applied to the joint portion due to the solder, and the reliability is insufficient for long-term use.

【0005】また、その改良として熱膨張の小さいMo
支持板の採用が行われているが、Moは熱伝導性が小さ
く、熱拡散についてもCu等に比べると著しく悪い。更
にMo自身の価格が非常に高く、量産性に不適である欠
点を有する。
As an improvement thereof, Mo having a small thermal expansion is used.
Although a support plate has been adopted, Mo has a low thermal conductivity, and its thermal diffusion is significantly worse than that of Cu and the like. Furthermore, the price of Mo itself is very high and it is not suitable for mass production.

【0006】[0006]

【発明が解決しようとする課題】上記従来の各部材を積
層した半導体装置は、Siチップ/AlN絶縁板/Cu
支持板やSiチップ/AlN絶縁板/Mo支持板等が最
近見受けられる。これらのモジュールは、接合部が2層
と少なく、接合部の信頼性からすれば、その効果は大き
いものがある。しかし、Cuの支持板は、Siチップや
AlN絶縁板との熱膨張差に大きな違いが存在する。ま
た、Mo支持板は、熱膨張に関しては良好な部類に属す
るが熱拡散が小さいこと、更にMo単品としての価格が
著しく高い。これらの組合せを用いる限り半導体装置の
維持にはおのずと限界がある。すなわち、半導体装置と
して、基板の熱サイクルにより熱変形が生じ、それに伴
い繰返し応力が大きくなる。疲労強度的な観点からも、
長期使用中においてモジュール中の弱い部分から亀裂の
発生を抑制できず、またMo等に比較し加工性等配慮が
不十分であった。
A semiconductor device in which the above-mentioned conventional members are laminated is a Si chip / AlN insulating plate / Cu.
Support plates and Si chips / AlN insulating plates / Mo support plates have recently been found. In these modules, the number of joints is as small as two layers, and in terms of reliability of the joints, the effect is large. However, the Cu support plate has a large difference in thermal expansion from the Si chip or the AlN insulating plate. Further, the Mo support plate belongs to a good class in terms of thermal expansion, but has a small thermal diffusion, and the price as a single Mo component is extremely high. As long as these combinations are used, the maintenance of semiconductor devices is naturally limited. That is, as a semiconductor device, thermal deformation occurs due to the thermal cycle of the substrate, and the repeated stress increases accordingly. From the viewpoint of fatigue strength,
It was not possible to suppress the generation of cracks from weak parts in the module during long-term use, and the workability and other considerations were insufficient compared to Mo and the like.

【0007】本発明の目的は熱変形が少なく、且つ、信
頼性の高い半導体装置及びその金属支持板を提供するこ
とにある。
An object of the present invention is to provide a highly reliable semiconductor device and a metal supporting plate for the semiconductor device which are less likely to be thermally deformed.

【0008】[0008]

【課題を解決するための手段】本発明は、金属支持板上
に耐圧絶縁板を、その上に電極板,半導体素子を接合し
樹脂封止を行う半導体装置又はその金属支持板におい
て、該金属支持板は、剛性金属支持板内に、半導体素子
の直下またはその近傍に位置する個所に高熱伝導度性材
料を配置した構造にすることにより達成される。
DISCLOSURE OF THE INVENTION The present invention provides a semiconductor device or a metal supporting plate thereof, in which a voltage insulating plate is bonded onto a metal supporting plate, and an electrode plate and a semiconductor element are bonded onto the metal supporting plate for resin sealing. The support plate is achieved by providing a rigid metal support plate with a structure having a high thermal conductivity material disposed at a position directly below or near the semiconductor element.

【0009】上記構成の半導体装置において、前記金属
支持板は、18×103kg/mm2以上のヤング率を有する
材料内の半導体素子の直下またはその近傍に位置する個
所に200W/m・K以上の熱伝導率を有する材料を配
置した構造より成る。
In the semiconductor device having the above structure, the metal supporting plate is 200 W / m · K at a position directly below or near the semiconductor element in a material having a Young's modulus of 18 × 10 3 kg / mm 2 or more. It has a structure in which materials having the above thermal conductivity are arranged.

【0010】また、金属支持板で18×103kg/mm2
上のヤング率を有する材料には、Fe,Ni,Mo、こ
れらの合金・Fe−36〜40重量%Ni合金,Cu−
10〜30重量%Mo合金等から選ばれた材料を用いる
ものである。
Further, as the metal supporting plate having a Young's modulus of 18 × 10 3 kg / mm 2 or more, Fe, Ni, Mo, alloys of these, Fe-36 to 40 wt% Ni alloy, Cu-
A material selected from 10 to 30 wt% Mo alloy and the like is used.

【0011】また、金属支持板において200W/m・
K以上の熱伝導率を有する材料には、Al,Cu,A
g,Auまたは、これらの合金又はこれらの複合材料等
から選ばれた材料を用いて構成されている。
Further, in the metal supporting plate, 200 W / m.
For materials having a thermal conductivity of K or higher, Al, Cu, A
g, Au, an alloy thereof, a composite material thereof, or the like is used.

【0012】更に、前記金属支持板の200W/m・K
以上の熱伝導率を有する材料は、半導体素子の面積を1
とした場合、0.5〜2.5倍に相当する面積から成る構
造であることが好ましい。そしてまた、これらの複合金
属支持板の表面には、Ni系のめっきを施していても良
い。
Further, the metal supporting plate has a power of 200 W / m · K.
A material having the above thermal conductivity occupies 1 area of the semiconductor element.
In that case, it is preferable that the structure has an area corresponding to 0.5 to 2.5 times. Further, the surface of these composite metal support plates may be plated with Ni-based material.

【0013】[0013]

【作用】Siチップ/アルミナ絶縁板や窒化アルミニウ
ム(AlN)絶縁板/複合金属支持板が本発明の主な構
造体である。この中で金属支持板の複合構造が本発明に
該当する。
The Si chip / alumina insulating plate or aluminum nitride (AlN) insulating plate / composite metal supporting plate is the main structure of the present invention. Among these, the composite structure of the metal supporting plate corresponds to the present invention.

【0014】この構造で例えばアルミナ絶縁板のモジュ
ールついて考える。Siチップの発生熱はアルミナ絶縁
板と金属支持板に放熱される。この場合、金属支持板に
はまた別の水冷却体が装着されており、最も温度が低い
個所である。すなわち、Siチップの温度が最も高く、
金属支持板が最も低い。アルミナ等絶縁板はその中間的
温度を有する。この様に絶縁板及び金属支持板は、熱伝
導性に優れていることが必要である。そして、これらは
はんだで接合されるのが一般的である。また、3種類の
夫々の材料をはんだで接合し、モジュールを形成する
が、夫々に物性値が異なるため温度差による変形(熱膨
張差)が生じる。そのためには、熱膨張差の小さい材料
の組合せも重要な因子となってくる。
Consider, for example, a module of an alumina insulating plate having this structure. The heat generated by the Si chip is radiated to the alumina insulating plate and the metal supporting plate. In this case, another water cooling body is attached to the metal supporting plate, which is the lowest temperature part. That is, the temperature of the Si chip is the highest,
The metal support plate is the lowest. An insulating plate such as alumina has an intermediate temperature. Thus, the insulating plate and the metal supporting plate need to have excellent thermal conductivity. And these are generally joined by soldering. Further, the three types of materials are joined by solder to form a module, but since the physical properties are different from each other, deformation due to a temperature difference (thermal expansion difference) occurs. For that purpose, the combination of materials having a small thermal expansion difference is also an important factor.

【0015】アルミナの熱伝導性の向上のために基板の
厚みを出来るだけ薄くすること、それに対し基板表裏の
導体層には熱伝導性に優れるCuを用い、且つ、厚さを
コントロールして施すことにより熱伝導性を向上させ
る。Si素子の熱膨張係数に近似する材料にMo等があ
るが、熱伝導性に劣り、また、金属支持板としても高価
であり、実機の使用には適正とはいえない。つまり、こ
れらの絶縁板と組合せる金属支持板材は、種々の特性を
有する必要がある。
In order to improve the thermal conductivity of alumina, the thickness of the substrate is made as thin as possible, while Cu, which has excellent thermal conductivity, is used for the conductor layers on the front and back of the substrate, and the thickness is controlled. This improves the thermal conductivity. Although there is Mo or the like as a material close to the coefficient of thermal expansion of the Si element, it has poor thermal conductivity and is expensive as a metal supporting plate, so it cannot be said to be suitable for use in an actual machine. That is, the metal supporting plate material combined with these insulating plates needs to have various characteristics.

【0016】本発明は、熱膨張率による変形を機械的に
拘束するための材料と、熱伝導性に優れる材料を夫々別
別に考慮することにした。
In the present invention, the material for mechanically restraining the deformation due to the coefficient of thermal expansion and the material having excellent thermal conductivity are separately considered.

【0017】まず、熱伝導性と熱放熱性に優れる材料に
ついて考える。その特性を十分満足出来る材料にはA
l,Cu,Au,Ag等が該当し、またこれらの合金で
200W/m・K以上の材料であれば適用できる。つま
り200W/m・K未満の熱伝導率の材料ではSiチッ
プの熱拡散が十分に行われないことになる。ここでは材
料的に安価なCu板の適用を考える。これらの高熱伝導
性の材料は、Si素子のほぼ直下またはその近傍に位置
する個所に配置する。即ち、耐熱変形に優れ、且つ安価
な材料の金属支持板の中に埋め込まれる状態を有するこ
とになる。
First, consider a material having excellent heat conductivity and heat dissipation. A for materials that can fully satisfy the characteristics
1, Cu, Au, Ag, etc. are applicable, and those alloys having a material of 200 W / m · K or more can be applied. That is, if the material has a thermal conductivity of less than 200 W / m · K, the thermal diffusion of the Si chip is not sufficiently performed. Here, application of a Cu plate, which is inexpensive in terms of material, is considered. These materials with high thermal conductivity are arranged at a position located almost directly under the Si element or in the vicinity thereof. That is, it has a state of being embedded in a metal supporting plate made of an inexpensive material which is excellent in heat distortion.

【0018】次に熱膨張による変形を機械的に拘束する
ための材料について考える。それにはMo,Ni,F
e,Cu−Mo合金,Fe−Ni合金等が該当する。す
なわち、18×103kg/mm2以上のヤング率の材料であ
れば本発明の半導体装置の特性を満足できるものであ
る。18×103kg/mm2未満であるヤング率の材料で
は、加熱,冷却の熱膨張差により金属支持板が変形する
ことになり、半導体装置としての長寿命化にそぐわな
い。ここでは材料的に安価なFe系を適用して考える。
このFeは基板金属材料として適用する。そしてこの基
板金属材料の部分的に前述した熱伝導性に優れるCu等
のブロックが埋め込まれていることになる。つまり耐熱
変形に優れる材料と、熱伝導性に優れる材料が複合化さ
れ、一体化した金属支持板として適用するものである。
概ね高ヤング率材料の熱膨張係数は6から14×(10
-6/K)の範囲が適用され、好ましくは8から10×
(10-6/K)が良い。
Next, a material for mechanically restraining the deformation due to thermal expansion will be considered. Mo, Ni, F
e, Cu-Mo alloy, Fe-Ni alloy, etc. are applicable. That is, a material having a Young's modulus of 18 × 10 3 kg / mm 2 or more can satisfy the characteristics of the semiconductor device of the present invention. With a material having a Young's modulus of less than 18 × 10 3 kg / mm 2 , the metal supporting plate is deformed due to the difference in thermal expansion between heating and cooling, which is not suitable for extending the life of the semiconductor device. Here, the Fe system, which is inexpensive in terms of material, is applied.
This Fe is applied as a substrate metal material. Then, the block of Cu or the like having excellent thermal conductivity described above is partially embedded in the metal material of the substrate. That is, it is applied as a metal supporting plate in which a material excellent in heat deformation and a material excellent in thermal conductivity are combined and integrated.
Generally, the coefficient of thermal expansion of high Young's modulus material is 6 to 14 × (10
-6 / K) range applies, preferably 8 to 10 ×
(10 -6 / K) is good.

【0019】そして、熱伝導と熱膨張差によるモジュー
ルの変形を上手にバランスするためには、埋め込む金属
導体の比率を種々検討する必要がある。
In order to properly balance the deformation of the module due to the difference in thermal conduction and thermal expansion, it is necessary to study various ratios of the metal conductors to be embedded.

【0020】複合金属支持板としての特性は、前述した
ように高熱伝導度/機械的剛性力を満足する必要があ
る。高熱伝導度材については、安価なCu材が選ばれる
が、機械的剛性力の高い材料には前述した様に種々考え
られ、どの材料を用いるかによってはその厚みも変わっ
てくる。その厚みも熱伝導性に優れる材料であれば考慮
の必要性はない。しかし、一般的には剛性力の高い材料
は熱伝導性に劣る材料が多く存在する。そこで剛性力の
高い材料と、熱伝導性に優れる材料との組合せを考慮す
る必要性が出てくる。
The characteristics of the composite metal supporting plate must satisfy the high thermal conductivity / mechanical rigidity as described above. An inexpensive Cu material is selected for the high thermal conductivity material, but various materials having high mechanical rigidity can be considered as described above, and the thickness thereof varies depending on which material is used. There is no need to consider the thickness as long as the material has excellent thermal conductivity. However, in general, many materials having high rigidity have poor thermal conductivity. Therefore, it becomes necessary to consider a combination of a material having high rigidity and a material having excellent thermal conductivity.

【0021】電力制御用半導体装置は、Siチップによ
り電気的制御を行っており、電力の増大に伴いSiチッ
プへの発熱も著しく増加の傾向にある。それ故に発熱が
発生したらすぐさま冷却する必要がある。故に、Si素
子に発生する熱を効率良く放熱させるには、Siチップ
の形状と高熱伝導性の材料との比が重要となる。
The power control semiconductor device is electrically controlled by the Si chip, and the heat generated in the Si chip tends to remarkably increase as the power increases. Therefore, when heat is generated, it is necessary to immediately cool it. Therefore, in order to efficiently dissipate the heat generated in the Si element, the ratio between the shape of the Si chip and the material having high thermal conductivity is important.

【0022】Siチップの面積を1として高熱伝導性材
料の面積比を種々変えて実験した。その結果、比率が
0.5 以上からその特性を維持,継続出来ることが分
り、半導体としての特性を有することが明らかとなっ
た。しかしながら、高熱伝導金属を余りに多い面積を占
有すると、熱変形が大きくなるためその比は約2.5 以
内にするべきであることが明らかとなった。当然なが
ら、材料によっても異なってくるが、大体上記比率の範
囲(0.5〜2.5)が冷却の特性値が安定しており、信
頼性が一段と高いことも判明した。
Experiments were conducted by setting the area of the Si chip to 1 and changing the area ratio of the high thermal conductive material variously. As a result, it was found that the characteristics could be maintained and continued from the ratio of 0.5 or more, and it was clarified that the characteristics were as a semiconductor. However, it became clear that if the high thermal conductive metal occupies an excessively large area, the thermal deformation increases, so the ratio should be within about 2.5. Of course, although it depends on the material, it was found that the characteristic value of cooling is stable and the reliability is much higher in the range of the above ratio (0.5 to 2.5).

【0023】これらの複合金属支持板は、まず、剛性力
を有する金属板にSiチップの直下またはその近傍に当
たる個所に、熱伝導性に優れる材料が挿入される穴を加
工しておく。また、熱伝導性に優れる材料は、剛性力を
有する金属板に挿入すべき形状に予め加工しておく。加
工された熱伝導性に優れる材料は、剛性力を有する金属
板の穴部に挿入され、種々の方法で固定される。
In these composite metal supporting plates, first, a hole for inserting a material having excellent thermal conductivity is formed in a portion corresponding to a metal plate having rigidity, which is immediately below or near the Si chip. Further, a material having excellent thermal conductivity is previously processed into a shape to be inserted into a metal plate having rigidity. The processed material having excellent thermal conductivity is inserted into the hole of the metal plate having rigidity and fixed by various methods.

【0024】即ち、機械的にかしめる、ろう付及びはん
だ付等で両者を固定する等種々の方法が適用できる。こ
れらの固定方法を用いて複合金属支持板は製作できる。
その後、所定の形状に加工され、Niめっきが全表面に
施されて半導体の支持板に適用されることになる。
That is, various methods such as mechanical caulking and fixing the both by brazing or soldering can be applied. A composite metal support plate can be manufactured using these fixing methods.
After that, it is processed into a predetermined shape, Ni plating is applied to the entire surface, and it is applied to a semiconductor support plate.

【0025】この様にSi素子の直下に熱伝導性に優れ
る材料を配置させた、且つ剛性力に優れた複合金属支持
板を適用することにより、本発明は達成される。
As described above, the present invention can be achieved by applying the composite metal supporting plate in which a material having excellent thermal conductivity is arranged immediately below the Si element and which has excellent rigidity.

【0026】[0026]

【実施例】【Example】

(実施例1)本発明の主要な一実施例を図2により説明
する。実施例1の半導体装置の構成を示す。
(Embodiment 1) A main embodiment of the present invention will be described with reference to FIG. 1 shows a configuration of a semiconductor device of Example 1.

【0027】図2において、1は半導体素子(Siチッ
プ)(大きさ13mm×13mm,厚さ2mm)、2はアルミ
ナからなる絶縁板(大きさ54×36mm,厚さ1mm)、
3は絶縁板2の表面金属パターン、4は絶縁板3の裏面
金属パターン、5は複合金属支持板(大きさ74mm×6
5mm,厚さ3mm)、6は剛性の高い剛性金属板(Fe
系,大きさ74mm×65mm,厚さ3mm)、7は高熱伝導
性材料(Cu系,φ15mm,厚さ3.0mm)である。これ
らの組立て方としては、Siチップ1と絶縁板2の表面
金属パターン3はPb−1.5%Ag−5%Sn はんだ
8を用い、絶縁板2の裏面金属パターン4と複合金属支
持板5は、Pb−60%Snはんだ9を用いて接合し
た。
In FIG. 2, 1 is a semiconductor element (Si chip) (size 13 mm × 13 mm, thickness 2 mm), 2 is an insulating plate made of alumina (size 54 × 36 mm, thickness 1 mm),
3 is a surface metal pattern of the insulating plate 2, 4 is a back surface metal pattern of the insulating plate 3, and 5 is a composite metal supporting plate (size 74 mm × 6).
5 mm, thickness 3 mm), 6 is a rigid metal plate with high rigidity (Fe
No. 7, size 74 mm × 65 mm, thickness 3 mm), 7 is a high thermal conductive material (Cu system, φ15 mm, thickness 3.0 mm). As a method of assembling these, Pb-1.5% Ag-5% Sn solder 8 is used for the surface metal pattern 3 of the Si chip 1 and the insulating plate 2, and the backside metal pattern 4 of the insulating plate 2 and the composite metal supporting plate 5 are used. Was joined using Pb-60% Sn solder 9.

【0028】複合金属支持板5の作製は、剛性の高い剛
性金属板6の穴に、穴径より予め大きく加工した高熱伝
導性材料7を圧縮機に設置し、所定の圧縮力を与えて夫
々の材料を金属的に接合する。接合を終えたものは次
に、所定の形状に加工を施し、複合金属支持板としてモ
ジュールに適用される。高熱伝導性材料7を圧縮機にて
剛性金属板6の穴に押込む際に両者の間で温度差を設け
て同じ温度になったときに高熱伝導性材料7が焼ばめ又
は冷しばめされるようにするのがよい。
The composite metal supporting plate 5 is manufactured by installing a high thermal conductive material 7 machined in advance in a hole larger than the hole diameter of the rigid metal plate 6 in a compressor and applying a predetermined compressive force to each of them. The materials are metallically joined. The joined product is then processed into a predetermined shape and applied to the module as a composite metal supporting plate. When the high heat conductive material 7 is pushed into the hole of the rigid metal plate 6 by the compressor, a temperature difference is provided between the two and the high heat conductive material 7 is shrunk or cooled if the same temperature is reached. It is recommended that

【0029】また、高熱伝導性材料7を押込む際に高熱
伝導性材料7を400〜600℃の高温で加熱して行う
ことにより接合面で塑性変形を受てその表面で新生面を
生じさせることによりより強固な接合が得られるように
するのがよい。
Further, when the high thermal conductive material 7 is pushed in, the high thermal conductive material 7 is heated at a high temperature of 400 to 600 ° C. so that the joint surface undergoes plastic deformation and a new surface is generated on the surface. Therefore, it is better to obtain a stronger joint.

【0030】図3に複合金属支持板の製造工程を示す。
穴14を施した剛性板を用い、高熱伝導材7を多数穴1
4にはめ込み、1回で押圧する。常温で固定すれば支持
板の変形が小さい。最後にNiめっきが施される。高熱
伝導性材料7の大きさは穴14の大きさよりわずかに小
さく、高さを若干高くし、押圧後に剛性板6の板面より
高く残るようにする。そうすることによって穴14に対
して高熱伝導性材料7が隙間なく全体で密着させること
ができる。押圧後、高熱伝導性材料7の突出した部分は
ロールグラインダーで平らに研削し、次いでスキンパス
圧延する程度に圧延するのが良い。
FIG. 3 shows a manufacturing process of the composite metal supporting plate.
A rigid plate with holes 14 is used, and a large number of high thermal conductive materials 7 are provided.
Fit in 4 and press once. If fixed at room temperature, the deformation of the support plate will be small. Finally, Ni plating is applied. The size of the high thermal conductive material 7 is slightly smaller than the size of the hole 14, and the height is made slightly higher so that it remains higher than the plate surface of the rigid plate 6 after pressing. By doing so, the high thermal conductive material 7 can be brought into close contact with the hole 14 as a whole without a gap. After pressing, the protruding portion of the high thermal conductive material 7 may be ground flat by a roll grinder, and then rolled to the extent of skin pass rolling.

【0031】このようにして、半導体基板(Si素子/
絶縁板/複合金属支持板の構造)を作製した。この基板
にエポキシ製のケース10をかぶせた後、半導体素子の
耐電圧を確保するためのシリコンゲル11を充填する。
その他にSi素子と電極はワイヤボンディングで、また
電極板12及び13は絶縁板2の上にはんだで接合され
ている。
In this way, the semiconductor substrate (Si element /
An insulating plate / composite metal support plate structure) was prepared. After covering the substrate with an epoxy case 10, silicon gel 11 for ensuring the withstand voltage of the semiconductor element is filled.
In addition, the Si element and the electrode are bonded by wire bonding, and the electrode plates 12 and 13 are bonded on the insulating plate 2 by soldering.

【0032】次に、シリコンゲルの気密封止および電極
12の固定のためエポキシレジンを充填し、電極13を
取付けて図1に示す半導体モジュールが完成する。IG
BT基板の複合金属支持板はねじにより所定の場所に固
定される。
Next, epoxy resin is filled in for hermetically sealing the silicon gel and fixing the electrode 12, and the electrode 13 is attached to complete the semiconductor module shown in FIG. IG
The composite metal support plate of the BT substrate is fixed in place with screws.

【0033】比較例として図4に示すような従来の構造
の半導体基板を作製した。複合金属支持板を除いて、組
合せ、各部材の形状は実施例1と同様である。21は半
導体素子のSiチップ、22はアルミナ絶縁板、25は
金属支持板(Cu)である。ここでの金属支持板はCu
単体である。夫々の部材の接合は、実施例1と同様夫々
のはんだを用いて行った。これも図1のように半導体モ
ジュールとして完成した。
As a comparative example, a semiconductor substrate having a conventional structure as shown in FIG. 4 was produced. Except for the composite metal support plate, the combination and the shape of each member are the same as in Example 1. Reference numeral 21 is a Si chip of a semiconductor element, 22 is an alumina insulating plate, and 25 is a metal supporting plate (Cu). The metal support plate here is Cu
It is a simple substance. The joining of the respective members was performed using the respective solders as in the first embodiment. This was also completed as a semiconductor module as shown in FIG.

【0034】(実施例2)実施例1と同様な半導体基板
の構造を示している。但し、複合金属支持板の材料が異
なる。複合金属支持板5の剛性力を有する剛性金属板6
にNi又は95重量%以上のNiに5%以下Fe,C
u,Cr少なくとも1つを含むNi合金(形状は実施例
1と同様)を、高熱伝導性材料7にCu(形状は実施例
1と同様)を用いた。
(Second Embodiment) A structure of a semiconductor substrate similar to that of the first embodiment is shown. However, the material of the composite metal support plate is different. Rigid metal plate 6 having the rigidity of the composite metal support plate 5
Ni or 95% by weight or more of Ni and 5% or less of Fe, C
A Ni alloy containing at least one of u and Cr (the shape is the same as that of the first embodiment) and Cu (the shape is the same as that of the first embodiment) is used as the high thermal conductivity material 7.

【0035】(実施例3)実施例1と同様な半導体基板
の構造を示している。但し、複合金属支持板の材料が異
なる。複合金属支持板5の剛性力を有する剛性金属板6
にFe−40%Ni(形状は実施例1と同様)を、高熱
伝導性材料7にCu(形状は実施例1と同様)を用い
た。
(Embodiment 3) A structure of a semiconductor substrate similar to that of Embodiment 1 is shown. However, the material of the composite metal support plate is different. Rigid metal plate 6 having the rigidity of the composite metal support plate 5
Fe-40% Ni (the shape is the same as that of the first embodiment) is used, and Cu (the shape is the same as the first embodiment) is used as the high thermal conductive material 7.

【0036】(実施例4)実施例1と同様な半導体基板
の構造を示している。但し、2の絶縁板が窒化アルミニ
ウム(AlN)であり、3はAlN絶縁板の表面金属パタ
ーン、4はAlN絶縁板の裏面金属パターンが施されて
いる。複合金属支持板5の剛性力を有する剛性金属板6
にNi又は前述のNi基合金(形状は実施例1と同様)
を、高熱伝導性材料7にCu(形状は実施例1と同様)
を用いた。
(Embodiment 4) A structure of a semiconductor substrate similar to that of Embodiment 1 is shown. However, the insulating plate 2 is aluminum nitride (AlN), 3 is a surface metal pattern of the AlN insulating plate, and 4 is a back surface metal pattern of the AlN insulating plate. Rigid metal plate 6 having the rigidity of the composite metal support plate 5
Ni or the above-mentioned Ni-based alloy (the shape is the same as in Example 1)
Cu in the high thermal conductivity material 7 (the shape is the same as in Example 1)
Was used.

【0037】以上の接合により作製した実施例1,実施
例2,実施例3及び4、また、比較例に示すIGBT基
板を用いたIGBTモジュールを電気的通電のON,O
FFによる熱疲労寿命サイクル試験を行い半導体素子の
電気特性が発生する熱によって劣化するまでの寿命、い
わゆる熱疲労寿命を測定した。サイクル数が多いほど実
際に使用する際の寿命が長いことを意味する。結果を図
5に示す。図にはデータのバラツキの範囲と平均値を示
す。
The IGBT modules using the IGBT substrates shown in Examples 1, 2 and 3 and Comparative Example produced by the above-described joining were electrically turned on and off.
A thermal fatigue life cycle test by FF was performed to measure the life until the electrical characteristics of the semiconductor element were deteriorated by the heat generated, so-called thermal fatigue life. The larger the number of cycles, the longer the life in actual use. Results are shown in FIG. The figure shows the range of data variation and the average value.

【0038】図からわかるように従来の半導体装置(比
較例の図4)は約103 サイクルの熱疲労寿命サイクル
であるのに対し、本発明のものは、図2(実施例1)の
半導体装置で平均2.8 万サイクル、実施例2,実施例
3の半導体装置では、3万サイクル、また、実施例4の
半導体装置ではほぼ平均で約2.6 万サイクルを示し
た。この様に従来の単体の金属支持板を用いたものと比
較して、複合金属支持板を適切に適用することによって
耐熱疲労特性が著しく向上することが実証された。
As can be seen from the figure, the conventional semiconductor device (FIG. 4 of the comparative example) has a thermal fatigue life cycle of about 10 3 cycles, whereas the present invention has the semiconductor of FIG. 2 (embodiment 1). The device showed an average of 28,000 cycles, the semiconductor devices of Examples 2 and 3 showed 30,000 cycles, and the semiconductor device of Example 4 showed an average of about 260000 cycles. As described above, it was proved that the thermal fatigue resistance was remarkably improved by appropriately applying the composite metal supporting plate as compared with the conventional one using the single metal supporting plate.

【0039】耐熱疲労特性が向上したのは、金属支持板
に熱拡散特性に優れる材料と、熱変形を抑制する特性に
優れる材料と、を組合せた複合金属材を用いることによ
り、半導体素子に発生した熱がスムーズに伝導されるこ
とになり、熱変形の小さい半導体装置が得られる。
The improved thermal fatigue resistance is caused in a semiconductor element by using a composite metal material in which a material having an excellent thermal diffusion property and a material having an excellent property of suppressing thermal deformation are combined for a metal supporting plate. The generated heat is smoothly conducted, and a semiconductor device with small thermal deformation can be obtained.

【0040】なお、実施例2及び3の半導体装置が最も
良好な結果を示したのは、複合金属中の剛性力の金属材
料と、熱伝導性の材料との比率が適切であったため、そ
れに伴い熱変形量が最も小さくなったことによる。
The semiconductor devices of Examples 2 and 3 showed the best results because the ratio of the metal material having rigidity to the heat conductive material in the composite metal was appropriate. This is because the amount of thermal deformation has become the smallest.

【0041】また、本発明の他の適用例を図6に示す。
これはSi半導体素子が3個搭載されている。複合金属
支持板はSi半導体素子の面積を1とした場合、Cuの
面積は、約1.9 倍となる。次に複合金属支持板だけの
他の適用例を図7,図8、及び図9に示す。ここでは複
合金属支持板だけの断面形状を示す。この様な複合金属
支持板は、熱伝導性に優れる材料が熱膨張等で伸縮し、
剛性力の高い材料から移動するのを抑えることを考慮し
たものである。
FIG. 6 shows another application example of the present invention.
This is mounted with three Si semiconductor elements. When the area of the Si semiconductor element is 1 in the composite metal supporting plate, the area of Cu is about 1.9 times. Next, other application examples of only the composite metal supporting plate are shown in FIGS. 7, 8 and 9. Here, the sectional shape of only the composite metal supporting plate is shown. In such a composite metal support plate, a material having excellent thermal conductivity expands and contracts due to thermal expansion,
This is to prevent the material from moving from a material having high rigidity.

【0042】また、複合金属中の剛性の高い材料の、M
o,その他の材料等においても、また、熱伝導性の材料
のAl,Ag及びAu等において、その形状が円柱,台
形等を有しても実施例1から実施例4までの構造の半導
体装置とほぼかわりない耐熱疲労寿命特性を示した。
In addition, the material of high rigidity in the composite metal, M
o, other materials and the like, and the semiconductor devices having the structures of Embodiments 1 to 4 even if the shape of the heat conductive materials such as Al, Ag and Au is cylindrical or trapezoidal. The thermal fatigue life characteristics were almost the same.

【0043】[0043]

【発明の効果】以上説明したように、本発明によれば、
耐熱疲労性に優れた構造体を維持出来るので、電気的通
電のON,OFFによる熱疲労寿命サイクルに対し、著
しく向上させた、また価格的に安価な半導体装置を得る
ことが出来る。
As described above, according to the present invention,
Since the structure excellent in thermal fatigue resistance can be maintained, it is possible to obtain a semiconductor device which is significantly improved in price and inexpensive in the thermal fatigue life cycle due to ON / OFF of electric conduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】IGBTモジュールの概略断面図。FIG. 1 is a schematic sectional view of an IGBT module.

【図2】本発明の実施例を示す概略平面及び断面図。FIG. 2 is a schematic plan view and a sectional view showing an embodiment of the present invention.

【図3】本発明の複合金属支持板の製造工程図。FIG. 3 is a manufacturing process drawing of the composite metal supporting plate of the present invention.

【図4】従来の半導体を示す概略断面図。FIG. 4 is a schematic sectional view showing a conventional semiconductor.

【図5】本発明及び従来の構造の半導体モジュールと熱
疲労寿命サイクル数の関係を示す図。
FIG. 5 is a diagram showing the relationship between the semiconductor module of the present invention and a conventional structure and the number of thermal fatigue life cycles.

【図6】本発明の他の適用例を示す概略平面(a)及び
断面図(b)。
FIG. 6 is a schematic plane view (a) and a sectional view (b) showing another application example of the present invention.

【図7】複合金属支持板の断面図。FIG. 7 is a sectional view of a composite metal support plate.

【図8】複合金属支持板の断面図。FIG. 8 is a sectional view of a composite metal support plate.

【図9】複合金属支持板の断面図。FIG. 9 is a sectional view of a composite metal support plate.

【符号の説明】[Explanation of symbols]

1,21…半導体素子、2,22…絶縁板、3,23…
絶縁板の表面金属パターン、4,24…絶縁板の裏面金
属パターン、5…複合金属支持板、6…剛性金属板、7
…高熱伝導性材料、8,9,28,29…接合部、10
…ケース、11…ゲル、12,13…電極板、14…
穴、25…支持板。
1, 21 ... Semiconductor element, 2, 22 ... Insulating plate, 3, 23 ...
Surface metal pattern of insulating plate, 4, 24 ... Back surface metal pattern of insulating plate, 5 ... Composite metal supporting plate, 6 ... Rigid metal plate, 7
... High thermal conductivity material, 8, 9, 28, 29 ... Joint, 10
... Case, 11 ... Gel, 12, 13 ... Electrode plate, 14 ...
Hole, 25 ... Support plate.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】金属支持板上に絶縁板を有し、該絶縁板上
に半導体素子が搭載された半導体装置において、前記金
属支持板は、剛性金属板内の前記半導体素子の直下また
はその近傍に位置する個所に高熱伝導性材料が押圧接合
された複合金属支持板からなることを特徴とする半導体
装置。
1. A semiconductor device having an insulating plate on a metal supporting plate, and a semiconductor element mounted on the insulating plate, wherein the metal supporting plate is directly under the semiconductor element in a rigid metal plate or in the vicinity thereof. A semiconductor device comprising a composite metal supporting plate in which a high thermal conductive material is press-bonded to a portion located at.
【請求項2】前記剛性金属板は、18×103kg/mm2
上のヤング率を有し、前記高熱伝導性材料は200W/
m・K以上の熱伝導率を有する請求項1に記載の半導体
装置。
2. The rigid metal plate has a Young's modulus of 18 × 10 3 kg / mm 2 or more, and the high thermal conductivity material is 200 W / mm 2.
The semiconductor device according to claim 1, which has a thermal conductivity of m · K or more.
【請求項3】前記剛性金属板は、Fe,Ni,Mo、こ
れらの合金,Fe−Ni合金,Cu−Mo合金等から選
ばれる請求項1又は2に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the rigid metal plate is selected from Fe, Ni, Mo, alloys thereof, Fe—Ni alloys, Cu—Mo alloys and the like.
【請求項4】前記高熱伝導性材料は、Al,Cu,A
g,Auまたは、これらの合金、これらの複合材料から
選ばれる請求項1〜3のいずれかに記載の半導体装置。
4. The high thermal conductivity material is Al, Cu, A
The semiconductor device according to claim 1, which is selected from g, Au, alloys thereof, and composite materials thereof.
【請求項5】前記高熱伝導性材料は、前記半導体素子の
面積を1とした場合、0.5〜2.5倍の面積を有する請
求項1〜4のいずれかに記載の半導体装置。
5. The semiconductor device according to claim 1, wherein the high thermal conductivity material has an area of 0.5 to 2.5 times the area of the semiconductor element.
【請求項6】前記金属支持板の表面に、Ni系のめっき
が施されている請求項1〜5のいずれかに記載の半導体
装置。
6. The semiconductor device according to claim 1, wherein the surface of said metal supporting plate is plated with Ni-based material.
【請求項7】金属支持板上に絶縁板を有し、該絶縁板上
に半導体素子が搭載する半導体装置用金属支持板におい
て、該金属支持板は、剛性の高い金属板内の前記半導体
素子の直下またはその近傍に位置する個所に高熱伝導性
材料が押圧接合された複合金属支持板からなることを特
徴とする半導体装置用金属支持板。
7. A metal supporting plate for a semiconductor device, which comprises an insulating plate on a metal supporting plate, and a semiconductor element is mounted on the insulating plate, wherein the metal supporting plate is the semiconductor element in the metal plate having high rigidity. A metal supporting plate for a semiconductor device, comprising a composite metal supporting plate in which a high thermal conductive material is press-bonded to a portion located immediately below or in the vicinity thereof.
【請求項8】前記剛性金属板は、18×103kg/mm2
上のヤング率を有し、前記高熱伝導性材料は200W/
m・K以上の熱伝導率を有する請求項7に記載の半導体
装置用金属支持板。
8. The rigid metal plate has a Young's modulus of 18 × 10 3 kg / mm 2 or more, and the high thermal conductivity material is 200 W / mm 2.
The metal supporting plate for a semiconductor device according to claim 7, which has a thermal conductivity of m · K or more.
【請求項9】前記剛性金属板は、Fe,Ni,Mo、こ
れらの合金,Fe−Ni合金,Cu−Mo合金等から選
ばれる請求項7又は8記載の半導体装置用金属支持板。
9. The metal supporting plate for a semiconductor device according to claim 7, wherein the rigid metal plate is selected from Fe, Ni, Mo, alloys thereof, Fe—Ni alloys, Cu—Mo alloys and the like.
【請求項10】前記高熱伝導性材料は、Al,Cu,A
g,Auまたは、これらの合金、これらの複合材料から
選ばれる請求項7〜9のいずれかに記載の半導体装置用
金属支持板。
10. The high thermal conductive material is Al, Cu, A.
The metal supporting plate for a semiconductor device according to claim 7, which is selected from g, Au, alloys thereof, and composite materials thereof.
【請求項11】前記高熱伝導性材料は、前記半導体素子
の面積を1とした場合、0.5〜2.5倍の面積を有する
請求項7〜10のいずれかに記載の半導体装置用金属支
持板。
11. The metal for a semiconductor device according to claim 7, wherein the high thermal conductivity material has an area of 0.5 to 2.5 times the area of the semiconductor element. Support plate.
【請求項12】前記金属支持板の表面に、Ni系のめっ
きが施されている請求項7〜11のいずれかに記載の半
導体装置用金属支持板。
12. The metal supporting plate for a semiconductor device according to claim 7, wherein the surface of the metal supporting plate is plated with Ni-based material.
JP7239501A 1995-09-19 1995-09-19 Semiconductor device and metal support plate thereof Pending JPH0982858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239501A JPH0982858A (en) 1995-09-19 1995-09-19 Semiconductor device and metal support plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239501A JPH0982858A (en) 1995-09-19 1995-09-19 Semiconductor device and metal support plate thereof

Publications (1)

Publication Number Publication Date
JPH0982858A true JPH0982858A (en) 1997-03-28

Family

ID=17045731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239501A Pending JPH0982858A (en) 1995-09-19 1995-09-19 Semiconductor device and metal support plate thereof

Country Status (1)

Country Link
JP (1) JPH0982858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296493A (en) * 2003-03-25 2004-10-21 Mitsubishi Materials Corp Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
JP2008172192A (en) * 2007-01-11 2008-07-24 Taida Electronic Ind Co Ltd Heat dissipating device and method of manufacturing heat dissipating base
JP6041117B1 (en) * 2016-07-28 2016-12-07 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method of manufacturing heat dissipation substrate
WO2019208577A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Heat dissipation substrate and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296493A (en) * 2003-03-25 2004-10-21 Mitsubishi Materials Corp Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
JP2008172192A (en) * 2007-01-11 2008-07-24 Taida Electronic Ind Co Ltd Heat dissipating device and method of manufacturing heat dissipating base
JP6041117B1 (en) * 2016-07-28 2016-12-07 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module, and method of manufacturing heat dissipation substrate
WO2018020695A1 (en) * 2016-07-28 2018-02-01 株式会社半導体熱研究所 Heat dissipation substrate, semiconductor package, semiconductor module and heat dissipation substrate manufacturing method
WO2019208577A1 (en) * 2018-04-26 2019-10-31 京セラ株式会社 Heat dissipation substrate and electronic device
CN112005366A (en) * 2018-04-26 2020-11-27 京瓷株式会社 Heat dissipation substrate and electronic device
JPWO2019208577A1 (en) * 2018-04-26 2021-04-22 京セラ株式会社 Heat dissipation board and electronic device

Similar Documents

Publication Publication Date Title
JP3596388B2 (en) Semiconductor device
US20050218426A1 (en) Power semiconductor module
JPS6038867B2 (en) Isolated semiconductor device
US7097914B2 (en) Composite structural material, and method of producing the same
JP2000174180A (en) Semiconductor device
JP3627591B2 (en) Power semiconductor module manufacturing method
JP2002231883A (en) Power semiconductor module and power conversion device using the same
JP3417297B2 (en) Semiconductor device
JPH0982858A (en) Semiconductor device and metal support plate thereof
JP3620399B2 (en) Manufacturing method of electrical equipment
JPH11214612A (en) Power semiconductor module
JP4244723B2 (en) Power module and manufacturing method thereof
JPH10144967A (en) Thermoelectric element module for cooling
JP3972519B2 (en) Power semiconductor module
JPH09181253A (en) Packaging device for semiconductor element
JPH0817870A (en) Semiconductor device
JP2003258167A (en) Structure
JPH0964234A (en) Semiconductor device
JP2602161B2 (en) High heat dissipation integrated circuit package
JP2000183113A (en) Electric connection method for insulted gate bipolar transistor chip fitted to integrated circuit wafer
US20220320032A1 (en) Connecting strip for discrete and power electronic devices
JP2764685B2 (en) Semiconductor device and manufacturing method thereof
JPS5835956A (en) Hybrid integrated circuit device
JP3995928B2 (en) Power module joint structure
JPS5915386B2 (en) Method for manufacturing headers for semiconductor devices