JP3260282B2 - Non-aqueous electrolyte lithium secondary battery - Google Patents

Non-aqueous electrolyte lithium secondary battery

Info

Publication number
JP3260282B2
JP3260282B2 JP12727496A JP12727496A JP3260282B2 JP 3260282 B2 JP3260282 B2 JP 3260282B2 JP 12727496 A JP12727496 A JP 12727496A JP 12727496 A JP12727496 A JP 12727496A JP 3260282 B2 JP3260282 B2 JP 3260282B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
lithium
linio
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12727496A
Other languages
Japanese (ja)
Other versions
JPH0992285A (en
Inventor
年秀 村田
靖彦 美藤
正樹 長谷川
修二 伊藤
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12727496A priority Critical patent/JP3260282B2/en
Publication of JPH0992285A publication Critical patent/JPH0992285A/en
Application granted granted Critical
Publication of JP3260282B2 publication Critical patent/JP3260282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質リチウ
ム二次電池、特にその正極活物質に関するものである。
The present invention relates to a non-aqueous electrolyte lithium secondary battery, and more particularly to a positive electrode active material thereof.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が得られ、コードレス機器の駆動用電源としての期待が
大きく、盛んに研究が行われている。これまで非水電解
質二次電池の正極活物質として、LiCoO2、LiM
24、LiFeO2、LiNiO2、V25、Cr
25、MnO2、TiS2、MoS2などの遷移金属の酸
化物およびカルコゲン化合物が提案されている。これら
の化合物は、層状もしくはトンネル構造を有し、リチウ
ムイオンが出入りできる結晶構造を持っている。特に、
LiCoO2やLiNiO2は4V級の非水電解質リチウ
ム二次電池用正極活物質として注目されている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode has a high voltage and a high energy density, and is expected to be used as a power supply for driving cordless devices. I have. LiCoO 2 and LiM have been used as positive electrode active materials for non-aqueous electrolyte secondary batteries.
n 2 O 4 , LiFeO 2 , LiNiO 2 , V 2 O 5 , Cr
Oxides of transition metals such as 2 O 5 , MnO 2 , TiS 2 , MoS 2 and chalcogen compounds have been proposed. These compounds have a layered or tunnel structure, and have a crystal structure through which lithium ions can enter and exit. In particular,
LiCoO 2 and LiNiO 2 have attracted attention as a positive electrode active material for a 4 V class non-aqueous electrolyte lithium secondary battery.

【0003】これらの中でLiCoO2は、整った層状
構造を有しており、高電圧、高容量が得られるため実用
化が進められている。しかし、コバルトが高価な元素で
あり、高コストとなってしまうことや、世界情勢の変化
による供給不足、価格の高騰等の原料の供給面での不安
も考えられる。そこで、比較的低コストであり、なおか
つLiCoO2を上回る高容量の得られるLiNiO2
注目され、実用化に向けた研究開発が盛んに行われてい
る。LiNiO2は、LiCoO2と同様の組成、構造を
有しており、高容量、高電圧のリチウム二次電池用正極
活物質として期待される材料である。そして、これまで
の研究開発で合成方法に改良が加えられ、高容量な材料
を容易に得ることが可能になった。
[0003] Among them, LiCoO 2 has an ordered layered structure and can be used at a high voltage and a high capacity. However, cobalt is an expensive element, which may lead to high costs, supply shortages due to changes in the world situation, rising prices, and other concerns about the supply of raw materials. Therefore, attention has been paid to LiNiO 2 , which is relatively low-cost and has a higher capacity than LiCoO 2, and research and development for practical use have been actively conducted. LiNiO 2 has the same composition and structure as LiCoO 2, and is a material expected as a high-capacity, high-voltage positive electrode active material for lithium secondary batteries. Improvements have been made to the synthesis method through research and development so far, and it has become possible to easily obtain high-capacity materials.

【0004】このようにLiNiO2は、初期容量につ
いてはLiCoO2を上回る高容量を得られるようにな
ったが、他の諸特性にはまだ課題が残されている。特
に、大きな容量を得るために、深い深度で充放電を行っ
た場合、充電時に格子定数の大幅な減少が起こり、結晶
格子体積の激しい収縮が起こる。その結果、活物質粒子
の割れ等が生じ、集電不良となり、容量低下の原因とな
る。また、大幅な結晶格子の変化が起こるため、結晶構
造的にも乱れが生じ、活物質自身の容量の劣化を引き起
こすことになる。すなわち、充電時に多量のリチウムイ
オンが結晶中から抜き取られた際に、結晶格子が不安定
になってイオンの再配列が起こり、層状構造の乱れが生
じ、リチウムイオンの拡散が妨げられ特性が劣化すると
考えられる。従って、LiNiO2のリチウム二次電池
の正極活物質としての特性は、初期容量は非常に優れて
いるが、サイクル特性が好ましくない。充電深度を浅く
して小さな容量で充放電を繰り返した場合には、サイク
ル劣化を抑制することができる。しかし、LiCoO2
を上回る高容量の正極活物質として用いる場合には、そ
の結晶構造を制御し、深い深度での充電時に起こる結晶
格子の収縮やイオン配列の乱れを抑制する必要がある。
As described above, LiNiO 2 can obtain a higher initial capacity than LiCoO 2 , but other characteristics still have problems. In particular, when charging / discharging is performed at a deep depth in order to obtain a large capacity, the lattice constant is significantly reduced at the time of charging, and the crystal lattice volume is significantly shrunk. As a result, cracking of the active material particles and the like occur, resulting in poor current collection and a reduction in capacity. In addition, since a significant change in the crystal lattice occurs, the crystal structure is disturbed, and the capacity of the active material itself is deteriorated. In other words, when a large amount of lithium ions are extracted from the crystal during charging, the crystal lattice becomes unstable and rearrangement of the ions occurs, disorder of the layered structure occurs, diffusion of lithium ions is hindered, and characteristics are deteriorated. It is thought that. Therefore, the characteristics of LiNiO 2 as a positive electrode active material of a lithium secondary battery are very excellent in initial capacity, but are poor in cycle characteristics. When charge and discharge are repeated with a small capacity by making the charge depth shallow, cycle deterioration can be suppressed. However, LiCoO 2
When used as a positive electrode active material having a higher capacity than that of the positive electrode active material, it is necessary to control its crystal structure and to suppress shrinkage of the crystal lattice and disorder of the ion arrangement that occur during charging at a deep depth.

【0005】このような結晶構造の制御の方法として、
ニッケルの一部を他元素で置換する方法がある。これま
でに、ソリッド ステイト アイオニクス53−56
(1992年)第370頁から第375頁(Solid
State Ionics53−56(1992)3
70−375)に記載されているようなニッケルの一部
をCoで置換したものなど、Niの一部を他の元素で置
換することによりサイクル特性などの改善をはかった研
究例が報告されている。
As a method of controlling such a crystal structure,
There is a method of replacing a part of nickel with another element. So far, Solid State Ionics 53-56
(1992) pages 370 to 375 (Solid)
State Ionics 53-56 (1992) 3
70-375), there has been reported a research example in which cycle characteristics and the like are improved by partially replacing Ni with another element, such as one in which nickel is partially replaced by Co, as described in JP-A-70-375). I have.

【0006】[0006]

【発明が解決しようとする課題】しかし、LiNiO2
は、上述のサイクル特性以外にも高率での充放電特性や
高温でのサイクル特性などの点で十分な性能が得られて
いない。また、Niの一部をCoなどで置換した場合に
も、常温でのサイクル性は改善されているが、高温での
サイクル特性は不十分である。コードレス機器の電源と
して用いた場合、用途によっては急速充電や大電流を取
り出すことが必要となり、高率での充放電特性が悪く、
高率の充放電で容量が低下するのは、実用上大きな問題
である。また、リチウム二次電池は、大電流を取り出す
ことにより電池内部の温度が上昇するため、高温時の特
性が良くないと、高率放電直後に充電できないなど、使
用条件に制約が加わる。そのため、高温時の特性劣化を
抑えることも重要である。
However, LiNiO 2
However, in addition to the above-described cycle characteristics, sufficient performance is not obtained in terms of charge / discharge characteristics at a high rate and cycle characteristics at a high temperature. Also, when a part of Ni is replaced by Co or the like, the cyclability at room temperature is improved, but the cyclability at high temperature is insufficient. When used as a power supply for cordless devices, it is necessary to take out quick charging and large current depending on the application, and the charge / discharge characteristics at high rates are poor.
The fact that the capacity is reduced by a high rate of charge / discharge is a serious problem in practical use. In addition, since the temperature inside the battery rises when a large current is taken out of the lithium secondary battery, if the characteristics at high temperatures are not good, it is impossible to charge the battery immediately after high-rate discharge, which imposes restrictions on use conditions. Therefore, it is also important to suppress characteristic deterioration at high temperatures.

【0007】[0007]

【課題を解決するための手段】本発明は、正極、リチウ
ムを可逆的に吸蔵・放出することのできる負極、および
非水電解質を具備する非水電解質リチウム二次電池にお
いて、正極活物質としてLiNiO2のニッケルの一部
を他の元素で置換した、特定の化合物を用いることによ
り、高率充放電特性や高温での充放電特性を大幅に改善
できることを見いだしたことに基づくものである。
SUMMARY OF THE INVENTION The present invention relates to a nonaqueous electrolyte lithium secondary battery comprising a positive electrode, a negative electrode capable of inserting and extracting lithium reversibly, and a nonaqueous electrolyte. It is based on the finding that high-rate charge / discharge characteristics and high-temperature charge / discharge characteristics can be significantly improved by using a specific compound in which part of nickel of Part 2 is replaced with another element.

【0008】すなわち、本発明の非水電解質リチウム二
次電池は、正極活物質として、LiNiO2のニッケル
の一部を他の元素で置換した化合物、式LiXNi1-Y
Y2+Z(MはMg、Ca、Sr、およびBaからなる群
より選ばれる少なくとも1種の元素、0.05≦X≦
1.1、0.01≦Y≦0.3、−0.3≦Z≦0.
1)、式LiXNi1-YAlY2+Z(式中、0.05≦X
≦1.1、0.003≦Y≦0.1、−0.3≦Z≦
0.1)で表される化合物、式LiXNi1-Y(Ala
dY2+Z(ただし、0.05≦X≦1.1、0.0
1≦Y≦0.3、−0.3≦Z≦0.1、(a+d)≦
1、aおよびdは0とならない。)で表される化合物、
式LiXNi1-Y(AlabY2+Z(ただし、0.05
≦X≦1.1、0.01≦Y≦0.3、−0.3≦Z≦
0.1、(a+b)≦1、aおよびbは0とならな
い。)で表される化合物、式LiXNi1-Y(BbMgd
Y2+Z(ただし、0.05≦X≦1.1、0.01≦Y
≦0.3、−0.3≦Z≦0.1、(b+d)≦1、b
およびdは0とならない。)で表される化合物、式Li
XNi1-Y(AlabCocY2+Z(ただし、0.05
≦X≦1.1、0.01≦Y≦0.3、−0.3≦Z≦
0.1、(a+b+c)≦1、a、bおよびcは0とな
らない。)で表される化合物、または式LiXNi
1-Y(AlabCocMgdY2+Z(ただし、0.05
≦X≦1.1、0.01≦Y≦0.3、−0.3≦Z≦
0.1、(a+b+c+d)≦1、a、b、cおよびd
は0とならない。)で表される化合物を含む正極を備え
るものである。
That is, the non-aqueous electrolyte lithium secondary battery of the present invention is a compound in which nickel of LiNiO 2 is partially replaced with another element as a positive electrode active material, a compound of the formula Li X Ni 1 -Y M
Y O 2 + Z (M is at least one element selected from the group consisting of Mg, Ca, Sr, and Ba, 0.05 ≦ X ≦
1.1, 0.01 ≦ Y ≦ 0.3, −0.3 ≦ Z ≦ 0.
1), formula Li X Ni 1-Y Al Y O 2 + Z (where 0.05 ≦ X
≦ 1.1, 0.003 ≦ Y ≦ 0.1, −0.3 ≦ Z ≦
0.1), a compound represented by the formula Li X Ni 1-Y (Al a M
g d ) Y O 2 + Z (where 0.05 ≦ X ≦ 1.1, 0.0
1 ≦ Y ≦ 0.3, −0.3 ≦ Z ≦ 0.1, (a + d) ≦
1, a and d do not become 0. ), A compound represented by
Formula Li X Ni 1-Y (Al a B b ) Y O 2 + Z (However, 0.05
≤X≤1.1, 0.01≤Y≤0.3, -0.3≤Z≤
0.1, (a + b) ≦ 1, a and b do not become 0. A compound represented by the formula: Li X Ni 1-Y (B b Mg d )
Y O 2 + Z (However, 0.05 ≦ X ≦ 1.1, 0.01 ≦ Y
≦ 0.3, −0.3 ≦ Z ≦ 0.1, (b + d) ≦ 1, b
And d do not become zero. A compound of formula Li
X Ni 1-Y (Al a B b Co c) Y O 2 + Z ( where 0.05
≤X≤1.1, 0.01≤Y≤0.3, -0.3≤Z≤
0.1, (a + b + c) ≦ 1, a, b and c do not become 0. Compounds represented by), or expression Li X Ni
1-Y (Al a B b Co c Mg d) Y O 2 + Z ( where 0.05
≤X≤1.1, 0.01≤Y≤0.3, -0.3≤Z≤
0.1, (a + b + c + d) ≦ 1, a, b, c and d
Does not become 0. ) Is provided.

【0009】本発明者らは、LiNiO2のニッケルの
一部を、2価のイオンとなるアルカリ土類金属であるM
g,Ca,Sr,およびBaより選ばれる元素で置換す
ることにより、結晶骨格が安定化されサイクル特性が改
善されるだけでなく、高率充放電特性についても大幅に
改善できることを見いだした。さらに、3価のイオンに
ついて詳細に検討したところ、Alや第一系列の遷移元
素の一つであるCrを用いた場合でも、少量であれば高
率充放電特性も改善されることを見いだした。従って、
Mg,Ca,Sr,Baもしくは少量のAl,CrをL
iNiO2の結晶構造中に導入することにより、高容量
でサイクル特性が優れており、なおかつ高率充放電特性
を大幅に改善することができる。さらに、高温での特性
について検討した結果、上記元素で置換した化合物、さ
らには、置換元素としてAlとMgを組み合わせて用い
たもので、大きな効果を得ることができた。そこで、A
l,Mg以外の元素との組合せについても検討し、A
l,Mg,B,Coの4種類の元素を組み合わせること
により、同様に各々の元素単一で用いるよりも大きな効
果が得られることがわかった。
The present inventors have proposed that a part of the nickel of LiNiO 2 be converted to an alkaline earth metal, M, which is a divalent ion.
It has been found that substitution with an element selected from g, Ca, Sr, and Ba not only stabilizes the crystal skeleton and improves cycle characteristics, but also significantly improves high-rate charge / discharge characteristics. Furthermore, when the trivalent ion was examined in detail, it was found that, even when Al or Cr, which is one of the first series of transition elements, was used, the small-quantity small amount improved the high-rate charge / discharge characteristics. . Therefore,
Mg, Ca, Sr, Ba or a small amount of Al, Cr
By being introduced into the crystal structure of iNiO 2 , high capacity and excellent cycle characteristics can be achieved, and high rate charge / discharge characteristics can be significantly improved. Furthermore, as a result of examining the characteristics at a high temperature, as a result of using the compound substituted with the above-mentioned element and further using a combination of Al and Mg as the replacing element, a great effect was obtained. So, A
Considering combinations with elements other than l and Mg, A
It has been found that by combining the four types of elements 1, l, Mg, B, and Co, a greater effect can be obtained than when each element is used alone.

【0010】高温における充放電時の特性劣化は、活物
質の化学的な反応性が大きく影響していると考えられ
る。前記の元素が結晶構造中に入ることにより、特に化
学的に活性となる4V以上の電位の深い充電時の反応性
が低下し、電解液との反応などが抑制される。その結
果、高温で充放電を行った場合の特性劣化が抑制される
と考えられる。以上に示した元素を置換元素に用いるこ
とにより、LiNiO2では大きな効果が得られる。一
方、LiNiO2と同様の結晶構造をとるLiCoO2
おいては、前記の元素による置換では好ましい効果は得
られない。LiCoO2においても、結晶構造中に他の
元素を導入することによる初期容量やサイクル特性、高
率充放電特性等の特性改善の検討がなされ、効果が得ら
れている。しかし、LiNiO2の場合ほど大きな効果
は得られない。また、高温では逆に他元素の導入により
特性が劣化してしまう。これは、元素置換を行わない場
合の各々の合成条件の違い(LiNiO2は合成条件に
より生成物の特性が大きく異なり条件の管理が重要であ
るが、LiCoO2では比較的容易に合成でき、安定し
た特性が得られる)や種々の特性の違いからも推察され
るように、LiNiO2とLiCoO2では結晶の安定性
や化学的な特性などが異なり、他元素導入による効果も
異なるためであると考えられる。すなわち、上記元素置
換による効果はLiNiO2に特有のものである。ニッ
ケルとこれの一部を置換する元素の価数が異なる場合
は、ニッケルの価数変化および/または上記Zの範囲で
酸素量が変わることによって価数のバランスがとられ
る。また、酸素量は焼成雰囲気の他、出発原料や焼成温
度によっても変化する。
It is considered that the deterioration of characteristics at the time of charge and discharge at a high temperature is largely affected by the chemical reactivity of the active material. When the above-mentioned element enters the crystal structure, the reactivity at the time of deep charging of a potential of 4 V or more, which becomes chemically active, is reduced, and the reaction with the electrolytic solution is suppressed. As a result, it is considered that the characteristic deterioration when charging and discharging are performed at a high temperature is suppressed. By using the above-described elements as replacement elements, a great effect can be obtained with LiNiO 2 . On the other hand, in LiCoO 2 having a crystal structure similar to that of LiNiO 2 , a favorable effect cannot be obtained by substitution with the above elements. Also for LiCoO 2 , improvements in characteristics such as initial capacity, cycle characteristics, and high-rate charge / discharge characteristics by introducing other elements into the crystal structure have been studied, and effects have been obtained. However, a great effect cannot be obtained as in the case of LiNiO 2 . On the other hand, at high temperatures, the characteristics are degraded due to the introduction of other elements. This is due to the difference in the respective synthesis conditions when element substitution is not performed (LiNiO 2 greatly differs in the characteristics of the product depending on the synthesis conditions, and the management of the conditions is important. However, LiCoO 2 can be synthesized relatively easily and is stable. This is because LiNiO 2 and LiCoO 2 have different crystal stability and chemical characteristics, and also have different effects due to the introduction of other elements, as can be inferred from the differences in various characteristics. Conceivable. That is, the effect of the element substitution is unique to LiNiO 2 . When the valence of nickel and the element that partially substitutes for nickel are different, the valence is balanced by changing the valence of nickel and / or changing the amount of oxygen in the above Z range. Further, the amount of oxygen varies depending on the starting material and the firing temperature in addition to the firing atmosphere.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を実施
例により詳細に説明する。本発明は、これら実施例に限
定されるものではないことはいうまでのない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to examples. It goes without saying that the present invention is not limited to these examples.

【0012】[0012]

【実施例】【Example】

《実施例1》LiNiO2のニッケルの一部を置換する
元素としてMg,Ca,Sr,Baを用いた場合につい
て説明する。Mgを用いた場合は、LiNO3、Ni
(OH)2、およびMg(NO32を原料とし、酸素気
流中において、700℃で焼成した。原料の混合比は、
Li/(Mg+Ni)のモル比を1.05のリチウム過
剰とし、Mg/(Mg+Ni)のモル比が0.005、
0.01、0.1、0.2、0.3、0.35となるよ
うにした。同様に、Caを用いる場合にはCa(N
32、Baを用いる場合にはBa(NO32、Srを
用いる場合にはSr(NO32をそれぞれ出発原料とし
て活物質を合成した。また、前記硝酸塩の代わりにそれ
ぞれMg(OH)2、Ca(OH)2、Ba(OH)2
Sr(OH)2等の水酸化物を用いても同様に活物質を
合成することができる。
<< Embodiment 1 >> A case where Mg, Ca, Sr, and Ba are used as an element for partially replacing nickel in LiNiO 2 will be described. When Mg is used, LiNO 3 , Ni
(OH) 2 and Mg (NO 3 ) 2 were used as raw materials and fired at 700 ° C. in an oxygen stream. The mixing ratio of the raw materials is
The molar ratio of Li / (Mg + Ni) was made to be lithium excess of 1.05, the molar ratio of Mg / (Mg + Ni) was 0.005,
The values were set to 0.01, 0.1, 0.2, 0.3, and 0.35. Similarly, when Ca is used, Ca (N
Active materials were synthesized using O 3 ) 2 , Ba (NO 3 ) 2 when using Ba, and Sr (NO 3 ) 2 when using Sr as starting materials. Further, instead of the nitrate, Mg (OH) 2 , Ca (OH) 2 , Ba (OH) 2 ,
An active material can be similarly synthesized using a hydroxide such as Sr (OH) 2 .

【0013】合成した試料のX線回折測定を行ったとこ
ろ、ジョイント コミティー オンパウダー ディフラ
クション スタンダーズ(Joint committee on powder
diffraction standards、以下JCPDSで表す。)の
9−0063に登録されたパターンと類似しており、そ
れと同様の結晶構造であることが解った。また、面指数
(104)で示されるピークに対する面指数(003)
で示されるピークの強度比は、いずれも1.25以上で
あった。LiNiO2は、六方晶の層状構造を取り、酸
素の層にリチウム層とニッケル層が交互に挟まれた構造
である。リチウムとニッケルが入れ替わり、構造に乱れ
が生じると、このピーク強度比は減少する。このピーク
強度比が1.2以下になると、ニッケルによりリチウム
イオンの拡散が妨げられるため、特性の低下が起こる。
本実施例の場合には、前記ピーク強度比は1.25以上
と好ましい値である。
[0013] When the X-ray diffraction measurement of the synthesized sample was performed, the joint committee on powder diffraction standards (Joint committee on powder) was used.
Diffraction standards, hereinafter referred to as JCPDS. ), Which is similar to the pattern registered in 9-0063, and has the same crystal structure. Also, the surface index (003) for the peak indicated by the surface index (104)
The intensity ratios of the peaks indicated by are all 1.25 or more. LiNiO 2 has a hexagonal layered structure in which a lithium layer and a nickel layer are alternately sandwiched between oxygen layers. When lithium and nickel are exchanged and the structure is disturbed, the peak intensity ratio decreases. When the peak intensity ratio is 1.2 or less, the diffusion of lithium ions is hindered by nickel, so that the characteristics deteriorate.
In the case of this embodiment, the peak intensity ratio is a preferable value of 1.25 or more.

【0014】次に、正極を作製した。正極の作製はま
ず、活物質と導電剤であるアセチレンブラックと結着剤
としてのポリ4フッ化エチレン樹脂を重量比で7:2:
1となるように混合し、充分に乾燥したものを正極合剤
とした。この正極合剤0.15gを2トン/cm2で直
径17.5mmのペレット状に加圧成型し正極とした。
以上のように作製した電極を用いて製造した電池の断面
図を図1に示す。正極1は金属製ケース3の中央に配置
された集電体2に圧着されている。この正極1上に、セ
パレータとしての多孔性ポリプロピレンフィルム7が配
されている。負極4は、厚さ0.8mm、直径17.5
mmのリチウム板からなり、これはポリプロピレン製ガ
スケット8及び負極集電体5を付けた封口板6に圧着さ
れている。非水電解質として、1mol/lの過塩素酸
リチウムを溶解したプロピレンカーボネートを用いた。
これをセパレータ7上、正極1上及び負極4上に加えた
後、電池を封口した。
Next, a positive electrode was manufactured. First, the positive electrode was prepared by mixing an active material, acetylene black as a conductive agent, and polytetrafluoroethylene resin as a binder in a weight ratio of 7: 2:
The mixture was mixed so as to be 1 and dried sufficiently to obtain a positive electrode mixture. 0.15 g of this positive electrode mixture was pressed at 2 tons / cm 2 into a pellet having a diameter of 17.5 mm to obtain a positive electrode.
FIG. 1 shows a cross-sectional view of a battery manufactured using the electrodes manufactured as described above. The positive electrode 1 is crimped to a current collector 2 arranged at the center of a metal case 3. On this positive electrode 1, a porous polypropylene film 7 as a separator is arranged. The negative electrode 4 has a thickness of 0.8 mm and a diameter of 17.5.
mm, which is pressed against a sealing plate 6 provided with a polypropylene gasket 8 and a negative electrode current collector 5. Propylene carbonate in which 1 mol / l of lithium perchlorate was dissolved was used as the non-aqueous electrolyte.
After this was added on the separator 7, the positive electrode 1 and the negative electrode 4, the battery was sealed.

【0015】以上の様にして作製した電池について、電
圧範囲3.0V〜4.3Vの電圧規制として、0.5m
A/cm2の電流密度で充放電試験を行った。初期放電
容量と20サイクル目の放電容量を測定し、20サイク
ル目の放電容量の初期放電容量に対する割合、容量維持
率を求めた。また、21サイクル目に電流密度を2.5
mA/cm2として放電容量を測定し、20サイクル目
の容量に対する割合、容量維持率を求めた。これらを表
1に示す。表に示した値は、各試料につき10個の電池
の平均値であり、以下の実施例および比較例においても
同様とする。なお、表1において、容量維持率(1)
は、電流密度0.5mA/cm2における20サイクル
目の容量維持率を表し、容量維持率(2)は21サイク
ル目の電流密度2.5mA/cm2における容量の20
サイクル目容量に対する維持率を示す(以下の表におい
ても同じ。)。
With respect to the battery prepared as described above, the voltage regulation in the voltage range of 3.0 V to 4.3 V was 0.5 m
A charge / discharge test was performed at a current density of A / cm 2 . The initial discharge capacity and the discharge capacity at the 20th cycle were measured, and the ratio of the discharge capacity at the 20th cycle to the initial discharge capacity and the capacity retention rate were determined. Further, the current density was increased to 2.5 at the 21st cycle.
The discharge capacity was measured at mA / cm 2 , and the ratio to the capacity at the 20th cycle and the capacity retention were determined. These are shown in Table 1. The values shown in the table are average values of 10 batteries for each sample, and the same applies to the following Examples and Comparative Examples. In Table 1, the capacity retention ratio (1)
A current density of 0.5 mA / cm 2 in represents the capacity retention ratio 20 cycle, the capacity maintenance rate (2) 20 volume at a current density of 2.5 mA / cm 2 for 21 cycle
The retention rate with respect to the cycle capacity is shown (the same applies to the following tables).

【0016】[0016]

【表1】 [Table 1]

【0017】《実施例2》 ニッケルの一部を置換する元素にAl、Crを用いた場
合について説明する。ただし、Crを用いた場合は参考
例である。置換元素にAlを用いた場合は、LiN
3、Ni(OH)2、およびAl(NO33を原料と
し、酸素気流中において、700℃で焼成した。原料の
混合比は、Li/(Al+Ni)のモル比を1.05の
リチウム過剰とし、Al/(Al+Ni)のモル比が
0.002、0.003、0.05、0.09、0.0
95となるようにした。同様に、Crを用いる場合には
出発原料としてCr(NO33を用いて活物質を合成し
た。また、前記硝酸塩の代わりにそれぞれAl(OH)
3、Cr(OH)3等の水酸化物を用いても同様に活物質
を合成することができる。合成したLiNiO2のX線
回折測定を行ったところ、JCPDSの9−0063に
登録されたパターンと類似しており、それと同様の結晶
構造であることが解った。また、面指数(104)で示
されるピークに対する面指数(003)で示されるピー
クの強度比は、いずれも1.25以上であった。次に、
実施例1と同様の方法で電池を作製し、同じ条件で充放
電試験を行った。その結果を表2に示す。
<< Embodiment 2 >> A case where Al and Cr are used as an element for partially replacing nickel will be described. However, when Cr is used
It is an example. When Al is used as a substitution element, LiN
Using O 3 , Ni (OH) 2 , and Al (NO 3 ) 3 as raw materials, firing was performed at 700 ° C. in an oxygen stream. As for the mixing ratio of the raw materials, the molar ratio of Li / (Al + Ni) was set to be a lithium excess of 1.05, and the molar ratio of Al / (Al + Ni) was 0.002, 0.003, 0.05, 0.09, and 0.1. 0
95. Similarly, when Cr was used, an active material was synthesized using Cr (NO 3 ) 3 as a starting material. Also, instead of the nitrate, Al (OH)
3 , an active material can be similarly synthesized using a hydroxide such as Cr (OH) 3 . When the X-ray diffraction measurement of the synthesized LiNiO 2 was performed, it was found that the pattern was similar to the pattern registered in 9-0063 of JCPDS and had the same crystal structure. The intensity ratio of the peak indicated by the plane index (003) to the peak indicated by the plane index (104) was 1.25 or more. next,
A battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】以上の実施例1、2、および後述の比較例
1、2の比較から次のことが明かである。表1、2に示
すように、Mg,Ca,Ba,Srを0.01≦Y≦
0.3の範囲で、またAl,Crを0.003≦Y<
0.1の範囲でそれぞれ用いることにより、表10に示
したLiNiO2と比較してサイクル特性および高率充
放電特性が改善される。また、比較例2の表11からわ
かるように、Al,Crを用いた場合、Y≧0.1では
サイクル特性は改善されるが、高率充放電特性について
はLiNiO2と比較し大きな改善は得られない。従っ
て、Al,Crを用いる場合にはY<0.1でなければ
ならない。
From the comparison between Examples 1 and 2 and Comparative Examples 1 and 2 described below, the following is clear. As shown in Tables 1 and 2, Mg, Ca, Ba, and Sr were determined to be 0.01 ≦ Y ≦
0.3, and Al and Cr in 0.003 ≦ Y <
By using each in the range of 0.1, the cycle characteristics and the high-rate charge / discharge characteristics are improved as compared with LiNiO 2 shown in Table 10. Further, as can be seen from Table 11 of Comparative Example 2, when Al and Cr were used, the cycle characteristics were improved when Y ≧ 0.1, but the high rate charge / discharge characteristics were not significantly improved as compared with LiNiO 2. I can't get it. Therefore, when Al and Cr are used, Y <0.1 must be satisfied.

【0020】《実施例3》次に実施例1の化合物の高温
での特性について説明する。合成した正極活物質、およ
び評価に用いた電池は実施例1と同様である。電圧範囲
3.0V〜4.3Vの電圧規制とし、0.5mA/cm
2の電流密度で充放電を行った場合の初期放電容量と2
0サイクル目の容量維持率を、25℃および60℃のそ
れぞれれの温度で評価した結果を表3〜6に示す。
Example 3 Next, the characteristics of the compound of Example 1 at a high temperature will be described. The synthesized positive electrode active material and the battery used for evaluation are the same as in Example 1. A voltage range of 3.0 V to 4.3 V is defined as 0.5 mA / cm.
The initial discharge capacity when charge and discharge were performed in the current density and 2
Tables 3 to 6 show the results of evaluating the capacity maintenance ratio at the 0th cycle at each temperature of 25 ° C and 60 ° C.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】表3〜6に示すように、Niの置換元素と
してMg,Ca,Sr,Baを用いた場合、0.01≦
Y≦0.3の範囲で比較例3のLiNiO2と比べて、
高温でのサイクル特性が改善される。Y<0.01では
置換量が少なく好ましい効果は得られず、また、Y>
0.3では置換量が多すぎるために初期容量の低下を招
くことになる。比較例4ではLiCo1-YMgY2、す
なわち、LiCoO2のCoの一部をMgで置換した例
について説明している。比較例4によれば、LiCoO
2のCoの一部をMgで置換しても好ましい効果は得ら
れず、逆に特性が低下した。従って、特にニッケル酸化
物において本発明による元素置換により大きな効果が得
られることがわかる。
As shown in Tables 3 to 6, when Mg, Ca, Sr, and Ba are used as the substitution elements for Ni, 0.01 ≦
Compared with LiNiO 2 of Comparative Example 3 in the range of Y ≦ 0.3,
The cycle characteristics at high temperatures are improved. When Y <0.01, the amount of substitution is small and a favorable effect cannot be obtained.
If it is 0.3, the amount of substitution is too large, so that the initial capacity is reduced. Comparative Example 4 In LiCo 1-Y Mg Y O 2 , i.e., has been described an example in which a part of LiCoO 2 Co was replaced with Mg. According to Comparative Example 4, LiCoO
Even if a part of Co of No. 2 was substituted with Mg, no favorable effect was obtained, and conversely, the characteristics were lowered. Therefore, it can be seen that a great effect can be obtained by the element substitution according to the present invention, particularly in nickel oxide.

【0026】《実施例4》 実施例2の化合物の高温での特性について説明する。
だし、Crについては参考例である。合成した正極活物
質、および評価に用いた電池は実施例2と同様である。
実施例3と同条件で充放電試験をした結果を表7、8に
示す。
Example 4 The characteristics of the compound of Example 2 at a high temperature will be described. Was
However, Cr is a reference example. The synthesized positive electrode active material and the battery used for evaluation are the same as in Example 2.
Tables 7 and 8 show the results of a charge / discharge test performed under the same conditions as in Example 3.

【0027】[0027]

【表7】 [Table 7]

【0028】[0028]

【表8】 [Table 8]

【0029】表7に示すように、Niの置換元素として
Alを0.003≦Y<0.1の範囲で用いることによ
り、比較例3のLiNiO2と比べて、高温でのサイク
ル特性が改善される。比較例9で示すように、Y≧0.
1であると、常温でのサイクル特性は改善されるが、高
温ではLiNiO2と比べて大きな改善は得られない。
従って、Alを単独で用いる場合にはY<0.1でなけ
ればならない。比較例5では、LiCo1-YAlY2
ついて説明している。比較例5によれば、LiCoO2
のCoの一部をAlで置換しても好ましい効果は得られ
ず、逆に特性が低下している。従って、特にニッケル酸
化物において本発明による置換により大きな効果が得ら
れることがわかる。表8に示すように、Niの一部をC
rを置換した場合もAlの場合と同様の結果が得られ、
置換量0.003≦Y<0.1の範囲で高温でのサイク
ル性が改善される。
As shown in Table 7, by using Al as a substitution element for Ni in the range of 0.003 ≦ Y <0.1, the cycle characteristics at high temperatures were improved as compared with LiNiO 2 of Comparative Example 3. Is done. As shown in Comparative Example 9, Y ≧ 0.
When the ratio is 1, the cycle characteristics at normal temperature are improved, but at a high temperature, no significant improvement is obtained as compared with LiNiO 2 .
Therefore, when Al is used alone, Y <0.1 must be satisfied. Comparative Example 5 describes LiCo 1-Y Al Y O 2 . According to Comparative Example 5, LiCoO 2
However, even if a part of Co is replaced with Al, a favorable effect cannot be obtained, and conversely, the characteristics are deteriorated. Therefore, it can be seen that a great effect can be obtained by the substitution according to the present invention, particularly in nickel oxide. As shown in Table 8, part of Ni was converted to C
When r is substituted, the same result as that of Al is obtained,
When the substitution amount is in the range of 0.003 ≦ Y <0.1, the cyclability at high temperatures is improved.

【0030】《実施例5》ニッケルの一部を置換する元
素にAl,B,Co,Mgから選ばれる2種以上の元素
を用いた場合について説明する。Al源としてAl(N
33、B源としてH3BO3、Co源としてCo34
Mg源としてMg(NO32をそれぞれ用いた。これら
をLiNO3、およびNi(OH)2と混合し、酸素気流
中において、650℃で焼成した。原料の混合比はLi
/(Ni+(Al,B,Co,Mgから選ばれる2種以
上の元素の組合せ))のモル比を1.05のリチウム過
剰とし、Al,B,Co,Mgが目的の組成となるよう
に混合した。焼成物のX線回折測定を行ったところ、J
CPDSの9−0063に登録されたパターンと類似し
ており、そのLiNiO2と同様の結晶構造であること
が解った。また、面指数(104)で示されるピークに
対する面指数(003)で示されるピークの強度比は、
いずれも1.25以上であった。LiNiO2と類似の
ピーク以外に不純物ピークは見られず、焼成物は表9に
示す化合物になっていると考えられる。上記の化合物を
用いて実施例1と同様の方法で電池を作製し、0.5m
A/cm2の電流密度で電圧範囲3.0V〜4.3Vの
電圧規制として、充放電試験をした。25℃および60
℃のそれぞれれの温度における初期放電容量と20サイ
クル目の容量維持率を表9に示す。
Embodiment 5 A case in which two or more elements selected from Al, B, Co, and Mg are used as the element that partially replaces nickel is described. Al (N
O 3 ) 3 , H 3 BO 3 as a B source, Co 3 O 4 as a Co source,
Mg (NO 3 ) 2 was used as a Mg source. These were mixed with LiNO 3 and Ni (OH) 2 and fired at 650 ° C. in an oxygen stream. The mixing ratio of the raw materials is Li
The molar ratio of / (Ni + (combination of two or more elements selected from Al, B, Co, and Mg)) is set to an excess of lithium of 1.05 so that Al, B, Co, and Mg have a desired composition. Mixed. X-ray diffraction measurement of the fired product showed that J
The pattern was similar to the pattern registered in CPDS 9-0063, and was found to have the same crystal structure as that of LiNiO 2 . The intensity ratio of the peak indicated by the plane index (003) to the peak indicated by the plane index (104) is:
All were 1.25 or more. No impurity peak was observed other than the peak similar to LiNiO 2, and the fired product is considered to be a compound shown in Table 9. Using the above compound, a battery was prepared in the same manner as in Example 1, and a 0.5 m
A charge / discharge test was performed as a voltage regulation in a voltage range of 3.0 V to 4.3 V at a current density of A / cm 2 . 25 ° C and 60
Table 9 shows the initial discharge capacity and the capacity retention ratio at the 20th cycle at each temperature of ° C.

【0031】[0031]

【表9】 [Table 9]

【0032】表9に示すように、Niの置換元素とし
て、Al,B,Co,およびMgから選ばれる2種以上
を用いることにより、比較例3のLiNiO2と比較し
て高温でのサイクル特性が改善される。また、比較例
6,7および実施例3,4の各元素を単一で用いた場合
に比べて、より好ましい特性を得ることができる。ま
た、後述の比較例8で示す表15との比較からも明かな
ように、Al,B,Co,Mgを組み合わせて用いる場
合には、0.01≦Y≦0.3、(a+b+c+d)≦
1の範囲内であることが望ましい。Y<0.01である
と、元素置換の効果が小さく、Y>0.3では置換量が
多すぎるため特性の劣化を招くことになる。また、(a
+b+c+d)>1では結晶構造に乱れが生じ、特性劣
化を招く。
As shown in Table 9, by using two or more kinds of elements selected from Al, B, Co, and Mg as the substitution elements for Ni, the cycle characteristics at a higher temperature than LiNiO 2 of Comparative Example 3 were obtained. Is improved. Further, more preferable characteristics can be obtained as compared with the case where each element of Comparative Examples 6 and 7 and Examples 3 and 4 are used alone. Further, as is clear from comparison with Table 15 shown in Comparative Example 8 described later, when Al, B, Co, and Mg are used in combination, 0.01 ≦ Y ≦ 0.3 and (a + b + c + d) ≦
It is desirably within the range of 1. If Y <0.01, the effect of the element substitution is small, and if Y> 0.3, the substitution amount is too large, resulting in deterioration of characteristics. Also, (a
When + b + c + d)> 1, the crystal structure is disturbed, and the characteristics are degraded.

【0033】《比較例1》LiNiO2を活物質に用い
た。原料にはLiNO3とNi(OH)2を用いた。両者
の混合物を酸素気流中において、700℃で焼成した。
原料の混合比はLi/Niのモル比を1.05のリチウ
ム過剰とした。合成した化合物のX線回折測定を行った
ところ、JCPDSの9−0063に登録されたLiN
iO2のパターンと一致した。また、面指数(104)
で示されるピークに対する面指数(003)で示される
ピークの強度比は1.3であった。このピーク強度比が
1.20以下であると、LiNiO2の層状の結晶構造
に乱れがあり、リチウムイオンの拡散が妨げられるた
め、特性が低下する。本比較例の化合物は1.3と好ま
しい値である。次に、実施例1と同様の方法で電池を作
製し、実施例1と同条件で充放電試験をした。その結果
を表10に示す。
Comparative Example 1 LiNiO 2 was used as an active material. As raw materials, LiNO 3 and Ni (OH) 2 were used. Both mixtures were fired at 700 ° C. in an oxygen stream.
The mixing ratio of the raw materials was such that the molar ratio of Li / Ni was lithium excess of 1.05. X-ray diffraction measurement of the synthesized compound showed that LiN registered in 9-0063 of JCPDS was used.
This was consistent with the pattern of iO 2 . The surface index (104)
The intensity ratio of the peak indicated by the surface index (003) to the peak indicated by was 1.3. When the peak intensity ratio is 1.20 or less, the layered crystal structure of LiNiO 2 is disturbed, and the diffusion of lithium ions is hindered. The compound of this comparative example has a preferable value of 1.3. Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 1. Table 10 shows the results.

【0034】[0034]

【表10】 [Table 10]

【0035】《比較例2》LiNiO2のNiの一部を
置換する元素としてAl,Crを用いた場合について説
明する。Alを用いた場合はLiNO3、Ni(O
H)2、およびAl(NO33の混合物を酸素気流中に
おいて、700℃で焼成した。原料の混合比は、Li/
(Al+Ni)のモル比を1.05のリチウム過剰と
し、Al/(Al+Ni)のモル比が0.1、0.2、
0.3、0.4、0.5となるようにした。同様に、C
rを用いた場合には、Cr源としてCr(NO33を用
いて活物質を合成した。合成した試料のX線回折測定を
行ったところ、JCPDSの9−0063に登録された
LiNiO2のパターンと類似しており、それと同様の
結晶構造であることが解った。また、面指数(104)
で示されるピークに対する面指数(003)で示される
ピークの強度比は、いずれも1.25以上であった。次
に、実施例1と同様の方法で電池を作製し、実施例1と
同条件で充放電試験をした。その結果を表11に示す。
<< Comparative Example 2 >> A case where Al and Cr are used as elements for substituting a part of Ni of LiNiO 2 will be described. When Al is used, LiNO 3 , Ni (O
A mixture of H) 2 and Al (NO 3 ) 3 was fired at 700 ° C. in an oxygen stream. The mixing ratio of the raw materials is Li /
The molar ratio of (Al + Ni) is made to be lithium excess of 1.05, and the molar ratio of Al / (Al + Ni) is 0.1, 0.2,
0.3, 0.4, and 0.5. Similarly, C
When r was used, an active material was synthesized using Cr (NO 3 ) 3 as a Cr source. X-ray diffraction measurement of the synthesized sample showed that the pattern was similar to the pattern of LiNiO 2 registered in JCPDS 9-0063, and had the same crystal structure. The surface index (104)
The intensity ratio of the peak indicated by the surface index (003) to the peak indicated by was 1.25 or more. Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 1. Table 11 shows the results.

【0036】[0036]

【表11】 [Table 11]

【0037】《比較例3》LiNiO2を用いた場合に
ついて説明する。LiNO3とNi(OH)2の混合物を
酸素気流中において、650℃で焼成した。混合比はL
i/Niのモル比を1.05のリチウム過剰とした。合
成したLiNiO2のX線回折測定を行ったところ、J
CPDSの9−0063に登録されたパターンと一致し
た。また、面指数(104)で示されるピークに対する
面指数(003)で示されるピークの強度比は1.3で
あった。次に、実施例1と同様の方法で電池を作製し、
実施例3と同条件で充放電試験をした。その結果を表1
2に示す。
<< Comparative Example 3 >> A case where LiNiO 2 is used will be described. A mixture of LiNO 3 and Ni (OH) 2 was fired at 650 ° C. in an oxygen stream. Mixing ratio is L
The i / Ni molar ratio was 1.05 lithium excess. X-ray diffraction measurement of the synthesized LiNiO 2 showed that
It matched the pattern registered in 9-0063 of CPDS. The intensity ratio of the peak indicated by the plane index (003) to the peak indicated by the plane index (104) was 1.3. Next, a battery was manufactured in the same manner as in Example 1,
A charge / discharge test was performed under the same conditions as in Example 3. Table 1 shows the results.
It is shown in FIG.

【0038】[0038]

【表12】 [Table 12]

【0039】《比較例4》LiCoO2、およびLiC
oO2にMgを導入した化合物について説明する。Li
CoO2は、Li2CO3、およびCo34の混合物を大
気中、900℃で焼成して合成した。原料の混合比はL
i/Coのモル比を1.00とした。Mgを導入する場
合は、Li2CO3、Co34、およびMg(NO32
原料に用いた。これらの混合比は、Li/(Mg+C
o)のモル比が1.00、Mg/(Mg+Co)のモル
比が0.1となるようにした。得られた焼成物のX線回
折測定を行ったところ、いずれもJCPDSの16−0
427に登録されたLiCoO2のパターンと類似して
おり、それと同様の結晶構造であることが解った。Li
CoO2と類似のピーク以外に不純物ピークは見られ
ず、焼成物はLiCoO2およびLiCo1-YMgY
2(Y=0.1)であると考えられる。次に、実施例1
と同様の方法で電池を作製し、実施例3と同条件で充放
電試験をした。その結果を後記表13に示す。
Comparative Example 4 LiCoO 2 and LiC
A compound in which Mg is introduced into oO 2 will be described. Li
CoO 2 was synthesized by firing a mixture of Li 2 CO 3 and Co 3 O 4 at 900 ° C. in the air. The mixing ratio of the raw materials is L
The i / Co molar ratio was 1.00. When introducing Mg, Li 2 CO 3 , Co 3 O 4 and Mg (NO 3 ) 2 were used as raw materials. These mixing ratios are Li / (Mg + C
The molar ratio of o) was set to 1.00, and the molar ratio of Mg / (Mg + Co) was set to 0.1. When the obtained fired product was subjected to X-ray diffraction measurement, it was found that all of the products were JCPDS 16-0.
It was found that the crystal structure was similar to the pattern of LiCoO 2 registered in No. 427, and had the same crystal structure. Li
No impurity peak was observed other than the peak similar to CoO 2, and the fired product was LiCoO 2 and LiCo 1-Y Mg Y O
2 (Y = 0.1). Next, Example 1
A battery was produced in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 3. The results are shown in Table 13 below.

【0040】《比較例5》LiCoO2にAlを導入し
た場合について説明する。Li2CO3、Co34、およ
びAl(NO33の混合物を大気中、900℃で焼成し
た。これらの原料の混合比は、Li/(Al+Co)の
モル比を1.00、Al/(Al+Co)のモル比を
0.05とした。得られた焼成物のX線回折測定を行っ
たところ、JCPDSの16−0427に登録されたL
iCoO2のパターンと類似しており、LiCoO2と同
様の結晶構造を有することが解った。LiCoO2と類
似のピーク以外に不純物ピークは見られず、焼成物はL
iCo1-YAlY2(Y=0.05)であると考えられ
る。次に、実施例1と同様の方法で電池を作製し、実施
例3と同条件で充放電試験を行った。その結果を表13
に示す。
<< Comparative Example 5 >> A case where Al is introduced into LiCoO 2 will be described. A mixture of Li 2 CO 3 , Co 3 O 4 , and Al (NO 3 ) 3 was fired at 900 ° C. in the air. The mixing ratio of these raw materials was such that the molar ratio of Li / (Al + Co) was 1.00 and the molar ratio of Al / (Al + Co) was 0.05. When the obtained fired product was subjected to X-ray diffraction measurement, L registered in JCPDS 16-0427 was obtained.
It was found that the pattern was similar to the pattern of iCoO 2 and had a crystal structure similar to that of LiCoO 2 . No impurity peak was observed other than the peak similar to LiCoO 2, and the calcined product was L
It is considered to be iCo 1-Y Al Y O 2 (Y = 0.05). Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 3. Table 13 shows the results.
Shown in

【0041】[0041]

【表13】 [Table 13]

【0042】《比較例6》LiNiO2のNiの一部を
Bで置換した場合について説明する。LiNO3、Ni
(OH)2、およびH3BO3の混合物を酸素気流中にお
いて、650℃で焼成した。原料の混合比は、Li/
(B+Ni)のモル比を1.05のリチウム過剰とし、
B/(B+Ni)のモル比を0.05とした。焼成物の
X線回折測定を行ったところ、JCPDSの9−006
3に登録されたLiNiO2のパターンと類似してお
り、LiNiO2と同様の結晶構造を有することが解っ
た。LiNiO2と類似のピーク以外に不純物ピークは
見られず、焼成物はLiNi1-YY2(Y=0.0
5)であると考えられる。次に、実施例1と同様の方法
で電池を作製し、実施例3と同条件で充放電試験を行っ
た。その結果を後記表14に示す。
Comparative Example 6 A case where a part of Ni of LiNiO 2 is replaced by B will be described. LiNO 3 , Ni
A mixture of (OH) 2 and H 3 BO 3 was calcined at 650 ° C. in an oxygen stream. The mixing ratio of the raw materials is Li /
The molar ratio of (B + Ni) is set to be lithium excess of 1.05,
The molar ratio of B / (B + Ni) was set to 0.05. When the X-ray diffraction measurement of the calcined product was performed, it was found that JCPDS 9-006
It was found that the pattern was similar to the pattern of LiNiO 2 registered in No. 3 and had the same crystal structure as LiNiO 2 . No impurity peak was observed other than the peak similar to LiNiO 2, and the fired product was LiNi 1 -YB Y O 2 (Y = 0.0
5). Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 3. The results are shown in Table 14 below.

【0043】《比較例7》LiNiO2のNiの一部を
Coで置換した場合について説明する。LiNO3、N
i(OH)2、およびCo34の混合物を酸素気流中に
おいて、650℃で焼成した。原料の混合比は、Li/
(Co+Ni)のモル比を1.05のリチウム過剰と
し、Co/(Co+Ni)のモル比を0.10とした。
得られた焼成物のX線回折測定を行ったところ、JCP
DSの9−0063に登録されたパターンと類似してお
り、LiNiO2と同様の結晶構造であることが解っ
た。LiNiO2と類似のピーク以外に不純物ピークは
見られず、焼成物はLiNi1 -YCoY2(Y=0.1
0)であると考えられる。次に、実施例1と同様の方法
で電池を作製し、実施例3と同条件で充放電試験を行っ
た。その結果を表14に示す。
<< Comparative Example 7 >> A case where a part of Ni of LiNiO 2 is replaced by Co will be described. LiNO 3 , N
A mixture of i (OH) 2 and Co 3 O 4 was calcined at 650 ° C. in a stream of oxygen. The mixing ratio of the raw materials is Li /
The molar ratio of (Co + Ni) was set to be lithium excess of 1.05, and the molar ratio of Co / (Co + Ni) was set to 0.10.
X-ray diffraction measurement of the obtained fired product showed that JCP
The pattern was similar to that registered in DS 9-0063, and was found to have the same crystal structure as LiNiO 2 . Impurity peaks besides similar peaks and LiNiO 2 are not observed, calcined product LiNi 1 -Y Co Y O 2 ( Y = 0.1
0). Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 3. Table 14 shows the results.

【0044】[0044]

【表14】 [Table 14]

【0045】《比較例8》LiNiO2におけるNiを
Al,B,Co,Mgから選ばれる2種以上の元素で置
換した場合について説明する。Al源としてAl(NO
33、B源としてH3BO3、Co源としてCo34、M
g源としてMg(NO32をそれぞれ用いた。これらを
LiNO3、およびNi(OH)2と混合し、酸素気流
中、650℃で焼成した。原料の混合比はLi/(Ni
+(Al,B,Co,Mgから選ばれる2種以上の元素
の組合せ))のモル比を1.05のリチウム過剰とし、
Al,B,Co,Mgが目的の組成となるようにした。
得られた焼成物のX線回折測定を行ったところ、JCP
DSの9−0063に登録されたパターンと類似してお
り、LiNiO2と同様の結晶構造であることが解っ
た。また、面指数(104)で示されるピークに対する
面指数(003)で示されるピークの強度比は、いずれ
も1.25以上であった。LiNiO2と類似のピーク
以外に不純物ピークは見られず、焼成物は表15に示す
化合物であると考えられる。次に、実施例1と同様の方
法で電池を作製し、実施例3と同条件で充放電試験を行
った。その結果を表15に示す。
Comparative Example 8 A case in which Ni in LiNiO 2 is replaced by two or more elements selected from Al, B, Co, and Mg will be described. Al (NO
3 ) 3 , H 3 BO 3 as B source, Co 3 O 4 as Co source, M
Mg (NO 3 ) 2 was used as a g source. These were mixed with LiNO 3 and Ni (OH) 2 and fired at 650 ° C. in an oxygen stream. The mixing ratio of the raw materials is Li / (Ni
+ (Combination of two or more elements selected from Al, B, Co, Mg)) with a lithium excess of 1.05,
Al, B, Co, and Mg were made to have the desired composition.
X-ray diffraction measurement of the obtained fired product showed that JCP
The pattern was similar to that registered in DS 9-0063, and was found to have the same crystal structure as LiNiO 2 . The intensity ratio of the peak indicated by the plane index (003) to the peak indicated by the plane index (104) was 1.25 or more. No impurity peak was observed other than the peak similar to LiNiO 2, and the fired product is considered to be a compound shown in Table 15. Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 3. Table 15 shows the results.

【0046】[0046]

【表15】 [Table 15]

【0047】《比較例9》LiNiO2のNiの一部を
Alで置換した場合について説明する。LiNO3、N
i(OH)2、おとびAl(NO33の混合物を酸素気
流中、650℃で焼成した。原料の混合比は、Li/
(Al+Ni)のモル比を1.05のリチウム過剰と
し、Al/(Al+Ni)のモル比が0.1、0.2、
0.3、0.4、0.5となるようにした。得られた焼
成物のX線回折測定を行ったところ、JCPDSの9−
0063に登録されたパターンと類似しており、LiN
iO2と同様の結晶構造であることが解った。また、面
指数(104)で示されるピークに対する面指数(00
3)で示されるピークの強度比は、いずれも1.25以
上であった。LiNiO2と類似のピーク以外に不純物
ピークは見られず、焼成物はLiNi1-YAlY2(Y
=0.1,0.2,0.3,0.4,0.5)であると
考えられる。次に、実施例1と同様の方法で電池を作製
し、実施例3と同条件で充放電試験を行った。その結果
を表16に示す。
Comparative Example 9 A case where a part of Ni of LiNiO 2 is replaced by Al will be described. LiNO 3 , N
A mixture of i (OH) 2 and Al (NO 3 ) 3 was fired at 650 ° C. in an oxygen stream. The mixing ratio of the raw materials is Li /
The molar ratio of (Al + Ni) is made to be lithium excess of 1.05, and the molar ratio of Al / (Al + Ni) is 0.1, 0.2,
0.3, 0.4, and 0.5. An X-ray diffraction measurement of the obtained fired product showed that 9-
0063 is similar to the pattern registered in
It turned out that it has the same crystal structure as iO 2 . The surface index (00) for the peak indicated by the surface index (104)
The intensity ratios of the peaks indicated by 3) were all 1.25 or more. No impurity peak was observed other than the peak similar to LiNiO 2, and the fired product was LiNi 1 -Y Al Y O 2 (Y
= 0.1, 0.2, 0.3, 0.4, 0.5). Next, a battery was manufactured in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 3. Table 16 shows the results.

【0048】[0048]

【表16】 [Table 16]

【0049】以上の実施例では、活物質を合成するため
の原料リチウム塩としてLiNO3、ニッケル塩として
Ni(OH)2をそれぞれ用いたが、リチウム塩として
は水酸化リチウム、炭酸リチウムや酸化リチウム、ニッ
ケル塩としては炭酸ニッケル、硝酸ニッケルや酸化ニッ
ケルなどをそれぞれを用いても同様の結果が得られる。
また、置換元素Mg,Ca,Ba,Sr,Al,Cr,
B,Coの原料として、上記実施例で用いた化合物以外
でも、硝酸塩、炭酸塩や酸化物などを用いても同様の結
果が得られる。電池構成に用いた材料についても、負極
については実施例では金属リチウムを用いたが、炭素材
料や黒鉛類縁化合物、アルミニウム、アルミニウム合金
その他充放電によりリチウムを可逆的に吸蔵・放出する
ことのできる材料を用いても同様の効果が得られる。ま
た、電解液についても実施例では溶媒としてプロピレン
カーボネート、溶質に過塩素酸リチウムを用いたが、溶
媒にエチレンカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、ジメトキシエタン、テトラヒ
ドロフラン、メチルテトラヒドロフラン、γ-ブチロラ
クトン、ジオキソラン、ジメチルスルホキシド等この種
のリチウム電池に用いることのできる溶媒を、溶質には
六フッ化リン酸リチウム、4フッ化ホウ酸リチウム、ト
リフルオロメタンスルホン酸リチウム等のリチウム塩を
用いても同様に効果が得られる。さらに、電池の形態に
ついてもコイン型に限らず、円筒型、角型の電池におい
ても同様に効果が得られる。
In the above embodiment, LiNO 3 was used as a raw material lithium salt for synthesizing an active material, and Ni (OH) 2 was used as a nickel salt. However, lithium hydroxide, lithium carbonate, lithium oxide and the like were used as lithium salts. Similar results can be obtained by using nickel carbonate, nickel nitrate, nickel oxide or the like as the nickel salt.
Further, the substitution elements Mg, Ca, Ba, Sr, Al, Cr,
Similar results can be obtained by using nitrates, carbonates, oxides, and the like as the raw materials for B and Co, in addition to the compounds used in the above examples. Regarding the materials used for the battery configuration, lithium metal was used in the examples for the negative electrode, but carbon materials, graphite analogs, aluminum, aluminum alloys, and other materials capable of reversibly occluding and releasing lithium by charging and discharging. The same effect can be obtained by using. In the examples, propylene carbonate was used as a solvent and lithium perchlorate was used as a solute. However, ethylene carbonate, diethyl carbonate, methyl ethyl carbonate, dimethoxyethane, tetrahydrofuran, methyltetrahydrofuran, γ-butyrolactone, and dioxolane were used as solvents. The same effect can be obtained by using a solvent that can be used for this type of lithium battery, such as dimethyl sulfoxide, and a lithium salt such as lithium hexafluorophosphate, lithium tetrafluoroborate, or lithium trifluoromethane sulfonate as a solute. Is obtained. Furthermore, the form of the battery is not limited to the coin type, and the same effect can be obtained with a cylindrical or square type battery.

【0050】[0050]

【発明の効果】以上の実施例の説明からも明らかなよう
に、本発明によれば、低コストで高エネルギー密度を有
し、なおかつ高率充放電特性や高温作動時の特性の優れ
た非水電解質リチウム二次電池を得ることができる。
As is apparent from the above description of the embodiment, according to the present invention, a non-chargeable battery having a high energy density at a low cost, a high charge / discharge characteristic at a high rate and a characteristic at a high temperature operation. A water electrolyte lithium secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電池の縦断面図であ
る。
FIG. 1 is a vertical sectional view of a battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 正極集電体 3 ケース 4 負極 5 負極集電体 6 封口板 7 セパレータ 8 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode current collector 3 Case 4 Negative electrode 5 Negative electrode current collector 6 Sealing plate 7 Separator 8 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平9−17430(JP,A) 特開 平8−315819(JP,A) 特開 平8−250121(JP,A) 特開 平8−213015(JP,A) 特開 平8−185863(JP,A) 特開 平8−153541(JP,A) 特開 平8−138669(JP,A) 特開 平8−83604(JP,A) 特開 平8−78006(JP,A) 特開 平8−45509(JP,A) 特開 平6−275275(JP,A) 特開 平6−215800(JP,A) 特開 平5−290845(JP,A) 特開 平5−242891(JP,A) 特開 昭63−121258(JP,A) 特開 昭62−90863(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shuji Ito 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Okadoma Kadoma Kadoma City Osaka (56) References JP-A-9-17430 (JP, A) JP-A-8-315819 (JP, A) JP-A-8-250121 (JP, A) JP-A-8-213015 (JP JP-A-8-158563 (JP, A) JP-A-8-153541 (JP, A) JP-A-8-138669 (JP, A) JP-A-8-83604 (JP, A) 8-78006 (JP, A) JP-A-8-45509 (JP, A) JP-A-6-275275 (JP, A) JP-A-6-215800 (JP, A) JP-A-5-290845 (JP, A A) JP-A-5-242891 (JP, A) JP-A-63-121258 (JP, A JP-A-62-90863 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が式LiXNi1-YY2+Z(MはMg、Ca、S
r、およびBaからなる群より選ばれる少なくとも1種
の元素、0.05≦X≦1.1、0.01≦Y≦0.
3、−0.3≦Z≦0.1)で表される化合物を含むこ
とを特徴とする非水電解質リチウム二次電池。
A positive electrode, a negative electrode capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, wherein the positive electrode has a formula Li X Ni 1-Y M YO 2 + Z (M is Mg, Ca, S
r, and at least one element selected from the group consisting of Ba, 0.05 ≦ X ≦ 1.1, 0.01 ≦ Y ≦ 0.
3, a non-aqueous electrolyte lithium secondary battery comprising a compound represented by -0.3 ≦ Z ≦ 0.1).
【請求項2】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が式LiXNi1-YAlY2+Z(式中、0.05≦X
≦1.1、0.003≦Y≦0.1、−0.3≦Z≦
0.1)で表される化合物を含むことを特徴とする非水
電解質リチウム二次電池。
2. A fuel cell comprising a positive electrode, a negative electrode capable of reversibly inserting and extracting lithium, and a non-aqueous electrolyte, wherein the positive electrode has a formula Li X Ni 1 -Y Al Y O 2 + Z .05 ≦ X
≦ 1.1, 0.003 ≦ Y ≦ 0.1, −0.3 ≦ Z ≦
A non-aqueous electrolyte lithium secondary battery comprising the compound represented by 0.1).
【請求項3】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が、式LiXNi1-Y(AlaMgdY2+Z(ただ
し、0.05≦X≦1.1、0.01≦Y≦0.3、−
0.3≦Z≦0.1、(a+d)≦1、aおよびdは0
とならない。)で表される化合物を含むことを特徴とす
る非水電解質リチウム二次電池。
3. A positive electrode, a negative electrode capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, wherein the positive electrode has a formula Li X Ni 1 -Y (Al a Mg d ) Y O 2+ Z (However, 0.05 ≦ X ≦ 1.1, 0.01 ≦ Y ≦ 0.3, −
0.3 ≦ Z ≦ 0.1, (a + d) ≦ 1, a and d are 0
Does not. A non-aqueous electrolyte lithium secondary battery comprising the compound represented by the formula (1).
【請求項4】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が、式LiXNi1-Y(AlabY2+Z(ただし、
0.05≦X≦1.1、0.01≦Y≦0.3、−0.
3≦Z≦0.1、(a+b)≦1、aおよびbは0とな
らない。)で表される化合物を含むことを特徴とする非
水電解質リチウム二次電池。
4. A positive electrode, a negative electrode capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, wherein the positive electrode has a formula Li X Ni 1 -Y (Al a B b ) Y O 2+ Z (however,
0.05 ≦ X ≦ 1.1, 0.01 ≦ Y ≦ 0.3, −0.
3 ≦ Z ≦ 0.1, (a + b) ≦ 1, a and b do not become 0. A non-aqueous electrolyte lithium secondary battery comprising the compound represented by the formula (1).
【請求項5】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が、式LiXNi1-Y(BbMgdY2+Z(ただし、
0.05≦X≦1.1、0.01≦Y≦0.3、−0.
3≦Z≦0.1、(b+d)≦1、bおよびdは0とな
らない。)で表される化合物を含むことを特徴とする非
水電解質リチウム二次電池。
5. A positive electrode, a negative electrode capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, wherein the positive electrode has a formula of Li X Ni 1 -Y (B b Mg d ) Y O 2+. Z (however,
0.05 ≦ X ≦ 1.1, 0.01 ≦ Y ≦ 0.3, −0.
3 ≦ Z ≦ 0.1, (b + d) ≦ 1, b and d do not become 0. A non-aqueous electrolyte lithium secondary battery comprising the compound represented by the formula (1).
【請求項6】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が 式LiXNi1-Y(AlabCocY2+Z(た
だし、0.05≦X≦1.1、0.01≦Y≦0.3、
−0.3≦Z≦0.1、(a+b+c)≦1、a、bお
よびcは0とならない。)で表される化合物を含こと
を特徴とする非水電解質リチウム二次電池。
6. cathode, comprising a negative electrode, and a non-aqueous electrolyte capable of reversibly occluding and releasing lithium, wherein the positive electrode has the formula Li X Ni 1-Y (Al a B b Co c) Y O 2 + Z (However, 0.05 ≦ X ≦ 1.1, 0.01 ≦ Y ≦ 0.3,
−0.3 ≦ Z ≦ 0.1, (a + b + c) ≦ 1, a, b and c do not become zero. A non-aqueous electrolyte lithium secondary battery represented by a compound characterized including that in).
【請求項7】 正極、リチウムを可逆的に吸蔵・放出す
ることのできる負極、および非水電解質を具備し、前記
正極が、式LiXNi1-Y(AlabCocMgdY2+Z
(ただし、0.05≦X≦1.1、0.01≦Y≦0.
3、−0.3≦Z≦0.1、(a+b+c+d)≦1、
a、b、cおよびdは0とならない。)で表される化合
物を含むことを特徴とする非水電解質リチウム二次電
池。
7. A positive electrode, a negative electrode capable of reversibly occluding and releasing lithium, and a non-aqueous electrolyte, wherein the positive electrode has a formula Li X Ni 1 -Y (Al a B b Co c Mg d ) Y O 2 + Z
(However, 0.05 ≦ X ≦ 1.1, 0.01 ≦ Y ≦ 0.
3, -0.3≤Z≤0.1, (a + b + c + d) ≤1,
a, b, c and d do not become zero. A non-aqueous electrolyte lithium secondary battery comprising the compound represented by the formula (1).
JP12727496A 1995-05-26 1996-05-22 Non-aqueous electrolyte lithium secondary battery Expired - Lifetime JP3260282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12727496A JP3260282B2 (en) 1995-05-26 1996-05-22 Non-aqueous electrolyte lithium secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7-128076 1995-05-26
JP12807695 1995-05-26
JP7-178781 1995-07-14
JP17878195 1995-07-14
JP12727496A JP3260282B2 (en) 1995-05-26 1996-05-22 Non-aqueous electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0992285A JPH0992285A (en) 1997-04-04
JP3260282B2 true JP3260282B2 (en) 2002-02-25

Family

ID=27315497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12727496A Expired - Lifetime JP3260282B2 (en) 1995-05-26 1996-05-22 Non-aqueous electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3260282B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980067020A (en) * 1997-01-30 1998-10-15 김광호 Positive electrode active material, manufacturing method thereof, and lithium secondary battery employing the same
KR100434547B1 (en) * 1997-05-12 2004-09-18 삼성전자주식회사 Lithium metal oxide cathode and lithium secondary battery using the same
JP4326041B2 (en) 1997-05-15 2009-09-02 エフエムシー・コーポレイション Doped intercalation compound and method for producing the same
KR100473413B1 (en) 1998-11-13 2005-03-08 에프엠씨 코포레이션 Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
JP4960561B2 (en) 1999-12-10 2012-06-27 エフエムシー・コーポレイション Lithium cobalt oxide and method for producing the same
JP2001319652A (en) 2000-05-11 2001-11-16 Sony Corp Positive active material and non-aqueous electrolyte battery, and their manufacturing method
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4836371B2 (en) 2001-09-13 2011-12-14 パナソニック株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP4197237B2 (en) 2002-03-01 2008-12-17 パナソニック株式会社 Method for producing positive electrode active material
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP4296591B2 (en) * 2002-05-29 2009-07-15 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
JP2005116470A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Nonaqueous lithium secondary battery
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
JP2007035356A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
EP2806486B1 (en) 2012-01-17 2019-03-06 LG Chem, Ltd. Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
KR101469436B1 (en) * 2012-01-17 2014-12-08 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery For Controlling Impurity or Swelling Comprising the Same and Method For Manufacturing Cathode Active Material Of Improved Productivity
JP2019192325A (en) * 2016-08-31 2019-10-31 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2022024568A1 (en) * 2020-07-30 2022-02-03
CN113422039A (en) * 2021-06-24 2021-09-21 北京车和家信息技术有限公司 Ternary composite oxide matrix material, ternary positive electrode material, preparation method and lithium ion battery prepared from ternary composite oxide matrix material and ternary positive electrode material

Also Published As

Publication number Publication date
JPH0992285A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
US5631105A (en) Non-aqueous electrolyte lithium secondary battery
EP1909345B1 (en) Cathode active material for a lithium battery
US7341805B2 (en) Lithium-containing complex oxide, non-aqueous secondary battery using the lithium-containing complex oxide, and method for producing the lithium-containing complex oxide
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
EP1443575B1 (en) Positive plate material and cell comprising it
KR20020070495A (en) Nonaqueous electrolyte secondary cell and positive electrode active material
JP4954481B2 (en) Lithium secondary battery
JP2000077071A (en) Nonaqueous electrolyte secondary battery
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP2006236830A (en) Lithium secondary battery
EP0734085B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
JP2008120679A5 (en)
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
US7939207B2 (en) Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2004362934A (en) Positive electrode material and battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4106651B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH08287914A (en) Lithium battery
JPH0521067A (en) Nonaqueous electrolytic battery
JP3079033B2 (en) Non-aqueous electrolyte lithium secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
KR20040086813A (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

EXPY Cancellation because of completion of term