JP2005256042A - Galvannealed steel sheet, and method for manufacturing the same - Google Patents

Galvannealed steel sheet, and method for manufacturing the same Download PDF

Info

Publication number
JP2005256042A
JP2005256042A JP2004066753A JP2004066753A JP2005256042A JP 2005256042 A JP2005256042 A JP 2005256042A JP 2004066753 A JP2004066753 A JP 2004066753A JP 2004066753 A JP2004066753 A JP 2004066753A JP 2005256042 A JP2005256042 A JP 2005256042A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
phase
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004066753A
Other languages
Japanese (ja)
Inventor
Masaki Tada
雅毅 多田
Michitaka Sakurai
理孝 櫻井
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004066753A priority Critical patent/JP2005256042A/en
Publication of JP2005256042A publication Critical patent/JP2005256042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet having excellent powdering property. <P>SOLUTION: In the galvannealed steel sheet, a plating layer consists of only ζ phase or ζ phase and η phase, and Fe content in an outermost surface of the plating layer is higher than Fe content of the plating layer at an interface portion of the steel sheet. The galvannealed steel sheet is manufactured by a method comprising a hot-dip zincing step of immersing the steel sheet in a hot-dip galvanizing bath and passing the steel sheet through the hot-dip galvanizing bath to deposit a lower plating film of ≤50 g/m<SP>2</SP>and ≤120 g/m<SP>2</SP>, an upper film depositing step of depositing an upper plating film of the deposition of ≥0.5 g/m<SP>2</SP>and ≤10 g/m<SP>2</SP>consisting of Fe plating or Fe-Zn alloy plating with Fe 50 mass%, and a heating step of alloying the lower plating film to the upper plating film by heating the steel sheet for 1-300 seconds at a temperature of 300-500°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel sheet excellent in powdering resistance and a method for producing the same.

この発明は、さらに、耐パウダリング性とプレス加工における摺動特性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention further relates to an alloyed hot-dip galvanized steel sheet excellent in powdering resistance and sliding characteristics in press working and a method for producing the same.

近年、防錆性の向上の観点から、自動車用パネル部品には亜鉛系めっき鋼板、特に溶融亜鉛系めっき鋼板の使用比率が増加している。通常、自動車用パネルに使用される溶融亜鉛系めっき鋼板は、溶接性および塗装性に優れている特性を生かして、溶融亜鉛めっき後に500℃程度に加熱して合金化処理を施した合金化溶融亜鉛めっき鋼板が使用されている。   In recent years, from the viewpoint of improving rust prevention, the ratio of use of galvanized steel sheets, particularly hot dip galvanized steel sheets, is increasing in automotive panel parts. Usually, hot-dip galvanized steel sheets used for automotive panels are alloyed and melted by heating them to about 500 ° C after hot-dip galvanization and taking advantage of their excellent weldability and paintability. Galvanized steel sheet is used.

また、さらなる防錆性の向上を目指し、自動車メーカーでは付着量が50g/m2以上の厚目付けの亜鉛系めっき鋼板に対する要望が強くなりつつあるが、前述した合金化溶融亜鉛めっき鋼板で厚目付け化を実施すると、合金化に長時間を要し、合金化不良いわゆる焼けムラが発生しやすく、逆にめっき層全体で合金化を完了させようとすると、過合金化となり、めっき−鋼板界面で脆いΓ相が生成し、加工時にめっき剥離が発生しやすくなるため、厚目付けの合金化溶融亜鉛めっき鋼板を製造することは非常に困難である。 In addition, with the aim of further improving rust prevention, automobile manufacturers are increasingly demanding thick-coated galvanized steel sheets with a coating weight of 50 g / m 2 or more. When alloying is performed, it takes a long time for alloying, so that poor alloying, so-called uneven burning, is likely to occur. Conversely, if alloying is completed on the entire plating layer, overalloying occurs, and at the plating-steel interface. Since a brittle Γ phase is generated and plating peeling easily occurs during processing, it is very difficult to produce a thick alloyed hot-dip galvanized steel sheet.

合金化溶融亜鉛めっき鋼板のめっき層を構成する合金相は、Γ相(Fe3Zn10)、Γ1相(Fe5Zn21)、δ1相(FeZn7)、ζ相(FeZn13)、η相(Zn)の相構造が存在する。ここで、Γ相のFe原子濃度は24〜31%、Γ1相のFe原子濃度は18.5〜23.5%、δ1相のFe原子濃度は8.5〜13%、ζ相のFe原子濃度は6.7〜7.2%である。 The alloy phases constituting the plated layer of the galvannealed steel sheet are Γ phase (Fe 3 Zn 10 ), Γ 1 phase (Fe 5 Zn 21 ), δ 1 phase (FeZn 7 ), ζ phase (FeZn 13 ), There is a phase structure of η phase (Zn). Here, the Fe atom concentration in the Γ phase is 24 to 31%, the Fe atom concentration in the Γ 1 phase is 18.5 to 23.5%, the Fe atom concentration in the δ 1 phase is 8.5 to 13%, The Fe atom concentration is 6.7 to 7.2%.

通常、合金化反応時は鋼板側からFeが拡散して供給される為、Fe濃度の最も高いΓ相が鋼板との界面に生成し、ついでδ1相が形成し、めっき層最表面にはζ相が生成した相構造になっている。よって、めっき層中のFe濃度は鋼板側からめっき層表面に向かうにつれ減少傾向を示すことになる。 Normally, during the alloying reaction, Fe is diffused and supplied from the steel sheet side, so the Γ phase with the highest Fe concentration is generated at the interface with the steel sheet, and then the δ 1 phase is formed. It has a phase structure in which a ζ phase is generated. Therefore, the Fe concentration in the plating layer tends to decrease as it goes from the steel plate side to the plating layer surface.

また、各合金相の硬さとFe濃度の関係は、Fe濃度が高い程硬くなる傾向があり、Γ相はビッカース硬度が330Hvと高くて脆い性質を有しており、その為、合金化溶融亜鉛めっき鋼板にプレス加工を施すとΓ相内部あるいはΓ相と鋼板の界面から剥離が起こり易くなる。そこで、めっき層剥離に悪影響を及ぼすΓ相の生成をできるだけ抑えることを目的として、合金化の程度を抑制する為に、合金化処理の加熱条件を制御する方法が採用されている。このため、合金化処理の条件が狭い範囲に限定されるため、製造時の操業条件が大きく制約される。   Further, the relationship between the hardness of each alloy phase and the Fe concentration tends to become harder as the Fe concentration is higher, and the Γ phase has a brittle property with a high Vickers hardness of 330 Hv. When the plated steel sheet is pressed, peeling easily occurs from the inside of the Γ phase or from the interface between the Γ phase and the steel sheet. Therefore, in order to suppress the generation of the Γ phase that adversely affects the peeling of the plating layer as much as possible, a method of controlling the heating conditions of the alloying treatment is employed in order to suppress the degree of alloying. For this reason, since the conditions for alloying treatment are limited to a narrow range, the operating conditions during production are greatly restricted.

溶融亜鉛めっき鋼板の耐パウダリング性を向上させる技術として、例えば、下記(1)〜(4)が提案されている。   As techniques for improving the powdering resistance of hot-dip galvanized steel sheets, for example, the following (1) to (4) have been proposed.

(1)特許文献1には、鋼板表面にζ相のみからなるめっき皮膜が形成されていることを特徴とする接着構造用合金化溶融亜鉛めっき鋼板に関する技術が開示されている。   (1) Patent Document 1 discloses a technique related to an alloyed hot-dip galvanized steel sheet for an adhesive structure, in which a plated film composed only of the ζ phase is formed on the steel sheet surface.

(2)特許文献2には、めっき層最表面におけるFe含有率が、めっき層と鋼板の界面におけるFe含有率に比べて高いものであることを特徴とする合金化溶融亜鉛めっき鋼板で、鋼板側からめっき層表面に向かうにつれ、めっき層中のFe含有率は、順次増加するものである、めっき層の耐剥離性と摺動特性の双方に優れた合金化溶融亜鉛めっき鋼板に関する技術が開示されている。   (2) Patent Document 2 discloses an alloyed hot-dip galvanized steel sheet characterized in that the Fe content at the outermost surface of the plating layer is higher than the Fe content at the interface between the plating layer and the steel sheet. Disclosed is a technology related to galvannealed steel sheets that are excellent in both peeling resistance and sliding properties of the plating layer, as the Fe content in the plating layer increases sequentially from the side to the plating layer surface. Has been.

(3)特許文献3には、鋼板の少なくとも片面に、付着量が0.5g/m2以上10g/m2以下で鉄含有率が40質量%以上のFe−Zn合金層の外層部と、付着量が30g/m2以上90g/m2以下で厚さ0.5μmの鋼素地との境界層を除いてδ1相とζ相からなる合金化亜鉛の内層部と、それらの両層部が境界において相互に熱拡散されて一体構造を形成し、且つ鉄含有率の分布が面方向に均一であるめっき皮膜を有することを特徴とする加工性、塗装性に優れた合金化溶融亜鉛めっき鋼板に関する技術が開示されている。 (3) Patent Document 3 discloses an outer layer portion of an Fe—Zn alloy layer having an adhesion amount of 0.5 g / m 2 or more and 10 g / m 2 or less and an iron content of 40% by mass or more on at least one surface of a steel plate; Inner layer part of alloyed zinc composed of δ 1 phase and ζ phase excluding the boundary layer with steel substrate having a thickness of 30 g / m 2 or more and 90 g / m 2 or less and a thickness of 0.5 μm, and both layer parts thereof Alloyed hot dip galvanizing with excellent workability and paintability, characterized by having a plating film that is thermally diffused at the boundary to form an integral structure and the distribution of iron content is uniform in the surface direction Techniques relating to steel sheets are disclosed.

(4)特許文献4には、鋼板素地上に形成された亜鉛を含有する層の亜鉛が鋼板素地中に拡散浸透することにより生成した層と、鋼板素地中および亜鉛を含有する層上に形成された鉄めっき層中の主として鉄が亜鉛を含有する層中に拡散浸透することにより生成した層と、亜鉛を含有する層の亜鉛が鉄めっき層中に拡散浸透することにより生成した層とを鋼板素地上に順次有してなる表面処理鋼板に関する技術が開示されている。   (4) In Patent Document 4, a zinc-containing layer formed on a steel plate substrate is formed by diffusion and penetration of zinc into the steel plate substrate, and on the steel plate substrate and a layer containing zinc. A layer formed by diffusion and penetration of iron mainly into a layer containing zinc in the formed iron plating layer and a layer formed by diffusion and penetration of zinc of the layer containing zinc into the iron plating layer A technique related to a surface-treated steel sheet sequentially provided on a steel sheet substrate is disclosed.

以下に、先行技術文献情報について記載する。
特開平5−311372号公報 特開平9−241812号公報 特開平2−73953号公報 特開昭56−158864号公報
The prior art document information will be described below.
Japanese Patent Laid-Open No. 5-311372 Japanese Patent Laid-Open No. 9-241812 Japanese Patent Laid-Open No. 2-73953 JP 56-158864 A

特許文献1には、P添加鋼やSi添加鋼を母材鋼板として用い、めっき皮膜のFe濃度を5.7〜7.3質量%とすれば、ζ単相のめっき皮膜を形成することができ、めっき皮膜と母材鋼との密着性が良好であり、接着剤で接合した部分に力がかかってもめっき皮膜と母材の界面で剥離することがないめっき皮膜について検討されているが、ζ単相皮膜を得るために下地鋼板として特殊なP添加鋼やSi添加鋼を用いなければならず、低Siや低Pの鋼種には用いることはできない。   In Patent Document 1, if P-added steel or Si-added steel is used as a base steel sheet, and the Fe concentration of the plating film is 5.7 to 7.3 mass%, a ζ single-phase plating film can be formed. Although the adhesion between the plating film and the base steel is good and the plating film that is not peeled off at the interface between the plating film and the base material even if the force applied to the part joined by the adhesive is being studied, In order to obtain a ζ single-phase film, special P-added steel or Si-added steel must be used as the base steel sheet, and cannot be used for low Si or low P steel types.

特許文献2には、めっき層最表面におけるFe含有率が、めっき層と鋼板の界面におけるFe含有率に比べて多いものであることを特徴とする合金化溶融亜鉛めっき鋼板で、鋼板側からめっき層表面に向かうにつれ、めっき層中のFe含有率は、順次増加するものである、めっき層の耐パウダリング性と摺動特性の双方に優れた合金化溶融亜鉛めっきについて検討されているが、表層に硬い合金相が存在するため、めっき層/鋼板界面での剥離は減少するが、Γ相やδ1相の厚さが大きくなると、プレス加工時に金型のビード部で、曲げ曲げ戻し加工を受けた場合に、Γ相やδ1相がクラックの基点となり、Γ相/δ1相界面や、δ1相/ζ相界面で剥離が起きる。 Patent Document 2 discloses an alloyed hot-dip galvanized steel sheet characterized in that the Fe content at the outermost surface of the plating layer is higher than the Fe content at the interface between the plating layer and the steel sheet. Although the Fe content in the plating layer gradually increases as it goes to the surface of the layer, alloyed hot dip galvanization excellent in both powdering resistance and sliding properties of the plating layer has been studied. Since there is a hard alloy phase on the surface layer, delamination at the plating layer / steel plate interface is reduced, but when the thickness of the Γ phase or δ 1 phase is increased, bending and bending back processing is performed at the bead portion of the mold during pressing. In this case, the Γ phase or δ 1 phase becomes the base point of the crack, and peeling occurs at the Γ phase / δ 1 phase interface or the δ 1 phase / ζ phase interface.

特許文献3には、鋼板の少なくとも片面に、付着量が0.5g/m2以上10g/m2以下で鉄含有率が40質量%以上のFe−Zn合金層の外層部と、付着量が30g/m2以上90g/m2以下で厚さ0.5μmの鋼素地との境界層を除いてδ1相とζ相からなる合金化亜鉛の内層部と、それらの両層部が境界において相互に熱拡散されて一体構造を形成し、且つ鉄含有率の分布が面方向に均一であるめっき皮膜を有することを特徴とする加工性、塗装性に優れた合金化溶融亜鉛めっき鋼板について検討されているが、表層にΓ相やδ1相などが存在すると、摺動性には有利であるが、プレス加工を行なうと、硬いΓ相やδ1相が剥離の基点になるため、耐パウダリング性が劣化する。また加熱時間が10分〜50時間と長いため大量生産できず、また、加熱が長時間のためコストがかかる。 In Patent Document 3, an outer layer portion of an Fe—Zn alloy layer having an adhesion amount of 0.5 g / m 2 or more and 10 g / m 2 or less and an iron content of 40% by mass or more on at least one surface of a steel plate, The inner layer portion of the alloyed zinc composed of the δ 1 phase and the ζ phase except for the boundary layer with the steel substrate having a thickness of 30 g / m 2 or more and 90 g / m 2 or less and a thickness of 0.5 μm, Examination of alloyed hot-dip galvanized steel sheet with excellent workability and paintability, characterized by having a coating film that is thermally diffused to form an integral structure and the distribution of iron content is uniform in the surface direction However, the presence of a Γ phase or δ 1 phase on the surface layer is advantageous for slidability. However, when pressing is performed, the hard Γ phase or δ 1 phase becomes the starting point of peeling, so that Powdering properties deteriorate. Further, since the heating time is as long as 10 minutes to 50 hours, it cannot be mass-produced, and it takes a long time for heating, which is expensive.

特許文献4には、鋼板素地上に形成された亜鉛を含有する層の亜鉛が鋼板素地中に拡散浸透することにより生成した層と、鋼板素地中および亜鉛を含有する層上に形成された鉄めっき層中の主として鉄が亜鉛を含有する層中に拡散浸透することにより生成した層と、亜鉛を含有する層の亜鉛が鉄めっき層中に拡散浸透することにより生成した層とを鋼板素地上に順次有してなる表面処理鋼板について検討されているが、加熱時間が1時間と長時間で製造されており、大量生産できず、また、加熱が長時間のために製造コストがかかる。また、鋼板から亜鉛めっき皮膜へと亜鉛が拡散する場合、めっき/鋼板界面で硬くて脆いΓ相が生成し、このΓ相がクラックの基点となるために耐パウダリング性は劣化する
ζ相はビッカース硬度が200Hvと軟質で靭性に富むことから、耐パウダリング性の向上に関しては、非常に有利な合金相であるが、ζ相がめっき層最表層に存在していると、ζ相は軟質で低融点であるために、プレス加工時に金型との凝着が起こりやすくなり、摺動抵抗が増加して、金型への材料流入が阻害されて材料の割れを引き起こす不具合を招く。従って、ζ相がめっき層最表層に存在していても摺動特性低下の問題が起こらないことが望ましい。
Patent Document 4 discloses a layer formed by diffusing and penetrating zinc in a steel sheet base layer containing zinc formed on a steel sheet base material, and iron formed in the steel sheet base material and a layer containing zinc. A layer formed mainly by diffusion and penetration of iron into a layer containing zinc in the plating layer and a layer formed by diffusion and penetration of zinc in the layer containing zinc into the iron plating layer. However, the surface-treated steel sheet is considered to have a long heating time of 1 hour and cannot be mass-produced, and the heating takes a long time, resulting in high manufacturing costs. In addition, when zinc diffuses from the steel sheet to the galvanized film, a hard and brittle Γ phase is generated at the plating / steel sheet interface, and this Γ phase becomes the starting point of the crack, so the powdering resistance deteriorates. Since Vickers hardness is soft and rich in toughness, it is a very advantageous alloy phase for improving powdering resistance. However, if the ζ phase is present in the outermost layer of the plating layer, the ζ phase is soft. Because of its low melting point, adhesion to the mold is likely to occur during press working, sliding resistance increases, and inflow of material into the mold is hindered, causing a problem that causes cracking of the material. Therefore, it is desirable that the problem of deterioration in sliding characteristics does not occur even when the ζ phase is present on the outermost layer of the plating layer.

従って、この発明の目的は、上述した問題を解決し、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet having excellent powdering resistance and a method for producing the same, which solve the above-described problems.

本発明者等は、合金化溶融亜鉛めっき鋼板の耐パウダリング性が劣る原因について鋭意研究を重ねた。その結果、以下のことを知見した。   The inventors of the present invention have made extensive studies on the cause of poor powdering resistance of galvannealed steel sheets. As a result, the following was found.

(界面の合金相)
合金化溶融亜鉛めっき鋼板がプレス時に、曲げ曲げ戻しなどの加工を受けると、めっき皮膜にはクラックが発生する。そのクラックは、Γ相やδ1相などの硬くて脆い相が基点となって発生する。Γ相やδ1相などが、めっき皮膜/鋼板界面に存在すると、Γ相やδ1相が破壊するため、めっき皮膜/鋼板界面で剥離が発生する。また、Γ相やδ1相などが、めっき最表層に存在していても、Γ相やδ1相などが、クラックの基点となるためめっき皮膜の剥離が起きる。
(Interface alloy phase)
When the alloyed hot-dip galvanized steel sheet is subjected to processing such as bending and bending back during pressing, cracks occur in the plating film. The cracks are generated from a hard and brittle phase such as a Γ phase or a δ 1 phase. If the Γ phase, δ 1 phase, or the like is present at the plating film / steel interface, the Γ phase or δ 1 phase is destroyed, and peeling occurs at the plating film / steel interface. Even if the Γ phase, δ 1 phase, etc. are present in the outermost plating layer, the gallium phase, δ 1 phase, etc. serve as the starting point of cracks, so that the plating film peels off.

このような観点から、Γ相やδ1相は、めっき皮膜中に存在しないことが望ましく、本発明鋼板のめっき皮膜と鋼板の界面は、ζ相及び/又はη相からなり、めっき最表層はζ相よりなることが望ましい。 From such a viewpoint, it is desirable that the Γ phase and the δ 1 phase are not present in the plating film, and the interface between the plating film of the steel sheet of the present invention and the steel sheet is composed of a ζ phase and / or η phase, and the plating outermost layer is It is desirable to consist of ζ phase.

(めっき層表層の酸化物皮膜)
一方、プレス加工などの摺動をめっき皮膜が受けるときは、表層がζ相などの軟らかく延性のある皮膜の場合は、プレスの金型に凝着して摺動抵抗が増大し、材料の流入が押さえられ、鋼板のプレス割れが発生する。そのため、表層は、めっき皮膜と金型の凝着を防止して摺動抵抗を低下するため、ある程度厚い酸化物皮膜を存在させることが望ましい。
(Oxide film on plating layer)
On the other hand, when the plating film is subjected to sliding such as press working, if the surface layer is a soft and ductile film such as ζ phase, it adheres to the press mold and the sliding resistance increases, and the inflow of material Is suppressed, and press cracking of the steel sheet occurs. Therefore, the surface layer desirably has a somewhat thick oxide film in order to prevent the adhesion between the plating film and the mold and reduce the sliding resistance.

この発明は、上記知見に基づいてさらに研究を進めた結果なされたものであって、この発明の要旨は以下の通りである。   The present invention has been made as a result of further research based on the above findings, and the gist of the present invention is as follows.

第1発明は、めっき層がζ相のみからなり、前記めっき層最表面におけるFe含有率が前記めっき層の鋼板界面部分のFe含有率より高いことを特徴とする合金化溶融亜鉛めっき鋼板である。   1st invention is an alloyed hot-dip galvanized steel sheet characterized in that the plating layer is composed only of the ζ phase, and the Fe content in the outermost surface of the plating layer is higher than the Fe content in the steel plate interface portion of the plating layer. .

第2発明は、めっき層がζ相およびη相からなり、前記めっき層最表面におけるFe含有率が前記めっき層の鋼板界面部分のFe含有率より高いことを特徴とする合金化溶融亜鉛めっき鋼板である。   The second invention is an alloyed hot-dip galvanized steel sheet, characterized in that the plating layer is composed of a ζ phase and an η phase, and the Fe content at the outermost surface of the plating layer is higher than the Fe content at the steel plate interface portion of the plating layer. It is.

第3発明は、第1発明または第2発明において、めっき層表面に、平均厚さが20nm以上の酸化物層を有することを特徴とする合金化溶融亜鉛めっき鋼板である。   A third invention is an galvannealed steel sheet characterized by having an oxide layer having an average thickness of 20 nm or more on the surface of the plating layer in the first invention or the second invention.

第4発明は、鋼板をAl:0.06〜0.25質量%を含有する溶融亜鉛めっき浴に浸漬通板して、50g/m2以上120g/m2以下の下層めっき皮膜を形成する溶融めっき工程と、
前記鋼板の少なくとも一方の面における前記下層めっき皮膜の上に、Feめっき又はFe50質量%以上のFe−Zn合金めっきからなる、付着量が0.5g/m2以上10g/m2以下の上層めっき皮膜を形成する上層皮膜形成工程と、
前記鋼板を300℃〜500℃で1秒〜300秒加熱して前記下層めっき皮膜と前記上層めっき皮膜とを合金化させる加熱工程と、
を有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。
In the fourth invention, the steel sheet is immersed in a hot dip galvanizing bath containing Al: 0.06 to 0.25% by mass to form a lower plating film of 50 g / m 2 or more and 120 g / m 2 or less. Plating process,
On the lower plating film on at least one surface of the steel sheet, Fe plating or Fe50 consisting wt% or more Fe-Zn alloy plating, coating weight of 0.5 g / m 2 or more 10 g / m 2 or less of the upper layer plating An upper layer film forming step for forming a film;
A heating step in which the steel sheet is heated at 300 ° C. to 500 ° C. for 1 second to 300 seconds to alloy the lower plating film and the upper plating film;
It is a manufacturing method of the galvannealed steel plate characterized by having.

第5発明は、第4発明において、前記溶融めっき工程と、前記上層皮膜形成工程の間に、下層めっき皮膜表面の酸化膜を酸またはアルカリ溶液を用いて取り除く酸化膜除去工程を有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。   A fifth invention is characterized in that, in the fourth invention, an oxide film removing step for removing an oxide film on the surface of the lower plating film using an acid or an alkali solution is provided between the hot dipping step and the upper layer film forming step. It is the manufacturing method of the alloyed hot-dip galvanized steel sheet.

第6発明は、鋼板をAl:0.06〜0.25質量%を含有する溶融亜鉛めっき浴に浸漬通板して、50g/m2以上120g/m2以下の下層めっき皮膜を形成する溶融めっき工程と、
前記鋼板の少なくとも一方の面における下層めっき皮膜の上に、Fe粒子又はFe50質量%以上のFe−Zn合金粒子からなる、付着量が0.5g/m2以上10g/m2以下の金属粒子を付着させる粒子付着工程と、
前記鋼板を300℃〜500℃で1秒〜300秒加熱して前記下層めっき皮膜と前記金属粒子とを合金化させる加熱工程と、
を有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。
In the sixth invention, the steel sheet is immersed in a hot dip galvanizing bath containing Al: 0.06 to 0.25% by mass to form a lower plating film of 50 g / m 2 or more and 120 g / m 2 or less. Plating process,
On the lower plating film on at least one surface of the steel sheet, made of Fe particles or Fe50 mass% or more Fe-Zn alloy particles, a deposition amount 0.5 g / m 2 or more 10 g / m 2 or less of the metal particles A particle adhesion process to be adhered;
A heating step of heating the steel sheet at 300 ° C. to 500 ° C. for 1 second to 300 seconds to alloy the lower plating film and the metal particles;
It is a manufacturing method of the galvannealed steel plate characterized by having.

尚、本明細書では、特記しない限り、鋼成分組成及び皮膜成分組成を示す「%」は質量%を意味するものである。   In the present specification, unless otherwise specified, “%” indicating the steel component composition and the film component composition means mass%.

上記の様に構成されているので、第1、第2発明の鋼板は耐パウダリング性に優れ、第3発明の鋼板は、めっき表面に酸化膜が存在することで、更にプレス加工の際の摺動性に優れる。本発明によれば、鋼種の制約を受けることなく、めっき層をζ相、又はζ相とη相からなる層にできるので、従来問題のあったP添加鋼やSi添加鋼を用いることが可能になる。第4〜第6発明によれば、前記第1、第2発明の鋼板を効率良く製造することができる。   Since it is configured as described above, the steel sheets of the first and second inventions have excellent powdering resistance, and the steel sheet of the third invention has an oxide film on the plating surface, which further causes press working. Excellent slidability. According to the present invention, since the plating layer can be a ζ phase or a layer composed of a ζ phase and an η phase without being restricted by the steel type, it is possible to use P-added steel and Si-added steel that have been problematic in the past. become. According to the 4th-6th invention, the steel plate of the said 1st, 2nd invention can be manufactured efficiently.

前述した様に、従来のめっき鋼板は、鋼板側からFeを拡散供給して製造する為、めっき層表面におけるFe含有率は、めっき層と鋼板の界面におけるFe含有率に比べて少なくならざるを得ず、この様なFe濃度分布からなるめっき層を有することを前提として、所望の特性が得られる様に相構造を制御しているのが現状であった。   As described above, the conventional plated steel sheet is manufactured by diffusing and supplying Fe from the steel sheet side. Therefore, the Fe content on the surface of the plated layer must be smaller than the Fe content at the interface between the plated layer and the steel sheet. However, the present situation is that the phase structure is controlled so as to obtain desired characteristics on the premise of having a plating layer having such an Fe concentration distribution.

これに対して、本発明者等は、上記課題を解決すべく鋭意検討した結果、剥離の基点となるクラックが発生するΓ相やδ1相の生成を押さえて、めっき皮膜の耐パウダリング性を向上させ、一方、摺動特性を向上させるには、めっき層表面の酸化膜厚さをある程度厚くしてめっき皮膜と金型との凝着を抑制することが有効であるという知見により、従来の合金化溶融亜鉛めっき鋼板で生成が避けられなかったΓ相やδ1相を形成させない新規な鋼板を提供し得たのである。 On the other hand, as a result of diligent studies to solve the above problems, the present inventors have suppressed the generation of the Γ phase and δ 1 phase where cracks that are the starting point of peeling occur, and the powdering resistance of the plating film On the other hand, in order to improve the sliding characteristics, it has been known that it is effective to suppress the adhesion between the plating film and the mold by increasing the thickness of the plating layer to some extent. It was possible to provide a novel steel sheet that does not form the Γ phase or δ 1 phase, which was inevitable in the production of the alloyed hot-dip galvanized steel sheet.

この様に本発明鋼板は、めっき相構成が従来鋼板とは異なりζ相単相、あるいは、ζ相とη相とから構成される。上記鋼板のめっき層を更に詳細に説明すると、以下に示す様な特徴を有する。   Thus, the steel sheet of the present invention is composed of a single ζ phase, or a ζ phase and an η phase, unlike the conventional steel plate. The plated layer of the steel sheet will be described in more detail with the following characteristics.

(めっき層の相構造)
本発明の合金化溶融亜鉛めっき鋼板は、めっき層の相構造が、ζ相単相、あるいは、ζ相とη相とからなる。
(Phase structure of plating layer)
In the alloyed hot-dip galvanized steel sheet of the present invention, the phase structure of the plating layer is composed of a single phase of ζ phase or a ζ phase and an η phase.

めっき層がζ相単相からなる場合、ζ相内のFe含有率は、めっき層最表面のFe含有率の方が、めっき層の鋼板界面部分のFe含有率よりも高い。めっき層中のFe濃度は、めっき層表面から鋼板側に向かうにつれ減少傾向を有する。   When the plating layer is composed of a single phase of ζ phase, the Fe content in the ζ phase is higher at the outermost surface of the plating layer than at the steel plate interface portion of the plating layer. The Fe concentration in the plating layer has a decreasing tendency from the surface of the plating layer toward the steel plate.

めっき層がζ相とη相とからなる場合、めっき層最表面はζ相である。めっき層のFe含有率は、めっき層最表面のFe含有率の方が、めっき層の鋼板界面部分のFe含有率よりも高い。めっき層中のFe濃度は、めっき層表面から鋼板側に向かうにつれ減少傾向を有する。代表的な相構造は、鋼板側からめっき層表面に向かって、η相、ζ相が順次存在する相構造であり、めっき層最表層はζ相、めっき皮膜/鋼板界面はη相からなる相構造であるが、本発明は、この相構造に限定されるわけではない。鋼板とめっき層の界面は必ずしもζ相単独からなる必要はなく、例えばζ相とη相との混合相であってもよい。   When the plating layer is composed of a ζ phase and an η phase, the outermost surface of the plating layer is the ζ phase. Regarding the Fe content of the plating layer, the Fe content on the outermost surface of the plating layer is higher than the Fe content of the steel plate interface portion of the plating layer. The Fe concentration in the plating layer has a decreasing tendency from the surface of the plating layer toward the steel plate. A typical phase structure is a phase structure in which a η phase and a ζ phase sequentially exist from the steel sheet side to the surface of the plating layer, the outermost layer of the plating layer is a ζ phase, and the plating film / steel interface is a phase consisting of the η phase. Although it is a structure, the present invention is not limited to this phase structure. The interface between the steel plate and the plating layer does not necessarily need to be composed of a single ζ phase, and may be, for example, a mixed phase of ζ phase and η phase.

後記するように、本発明の合金化溶融亜鉛めっき鋼板は、溶融めっきで下層めっき皮膜を形成し、次いで、Fe又はFe:50%以上の上層めっき皮膜を形成し、しかる後加熱して下層めっき皮膜と上層めっき皮膜とを合金化させることで製造される。溶融めっきを行う際に、鋼板との界面に、Fe−Zn合金層、Fe−Al合金層からなる薄い初期合金相が形成される。下層めっき皮膜と上層めっき皮膜とを合金化させて得られるめっき層は、鋼板との界面に溶融めっきを行う際に形成された前述の初期合金層が残存していてもよい。これによって本発明の効果が損なわれることはない。   As will be described later, the galvannealed steel sheet of the present invention forms a lower plating film by hot dipping, then forms an upper plating film of Fe or Fe: 50% or more, and then heats to form a lower plating. Manufactured by alloying the film and the upper plating film. When performing hot dipping, a thin initial alloy phase composed of a Fe—Zn alloy layer and a Fe—Al alloy layer is formed at the interface with the steel sheet. In the plating layer obtained by alloying the lower plating film and the upper plating film, the above-mentioned initial alloy layer formed when hot-dip plating is performed at the interface with the steel sheet may remain. This does not impair the effects of the present invention.

本発明では、めっき相構造が前記のように構成されており、めっき皮膜/鋼板界面より最表層に向かってΓ相、δ1相、ζ相からなる従来の合金化溶融亜鉛めっき鋼板とは異なる相構造である。従来の合金化溶融亜鉛めっき鋼板は、付着量が50g/m2以下のときは、耐パウダリング性は大きく問題とならないが、70g/m2以上の高付着量化すると、高付着量化とともにΓ相やδ1相が厚くなるため耐パウダリング性が劣化する。 In the present invention, the plating phase structure is configured as described above, which is different from the conventional alloyed hot-dip galvanized steel sheet composed of Γ phase, δ 1 phase, and ζ phase from the plating film / steel interface to the outermost layer. Phase structure. Conventional alloyed hot-dip galvanized steel sheets have no significant problem with powdering resistance when the adhesion amount is 50 g / m 2 or less. However, when the adhesion amount is 70 g / m 2 or more, the Γ phase And the δ 1 phase becomes thick, so the powdering resistance deteriorates.

本発明では、Γ相やδ1相が存在しないので、70g/m2以上の高付着量化しても耐パウダリング性が劣化することがない。また、下地鋼板の鋼種制約も緩和される。 In the present invention, since the Γ phase and the δ 1 phase do not exist, the powdering resistance does not deteriorate even when the adhesion amount is increased to 70 g / m 2 or more. Moreover, the steel type restriction | limiting of a base steel plate is eased.

尚、各合金めっき相の平均厚さは後記する製造方法によっても変化し得るが、所望の特性を得るには、例えば、めっき層表面に向かってζ相、η相が順次存在する鋼板の場合、耐パウダリング性の観点から、好ましいζ相のめっき相全体に占める割合は体積分率で50%以上であり、より好ましくは70%以上である。   In addition, although the average thickness of each alloy plating phase may vary depending on the manufacturing method described later, in order to obtain desired characteristics, for example, in the case of a steel sheet in which a ζ phase and an η phase are present sequentially toward the plating layer surface From the viewpoint of powdering resistance, a preferable proportion of the ζ phase in the entire plating phase is 50% or more, more preferably 70% or more in terms of volume fraction.

(めっき付着量)
めっき皮膜の付着量は、50g/m2〜120g/m2の範囲内にあるのが良い。めっき付着量が50g/m2より小さいと、十分な耐食性が得られず、まためっき付着量が120g/m2より大きくなると、自動車の耐久寿命をはるかに超える分の耐食性を付与することになり、効率的でない。
(Amount of plating adhesion)
Coating weight of plating film, it is good in the range of 50g / m 2 ~120g / m 2 . If the plating adhesion amount is less than 50 g / m 2 , sufficient corrosion resistance cannot be obtained, and if the plating adhesion amount is larger than 120 g / m 2 , it will give corrosion resistance much more than the endurance life of the automobile. Is not efficient.

(表面粗さRa)
めっき皮膜の表面粗さRaが0.2μm〜2μmの範囲内にあるのが良い。表面粗さが、0.2μmより小さい場合は、表面粗さがほとんどないため、めっき皮膜と金型との凝着が発生しやすくなる。また、表面粗さが2μmより大きくなると、表面粗さが粗くなり、塗装後の鮮映性が悪くなる。
(Surface roughness Ra)
The surface roughness Ra of the plating film is preferably in the range of 0.2 μm to 2 μm. When the surface roughness is less than 0.2 μm, there is almost no surface roughness, and adhesion between the plating film and the mold is likely to occur. On the other hand, when the surface roughness is larger than 2 μm, the surface roughness becomes rough, and the sharpness after coating becomes poor.

(酸化物皮膜)
本発明では、めっき層の最表面は軟らかく延性のある皮膜ζ相であるため、プレス加工などの摺動を受けると、プレスの金型に凝着して摺動抵抗が増大する。摺動特性が要求されるときは、めっき層の上に、厚さ20nm以上の酸化物皮膜を存在させることが好ましい。
(Oxide film)
In the present invention, since the outermost surface of the plating layer is a soft and ductile film ζ phase, when it undergoes sliding such as press working, it adheres to the die of the press and the sliding resistance increases. When sliding characteristics are required, it is preferable to have an oxide film having a thickness of 20 nm or more on the plating layer.

酸化物種は特に限定されない。たとえば、酸化亜鉛(ZnOなど)、酸化鉄(FeO,Fe23、Fe34など)、酸化アルミニウム(Al23など)、酸化マグネシウム(MgOなど)のほか、Ti、V、Cr、Mn、Co、Ni、Cu、Zr、Mo、Wなどの酸化物を用いることができる。 The oxide species is not particularly limited. For example, zinc oxide (ZnO, etc.), iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 etc.), aluminum oxide (Al 2 O 3 etc.), magnesium oxide (MgO etc.), Ti, V, Cr , Mn, Co, Ni, Cu, Zr, Mo, W, and other oxides can be used.

(本発明の合金化溶融亜鉛めっき鋼板の製造方法)
本発明の合金化溶融亜鉛めっき鋼板を製造するには、従来の合金化溶融亜鉛めっき鋼板の如く、鋼板側から亜鉛めっき層へFeを拡散的に供給する方法ではなく、逆に、亜鉛めっき皮膜側から鋼板側へFeを供給拡散すれば良い。
(Method for producing the galvannealed steel sheet of the present invention)
In order to manufacture the alloyed hot-dip galvanized steel sheet according to the present invention, it is not a method of supplying Fe diffusively from the steel sheet side to the galvanized layer as in the conventional alloyed hot-dip galvanized steel sheet. What is necessary is just to supply and diffuse Fe from the side to the steel plate side.

[1]本発明の合金化溶融亜鉛めっき鋼板を製造する第1の方法は、次の方法である。まず鋼板に溶融亜鉛めっきを施して溶融亜鉛めっき皮膜(下層めっき皮膜)を得る。この下層めっき皮膜が凝固した後、その表面に、FeまたはFe−Zn合金めっき皮膜(上層めっき皮膜)を付与する。次いで、加熱処理を行い上層めっき皮膜から下層めっき皮膜へFeを供給拡散させ、めっき皮膜全体をζ相、又はζ相とη相とからなるFe−Zn合金層にする(合金化処理)。該めっき皮膜中のFe濃度は、めっき層表面から鋼板側に向かうにつれて減少傾向を有する様に形成される。   [1] The first method for producing the galvannealed steel sheet of the present invention is the following method. First, hot dip galvanizing is applied to the steel sheet to obtain a hot dip galvanized film (lower layer plated film). After the lower plating film is solidified, an Fe or Fe—Zn alloy plating film (upper plating film) is applied to the surface. Next, heat treatment is performed to supply and diffuse Fe from the upper plating film to the lower plating film, and the entire plating film is made into a Fe—Zn alloy layer composed of ζ phase or ζ phase and η phase (alloying treatment). The Fe concentration in the plating film is formed to have a decreasing tendency from the surface of the plating layer toward the steel plate side.

以下、各工程を詳細に説明する。   Hereinafter, each process will be described in detail.

(下層めっき皮膜形成)
まず、Alを0.06〜0.25%含有する溶融亜鉛めっき浴中に鋼板を浸漬し、溶融亜鉛めっきを施す(下層めっき皮膜の形成)。この様に鋼板をめっき浴中に浸漬すると、浴中のAlは鋼板のFeと優先的に反応する結果、鋼板との界面に、約0.1μm以下の極めて薄いFe−Al合金層が生成される。この層は、ZnやFeが拡散する際の障壁となりZn−Fe合金層の生成を抑制することから、バリヤー層と呼ばれる。
(Lower plating film formation)
First, a steel sheet is immersed in a hot dip galvanizing bath containing 0.06 to 0.25% Al and hot dip galvanized (formation of a lower plating film). When the steel plate is immersed in the plating bath in this way, the Al in the bath reacts preferentially with Fe of the steel plate, and as a result, an extremely thin Fe—Al alloy layer of about 0.1 μm or less is formed at the interface with the steel plate. The This layer is called a barrier layer because it becomes a barrier when Zn or Fe diffuses and suppresses the formation of a Zn-Fe alloy layer.

通常の合金化処理では、高温で短時間の加熱処理することにより該バリヤー層を通過して拡散が進行する結果、合金化めっき層の生成が促進される。   In a normal alloying treatment, the heat treatment at a high temperature for a short time causes the diffusion to proceed through the barrier layer, thereby promoting the formation of the alloyed plating layer.

これに対して本発明では、この段階で合金化する為の加熱処理は行わず、下層めっき皮膜が凝固した後、FeまたはFe−Zn合金めっき層(上層めっき皮膜)を付与する。   On the other hand, in the present invention, heat treatment for alloying is not performed at this stage, and after the lower plating film is solidified, an Fe or Fe—Zn alloy plating layer (upper plating film) is applied.

この様にして生成された上層めっき皮膜と下層めっき皮膜の間には、上述したバリヤー皮膜は存在しない為、この段階で加熱処理すれば、鋼板との界面に比べてより低温・短時間の加熱処理にて迅速に上層めっき皮膜と下層めっき皮膜間の合金化が進むことになる。下層めっき皮膜へのFe拡散は上層めっき皮膜から行われ、鋼板からのFe拡散が抑制される結果、合金化後のめっき層中のFe濃度は、めっき層表面から鋼板側に向かうにつれて減少傾向となる。   Since the barrier film described above does not exist between the upper plating film and the lower plating film thus produced, if heat treatment is performed at this stage, heating at a lower temperature and in a shorter time than the interface with the steel sheet. The alloying between the upper layer plating film and the lower layer plating film proceeds rapidly by the treatment. Fe diffusion to the lower plating film is performed from the upper plating film, and as a result of suppressing the Fe diffusion from the steel sheet, the Fe concentration in the plated layer after alloying tends to decrease as it goes from the plating layer surface to the steel sheet side. Become.

溶融めっきでは、めっき浴中のAl含有率を0.06〜0.25%に制御する必要がある。Al濃度が0.06%未満では、上述したFe−Al合金層の形成によるバリヤー効果が得られない。即ち、Al濃度が少ないと、溶融めっきの際に、鋼板とめっき層の界面に多量のZn−Fe合金層が生成してしまい、更に上層めっき形成後に施される加熱処理により鋼板とめっき層の界面からも拡散反応が進行する結果、この界面にΓ相が生成し、耐パウダリング性が低下することになる。   In hot dip plating, it is necessary to control the Al content in the plating bath to 0.06 to 0.25%. When the Al concentration is less than 0.06%, the barrier effect due to the formation of the Fe—Al alloy layer described above cannot be obtained. That is, if the Al concentration is low, a large amount of Zn-Fe alloy layer is generated at the interface between the steel plate and the plating layer during hot dip plating, and further, the heat treatment applied after the upper layer plating is formed causes the heat treatment between the steel plate and the plating layer. As a result of the diffusion reaction also proceeding from the interface, a Γ phase is generated at this interface, and the powdering resistance is lowered.

この様に、溶融亜鉛めっき処理および上層めっき後の加熱処理による鋼板/溶融めっき皮膜界面におけるZn−Feの合金化反応を抑制する為には、Alを0.06%以上とすることが必要である。好ましくは0.10%以上である。しかしながら、Al濃度が0.25%を超えるとめっき浴中で酸化反応が激しく起こり、めっき層表面にドロスが多量に付着する結果、たとえ、上層めっき処理後に加熱しても凹凸が激しい為プレス時金型との摺動性が低下し、材料の割れを引き起こす。従って、Al濃度を0.25%以下とする。好ましくは0.22%以下である。   Thus, in order to suppress the alloying reaction of Zn-Fe at the steel plate / hot-plated film interface by the hot-dip galvanizing treatment and the heat treatment after the upper layer plating, it is necessary to make Al 0.06% or more. is there. Preferably it is 0.10% or more. However, when the Al concentration exceeds 0.25%, the oxidation reaction occurs vigorously in the plating bath, and a large amount of dross adheres to the surface of the plating layer. The slidability with the mold is reduced, causing the material to crack. Therefore, the Al concentration is set to 0.25% or less. Preferably it is 0.22% or less.

めっき浴から引き上げた鋼板を、ガスワイピング装置を用いてめっき付着量を50g/m2以上120g/m2以下に調整し、めっき皮膜が固化する温度まで冷却する。 The steel sheet pulled up from the plating bath is cooled to a temperature at which the plating film is solidified by adjusting the amount of plating to 50 g / m 2 or more and 120 g / m 2 or less using a gas wiping device.

下層めっき皮膜は、スパングルを微細化したものであってもよい。スパングル微細化処理は常法でよい。例えば、下層めっき皮膜が凝固する前に、水又は3%クエン酸ナトリウム水溶液等の水溶液をめっき表面に吹き付ける方法が例示できる。まためっき浴としてPb無添加浴を採用する方法でもよい。   The lower plating film may be a fine spangle. A spangle refinement process may be a conventional method. For example, a method of spraying water or an aqueous solution such as a 3% aqueous sodium citrate solution onto the plating surface before the lower plating film is solidified can be exemplified. Alternatively, a Pb-free bath may be employed as the plating bath.

(上層めっき皮膜形成)
鋼板の少なくとも一方の面の下層めっき皮膜の上に、上層めっき皮膜を形成する。上層めっき皮膜はFeまたはFe−Zn合金めっき皮膜(但し、Fe:50%以上)であることが必要である。Fe−Zn合金めっき層におけるFe濃度が50%未満になると、上層めっき皮膜形成後の加熱処理によりめっき層全体のFe濃度を上記の関係を満足する様に制御する為には、上層めっき皮膜のめっき付着量を必然的に多くしなければならず、コストの上昇を招く。この様な観点から、Fe:50%以上、より好ましくは60%以上とする。
(Upper plating film formation)
An upper plating film is formed on the lower plating film on at least one surface of the steel plate. The upper layer plating film must be an Fe or Fe—Zn alloy plating film (provided that Fe: 50% or more). When the Fe concentration in the Fe—Zn alloy plating layer is less than 50%, in order to control the Fe concentration of the entire plating layer by the heat treatment after the formation of the upper plating film so as to satisfy the above relationship, the upper plating film The amount of plating must be increased, resulting in an increase in cost. From such a viewpoint, Fe: 50% or more, more preferably 60% or more.

上層めっき皮膜の付着量は、0.5g/m2以上10g/m2以下とする。0.5g/m2未満になると、十分な量のζ相を形成できなくなる。10g/m2を超えると、合金化処理時に未反応のFe(α相)又はFe−Zn電気めっき層が残存する。また、合金化処理後にδ1相、Γ相などのFe濃度が高い相が残存しやすくなる。この範囲内で、上層のめっき付着量は、最終製品における付着量および下層めっき皮膜のめっき付着量などに応じて適宜調整される。上層めっきを施すには、通常、電気めっき法が用いられるが、その他、化学めっき法等も適宜採用し得る。前述の上層めっき皮膜の形成方法は常法でよい。 The adhesion amount of the upper plating film is 0.5 g / m 2 or more and 10 g / m 2 or less. If it is less than 0.5 g / m 2 , a sufficient amount of ζ phase cannot be formed. If it exceeds 10 g / m 2 , an unreacted Fe (α phase) or Fe—Zn electroplating layer remains during the alloying treatment. In addition, phases having a high Fe concentration such as δ 1 phase and Γ phase are likely to remain after the alloying treatment. Within this range, the upper layer plating adhesion amount is appropriately adjusted according to the adhesion amount in the final product and the lower layer plating film. In order to perform the upper layer plating, an electroplating method is usually used, but a chemical plating method or the like can also be appropriately employed. The above-described method for forming the upper plating film may be a conventional method.

下層めっき皮膜表面には製造途中の空気酸化で生成する酸化膜が存在する。この酸化膜があると電気めっきで上層めっき皮膜を形成させるときに反応性が低下して皮膜形成に不利となる。そこで、上層めっき皮膜を形成する前に、下層めっき皮膜表面の酸化膜を酸またはアルカリ溶液を用いて取り除き、しかる後上層めっき皮膜を形成することが好ましい。   On the surface of the lower plating film, there is an oxide film generated by air oxidation during the production. When this oxide film is present, the reactivity is lowered when an upper plating film is formed by electroplating, which is disadvantageous for the film formation. Therefore, before forming the upper plating film, it is preferable to remove the oxide film on the surface of the lower plating film using an acid or alkali solution, and then form the upper plating film.

(合金化処理)
本発明では、鋼板側から下層めっき皮膜へのFeの拡散を抑制しつつ、上層めっき皮膜から下層めっき皮膜へのFeの拡散を促進させて、めっき層をζ相のみ、又はζ相とη相とからなり、めっき層最表層におけるFe含有率がめっき層の鋼板界面部分におけるFe含有率に比べ高い皮膜を得るように、適切な加熱処理条件を適宜選択することが必要である。このうち、加熱温度は加熱時間等によっても変化するが、通常、300〜500℃とすることが好ましい。一般に、加熱温度がZnの融点(約420℃)より大幅に低くなると、めっき層中のZnが溶融せず固体間拡散となる為、Feの拡散が抑制され、合金化反応の進行程度は制御し易くなる反面、生産性が低下するという問題がある。従って、その下限値を少なくとも300℃以上とすることが好ましい。
(Alloying treatment)
In the present invention, while suppressing the diffusion of Fe from the steel sheet side to the lower plating film, the diffusion of Fe from the upper plating film to the lower plating film is promoted so that the plating layer is composed of only the ζ phase, or the ζ phase and the η phase. Therefore, it is necessary to appropriately select appropriate heat treatment conditions so as to obtain a film in which the Fe content in the outermost layer of the plating layer is higher than the Fe content in the steel plate interface portion of the plating layer. Among these, although heating temperature changes also with heating time etc., it is usually preferable to set it as 300-500 degreeC. Generally, when the heating temperature is significantly lower than the melting point of Zn (about 420 ° C.), the Zn in the plating layer does not melt and diffuses between solids, so that the diffusion of Fe is suppressed and the progress of the alloying reaction is controlled. However, there is a problem that productivity is lowered. Therefore, the lower limit is preferably at least 300 ° C. or higher.

一方、加熱温度を高くすると、前記バリヤー層を超えて鋼板側からFeが拡散する為、その上限を500℃以下とすることが好ましい。より好ましくは350〜500℃である。この様に、加熱温度は加熱時間との関係で適宜調整されるものであり、例えば420℃以下の低温で加熱する場合には、加熱時間を例えば1〜300秒行い(300秒以上は不経済になる。)、且つ加熱処理もめっきライン内に限定せず、コイル状でバッチ加熱すること等が有効である。尚、加熱方法については特に限定されるものではなく、ガス加熱、高周波誘導加熱などの通常用いられる方法を適宜採用し得る。   On the other hand, when the heating temperature is increased, Fe diffuses from the steel sheet side beyond the barrier layer, so the upper limit is preferably 500 ° C. or less. More preferably, it is 350-500 degreeC. In this way, the heating temperature is appropriately adjusted in relation to the heating time. For example, when heating at a low temperature of 420 ° C. or lower, the heating time is performed for 1 to 300 seconds (300 seconds or longer is uneconomical). In addition, the heat treatment is not limited to the plating line, and it is effective to perform batch heating in a coil shape. In addition, it does not specifically limit about a heating method, The method used normally, such as gas heating and high frequency induction heating, can be employ | adopted suitably.

[2]本発明の合金化溶融亜鉛めっき鋼板を製造する第2の方法は、前記した第1の方法において、めっき皮膜が溶融状態であるうちに、その少なくとも一方の面に、Fe又はFe50質量%以上のFe−Zn合金からなる金属粒子を吹き付けて、下層めっき皮膜の上に、0.5g/m2以上10g/m2以下の付着量で、前記金属粒子を付着させ、しかる後前記第1の方法と同様にして該鋼帯を300℃〜500℃で1秒〜300秒加熱して、下層めっき皮膜と上層粒子間にZnとFeを拡散させて、ζ相のみ、又はζ相とη相とからなり、めっき層最表層におけるFe含有率がめっき層と鋼板の界面におけるFe含有率に比べ高い皮膜とする。 [2] The second method for producing the alloyed hot-dip galvanized steel sheet of the present invention is the above-described first method. While the plating film is in a molten state, Fe or Fe 50 mass is provided on at least one surface thereof. % Of the Fe-Zn alloy is sprayed to deposit the metal particles on the lower plating film in an amount of 0.5 g / m 2 or more and 10 g / m 2 or less. In the same manner as in method 1, the steel strip is heated at 300 ° C. to 500 ° C. for 1 second to 300 seconds to diffuse Zn and Fe between the lower plating film and the upper layer particles, and only the ζ phase or the ζ phase The film is composed of η phase, and the Fe content in the outermost layer of the plating layer is higher than the Fe content in the interface between the plating layer and the steel sheet.

金属粒子の吹き付け条件は、平均粒径1μm〜100μmのFe粉を、圧縮した空気または窒素を用いて、圧力0.1〜10kg/cm2でめっき皮膜が凝固する前に吹きかける方法を例示できる。 Examples of the metal particle spraying condition include a method in which Fe powder having an average particle diameter of 1 μm to 100 μm is sprayed using compressed air or nitrogen before the plating film is solidified at a pressure of 0.1 to 10 kg / cm 2 .

合金化溶融亜鉛めっき鋼板の表面粗さRaは、調質圧延で調整する。第4発明では、下層めっき皮膜形成後、または下層めっき皮膜と上層めっき皮膜を合金化した後に調質圧延する。下層めっき皮膜形成後、および下層めっき皮膜と上層めっき皮膜を合金化した後の各々で2回調質圧延を行っても良い。第6発明では下層めっき皮膜と上層めっき皮膜を合金化した後調質圧延を行う。表面粗さRaを0.2〜2μmの範囲にするには、調質圧延は、表面粗さRaが2.0〜5.0μm程度の圧延ロールを使用し、伸長率を0.5%以上にして調質圧延を行えばよい。圧延ロールとしてはショットダル加工ロール、放電ダル加工ロールの使用可能である。レーザーダル加工ロール、電子ビームダル加工ロールであってもかまわない。調質圧延の伸長率が0.5%未満では、めっき表面へのロールのテクスチャー転写が十分ではなく、溶融亜鉛めっき層の表面粗さを付与することができない。上記伸長率のより好ましい範囲は、0.6〜2.0%である。伸長率が2.0%を超えると鋼板が硬化し伸びが低下する。   The surface roughness Ra of the galvannealed steel sheet is adjusted by temper rolling. In the fourth invention, temper rolling is performed after the lower plating film is formed or after the lower plating film and the upper plating film are alloyed. The temper rolling may be performed twice after forming the lower plating film and after alloying the lower plating film and the upper plating film. In the sixth invention, temper rolling is performed after alloying the lower plating film and the upper plating film. In order to make the surface roughness Ra in the range of 0.2 to 2 μm, the temper rolling uses a rolling roll having a surface roughness Ra of about 2.0 to 5.0 μm, and the elongation rate is 0.5% or more. Thus, temper rolling may be performed. As the rolling roll, a shot dull processing roll or an electric discharge dull processing roll can be used. Laser dull processing rolls and electron beam dull processing rolls may also be used. If the elongation rate of temper rolling is less than 0.5%, the texture transfer of the roll to the plating surface is not sufficient, and the surface roughness of the hot-dip galvanized layer cannot be imparted. A more preferable range of the elongation rate is 0.6 to 2.0%. If the elongation rate exceeds 2.0%, the steel sheet is hardened and the elongation decreases.

前記で製造された合金化溶融亜鉛めっき鋼板は、耐パウダリング性に優れる。該合金化溶融亜鉛めっき鋼板の摺動特性を良好にする観点から、めっき層表面に厚さ20nm以上の酸化物層を存在させることが有利である。めっき表面に酸化物を形成する方法は特に制限されないが、以下の方法で行うとめっき層中に存在する成分を使用して酸化物層を形成できるため、工業的に有利である。   The alloyed hot-dip galvanized steel sheet produced above is excellent in powdering resistance. From the viewpoint of improving the sliding characteristics of the galvannealed steel sheet, it is advantageous to have an oxide layer having a thickness of 20 nm or more on the surface of the plating layer. The method for forming an oxide on the plating surface is not particularly limited. However, the following method is industrially advantageous because the oxide layer can be formed using components present in the plating layer.

酸化物層を形成する手法としては、溶融亜鉛めっき鋼板をpH緩衝作用を有する酸性溶液に接触させ、その後、1〜30秒放置した後、水洗・乾燥することが有効である。   As a method for forming the oxide layer, it is effective to contact a hot-dip galvanized steel sheet with an acidic solution having a pH buffering action, and then leave it for 1 to 30 seconds, and then wash and dry it.

この酸化物層形成メカニズムについては明確でないが、次のように考えることができる。溶融亜鉛めっき鋼板を酸性溶液に接触させると、鋼板側からは亜鉛の溶解が生じる。この亜鉛の溶解は、同時に水素発生反応を生じるため、亜鉛の溶解が進行すると、溶液中の水素イオン濃度が減少し、その結果溶液のpHが上昇し、溶融亜鉛めっき鋼板表面にZn系酸化物層を形成すると考えられる。このように、Zn系酸化物の形成のためには、亜鉛の溶解とともに、鋼板に接触している溶液のpHが上昇することが必要であるため、鋼板を酸性溶液に接触させた後に水洗までの保持時間を調整することは有効である。この際、保持時間が1秒未満であると、鋼板に接触している溶液のpHが上昇する前に液が洗い流されるために酸化物を形成できず、一方、30秒以上放置しても酸化物生成に変化が見られないためである。   Although the oxide layer formation mechanism is not clear, it can be considered as follows. When the hot dip galvanized steel sheet is brought into contact with an acidic solution, dissolution of zinc occurs from the steel sheet side. Since the dissolution of zinc causes a hydrogen generation reaction at the same time, as the dissolution of zinc proceeds, the hydrogen ion concentration in the solution decreases, and as a result, the pH of the solution rises, and the Zn-based oxide is formed on the surface of the hot dip galvanized steel sheet. It is thought to form a layer. Thus, in order to form Zn-based oxides, it is necessary to increase the pH of the solution in contact with the steel sheet along with the dissolution of zinc. It is effective to adjust the holding time. At this time, if the holding time is less than 1 second, the solution is washed away before the pH of the solution in contact with the steel plate rises, so that an oxide cannot be formed. This is because there is no change in product generation.

このような酸化処理に使用する酸性溶液のpHは1.0〜5.0の範囲にあることが望ましい。これはpHが5.0を超えると、亜鉛の溶解速度が遅く、一方1.0未満では、亜鉛の溶解の促進が過剰となり、酸化物の形成速度がいずれも遅くなるためである。また、酸性溶液には、pH緩衝効果をもった薬液を使用するとよい。これは、実際の製造時に処理液のpH安定性をもたせるのみでなく、酸化物の生成に必要なpH上昇を活性化させ、厚い酸化膜を効率よく生成させることができるためである。   The pH of the acidic solution used for such oxidation treatment is desirably in the range of 1.0 to 5.0. This is because when the pH exceeds 5.0, the dissolution rate of zinc is slow, whereas when it is less than 1.0, the dissolution of zinc becomes excessively accelerated and the formation rate of oxides is all slow. In addition, a chemical solution having a pH buffering effect may be used for the acidic solution. This is because not only the pH stability of the treatment liquid is provided during actual production, but also the increase in pH necessary for the production of oxides is activated, and a thick oxide film can be efficiently produced.

このようなpH緩衝性を有する薬液としては、酸性領域でpH緩衝性を有すれば、その薬液種に制限はないが、例えば、酢酸ナトリウム(CH3COONa)などの酢酸塩、フタル酸水素カリウム((KOOC)264)などのフタル酸塩、クエン酸ナトリウム(Na3657)やクエン酸二水素カリウム(KH2657)などのクエン酸塩などを用いることができる。 The chemical solution having such pH buffering properties is not limited as long as it has pH buffering properties in the acidic region. For example, acetate salts such as sodium acetate (CH 3 COONa), potassium hydrogen phthalate, and the like Phthalates such as ((KOOC) 2 C 6 H 4 ), citrates such as sodium citrate (Na 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ) Etc. can be used.

また、その濃度としては、それぞれ5〜50g/lの範囲であることが望ましい、これは、5g/l未満であると、pH緩衝効果が不十分で、所定の酸化物層を形成できないためであり、50g/lを超えても、効果が飽和するだけでなく、酸化物の形成に長時間を要するためである。   Further, the concentration is preferably in the range of 5 to 50 g / l, respectively, because if it is less than 5 g / l, the pH buffering effect is insufficient and a predetermined oxide layer cannot be formed. This is because even if it exceeds 50 g / l, not only is the effect saturated, but it takes a long time to form an oxide.

なお、本発明に用いられる鋼板(めっき原板)は、合金化溶融亜鉛めっき鋼板として通常用いられる鋼板であれば特に限定されず、例えば極低炭素鋼にTi等を添加したIF(Interstitial Free)鋼などが用いられる。   In addition, the steel plate (plating original plate) used for this invention will not be specifically limited if it is a steel plate normally used as an alloying hot dip galvanization steel plate, For example, IF (Interstitial Free) steel which added Ti etc. to ultra-low carbon steel Etc. are used.

以下、実施例に基づいて本発明を詳述する。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

主成分としてCr:0.002%およびTi:0.05%を含有する厚さ0.8mmの鋼板を溶融亜鉛めっきラインにてAl:0.18%を含有する溶融めっき浴に浸漬通板して溶融めっきを行い、めっき浴から引き上げてめっき付着量を45〜120g/m2に調整し、引き続き、下記の方法A、方法B、方法Cでめっき鋼板の処理を行い、供試鋼板を作製した。 A steel plate having a thickness of 0.8 mm containing Cr: 0.002% and Ti: 0.05% as main components is immersed in a hot dip galvanizing line containing Al: 0.18%. Hot-dip plating is carried out, the plating adhesion amount is adjusted to 45 to 120 g / m 2 by pulling up from the plating bath, and subsequently, the plated steel sheet is processed by the following method A, method B, and method C to produce a test steel sheet. did.

(方法A)
めっき皮膜(下層めっき皮膜)が凝固する前に、3%クエン酸ナトリウム水溶液を圧力1kg/cm2でスプレーしてスパングル微細化処理を行ない、室温程度の温度に冷却後、表面粗さRaが3.0μmの圧延ロールを使用して伸長率0.5〜1.0%で調質圧延を行い、溶融亜鉛めっき鋼板を製造した。前記で製造した亜鉛めっき鋼板を、溶剤脱脂を施した後、20g/lのNaOH水溶液を用い表層の酸化物を除去した。次に、電気めっき法によりFeまたはFe−Zn合金をめっき表面に施した後、加熱処理(290℃〜500℃で5〜300秒間加熱)を行うことによりNo.2〜15の供試鋼板を作製した。
(Method A)
Before the plating film (underlayer plating film) is solidified, a 3% sodium citrate aqueous solution is sprayed at a pressure of 1 kg / cm 2 to perform a spangle refinement treatment. After cooling to a temperature of about room temperature, the surface roughness Ra is 3 Using a 0.0 μm rolling roll, temper rolling was performed at an elongation of 0.5 to 1.0% to produce a hot dip galvanized steel sheet. The galvanized steel sheet produced above was subjected to solvent degreasing, and then the surface oxide was removed using a 20 g / l NaOH aqueous solution. Next, after applying Fe or a Fe—Zn alloy to the plating surface by electroplating, heat treatment (heating at 290 ° C. to 500 ° C. for 5 to 300 seconds) is performed to obtain No. 1. 2 to 15 test steel plates were prepared.

なお、Feめっきについては、硫酸浴(硫酸第一鉄250g/l、硫酸アンモニウム120g/l、pH2.5)を用いて電流密度10A/dm2で通電時間を変化させて、Feめっきを実施した。またFe−Znめっきについては、硫酸浴(硫酸亜鉛5g/l、硫酸第一鉄400g/l、硫酸ソーダ40g/l酢酸ソーダ30g/l、pH2.2)を用いて電流密度80A/dm2で通電時間を変化させてFe−Znめっきを行なった。 Regarding Fe plating, Fe plating was performed using a sulfuric acid bath (ferrous sulfate 250 g / l, ammonium sulfate 120 g / l, pH 2.5) at a current density of 10 A / dm 2 and changing the energization time. For Fe—Zn plating, a sulfuric acid bath (zinc sulfate 5 g / l, ferrous sulfate 400 g / l, sodium sulfate 40 g / l sodium acetate 30 g / l, pH 2.2) at a current density of 80 A / dm 2 is used. Fe-Zn plating was performed while changing the energization time.

さらに、前記で作製した供試鋼板のうちの一部鋼板について、さらに酸化物形成処理を行った。具体的には、溶融亜鉛めっき鋼板を、硫酸を用いてpH2.0に調整した酢酸ソーダ20g/l水溶液に接触させ、その後、0.5秒又は10秒放置した後水洗し、乾燥し、めっき表面に酸化物層を形成した(No.7、8)。   Furthermore, the oxide formation process was further performed about the one part steel plate of the test steel plates produced above. Specifically, the hot dip galvanized steel sheet is brought into contact with a 20 g / l aqueous solution of sodium acetate adjusted to pH 2.0 using sulfuric acid, and then left for 0.5 seconds or 10 seconds, then washed with water, dried, and plated. An oxide layer was formed on the surface (No. 7, 8).

(方法B)
めっき皮膜(下層めっき皮膜)が凝固する前に、平均粒径10μmのFe粉を、圧力1kg/cm2の圧縮空気を用いて、めっき皮膜に吹きかけて、その表面にFe粉を付着させ、室温程度の温度に冷却し、溶融亜鉛めっき鋼板を製造した。前記で製造した亜鉛めっき鋼板を、溶剤脱脂を施した後、20g/lのNaOH水溶液を用い表層の酸化物を除去し、次に、加熱処理(400℃で80秒間加熱)を行うことでFe粉中のFeをめっき皮膜中に拡散させてめっき皮膜を合金化した。しかる後、表面粗さRaが3.0μmの圧延ロールを使用して伸長率0.5〜1.0%で調質圧延を行い、No.16〜18の供試鋼板を作製した。
(Method B)
Before the plating film (lower plating film) is solidified, Fe powder having an average particle size of 10 μm is sprayed onto the plating film using compressed air having a pressure of 1 kg / cm 2 to adhere the Fe powder to the surface, After cooling to a temperature of about, a hot dip galvanized steel sheet was produced. After the galvanized steel sheet produced above is subjected to solvent degreasing, the surface oxide is removed using a 20 g / l NaOH aqueous solution, and then heat treatment (heating at 400 ° C. for 80 seconds) is performed to remove Fe. The plating film was alloyed by diffusing Fe in the powder into the plating film. Thereafter, temper rolling was performed at an elongation of 0.5 to 1.0% using a rolling roll having a surface roughness Ra of 3.0 μm. 16-18 test steel plates were produced.

(方法C)
めっき浴から引き上げてめっき付着量を45〜120g/m2に調整した鋼板に、引き続き合金化処理、調質圧延を施すことにより従来法の合金化溶融亜鉛めっき鋼板を作製した(No.1、19)。
(Method C)
A conventional alloyed hot-dip galvanized steel sheet was produced by subjecting the steel sheet, which was pulled up from the plating bath and adjusted to a plating adhesion amount of 45 to 120 g / m 2 , to subsequent alloying treatment and temper rolling (No. 1, 19).

前記各供試鋼板の製造条件を表1に示す。   Table 1 shows the production conditions of each test steel sheet.

この様にして得られた種々の供試鋼板を以下の方法を用いて、その特性を調査した。特性調査結果を表1および表2に併せて示す。   The characteristics of the various test steel plates thus obtained were investigated using the following method. The results of the characteristic investigation are also shown in Tables 1 and 2.

(上層めっきFe含有率および付着量)
GDS(Glow Discharge Spectrometry:グロー放電分光分析法)を用いて測定を行なった。Feのピークについて着目し、ピークが消失するのに要したスパッタ時間より、その厚みに換算して付着量を算出した。
(Upper layer plating Fe content and adhesion amount)
The measurement was performed using GDS (Glow Discharge Spectrometry). Focusing on the peak of Fe, the amount of deposition was calculated in terms of the thickness from the sputtering time required for the peak to disappear.

(めっき皮膜の合金相の存在割合)
めっき皮膜断面SEM観察を行い、写真より各合金相の厚さを測定して、その存在割合を算出した。表2の「めっき皮膜の合金相の存在割合」に記載の相は、めっき表層からめっき/鋼板界面に向かって存在した相の順番である。但し、試験No.1、19は、めっき/鋼板界面からめっき表層に向かって存在した相の順番である。
(Presence of alloy phase in plating film)
The plating film cross section SEM observation was performed, the thickness of each alloy phase was measured from the photograph, and the existence ratio was calculated. The phase described in “Alloy Ratio of Plating Film” in Table 2 is the order of phases existing from the plating surface layer toward the plating / steel plate interface. However, test no. Reference numerals 1 and 19 denote the order of phases existing from the plating / steel plate interface toward the plating surface layer.

合金相の同定は次のように行った。得られためっき皮膜についてSEM(走査型電子顕微鏡)を用いて断面観察を行った。その際、EDX(エネルギー分散型X線分光法)を用いて、元素Fe、Zn、Alについて定量分析を行い、Fe原子濃度に基づいて合金相を特定した。すなわち、Γ相の鉄原子濃度は24〜31%、Γ1相の鉄原子濃度は18.5〜23.5%、δ1相の鉄原子濃度は8.5〜13%、ζ相の鉄原子濃度は6.7〜7.2%とした。 The alloy phase was identified as follows. About the obtained plating film, cross-sectional observation was performed using SEM (scanning electron microscope). At that time, EDX (energy dispersive X-ray spectroscopy) was used to quantitatively analyze the elements Fe, Zn, and Al, and the alloy phase was identified based on the Fe atom concentration. That is, the iron atom concentration of the Γ phase is 24 to 31%, the iron atom concentration of the Γ 1 phase is 18.5 to 23.5%, the iron atom concentration of the δ 1 phase is 8.5 to 13%, and the iron atom of the ζ phase The atomic concentration was 6.7 to 7.2%.

(酸化膜厚、酸化物種)
AESを用いて、めっき層表面の酸化膜の膜厚を測定した。具体的には、1mm×1mmの視野内で任意の10点について測定して、その平均値を酸化膜厚とした。各点の測定領域は25μm2となるように、加速電圧5kvでビーム径を調整して測定を行なった。Oの含有率はある深さで最大となった後、減少して一定となる。O含有率が、最大値より深い位置で、最大値と一定値の和の1/2となる深さを酸化膜の厚さとした。
(Oxide thickness, oxide type)
AES was used to measure the thickness of the oxide film on the surface of the plating layer. Specifically, measurement was performed for any 10 points within a 1 mm × 1 mm field of view, and the average value was defined as the oxide film thickness. The measurement was performed by adjusting the beam diameter with an acceleration voltage of 5 kv so that the measurement area at each point was 25 μm 2 . After the O content reaches a maximum at a certain depth, it decreases and becomes constant. The depth at which the O content is deeper than the maximum value and ½ of the sum of the maximum value and the constant value is defined as the thickness of the oxide film.

酸化物種は光電子分光分析法(XPS)を用いて組成の解析を行った。XPSによる場合は、O1sスペクトル、およびそれぞれの元素のスペクトルを分析して、酸化物であることを確認した。   The composition of the oxide species was analyzed using photoelectron spectroscopy (XPS). In the case of XPS, the O1s spectrum and the spectrum of each element were analyzed to confirm that they were oxides.

(耐パウダリング性試験)
耐パウダリング性については、ドロービード試験を行い、単位面積当たりの皮膜剥離量を測定し、皮膜剥離量12g/m2未満を合格とした。ここで、ドロービード試験とは、潤滑油(日本パーカライジング社製ノックスラスト550HN)を塗布した鋼板を、ビードとダイスで挟んだ状態で引き抜き、その後テープ剥離試験を行い、試験の前後の質量差から、めっき皮膜の剥離量を評価する試験方法である。ビードは先端角度90°の三角ビードを用い、成形高さは4mm、ビードとダイスの押し付け荷重は500kgfとした。
(Powdering resistance test)
Regarding the powdering resistance, a draw bead test was performed, the amount of film peeling per unit area was measured, and a film peeling amount of less than 12 g / m 2 was accepted. Here, the draw bead test is a steel plate coated with lubricating oil (Nippon Parkerizing Co., Ltd. Knoxlast 550HN), drawn in a state of being sandwiched between a bead and a die, and then subjected to a tape peeling test. From the mass difference before and after the test, This is a test method for evaluating the amount of peeling of the plating film. The bead was a triangular bead with a tip angle of 90 °, the molding height was 4 mm, and the pressing load between the bead and the die was 500 kgf.

(摺動特性)
プレス成形時の摺動特性を評価するために、各供試体の摩擦係数を、下記装置により次の通り測定した。
(Sliding characteristics)
In order to evaluate the sliding characteristics at the time of press molding, the friction coefficient of each specimen was measured by the following apparatus as follows.

図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試体から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学工業製プレトンR352Lを試料1の表面に塗布して試験を行った。供試体とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。但し、押付荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。   FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measurement sample 1 collected from a specimen is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. A slide table support 5 having a roller 4 in contact with the slide table 3 is provided on the lower surface of the slide table 3, and when this is pushed up, a pressing load N applied to the friction coefficient measurement sample 1 by the bead 6. A first load cell 7 is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3. As a lubricating oil, a test was performed by applying Preton R352L manufactured by Sugimura Chemical Industry on the surface of Sample 1. The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N. However, the pressing load N was set to 400 kgf, and the sample drawing speed (the horizontal moving speed of the slide table 3) was set to 100 cm / min.

図2は、使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押しつけられた状態で摺動する。ビード6の形状は、幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。   FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used. The bead 6 slides with the lower surface pressed against the surface of the sample 1. The bead 6 has a width of 10 mm, a length of 69 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is a curved surface having a curvature of 4.5 mmR. It has a plane of 60 mm.

(表面粗さ測定)
中心線平均粗さRaはJIS B 0610に規定され、触針式の粗度計を用い、カットオフ0.8mmとした値で測定を行なった。
(Surface roughness measurement)
The center line average roughness Ra is defined in JIS B 0610, and was measured with a stylus type roughness meter at a cutoff value of 0.8 mm.

(耐食性評価)
耐食性は、それぞれの試験片を複合腐食サイクル試験(0.5%塩水噴霧を35℃で6Hr実施後、70℃で6Hr乾燥し、その後40℃で湿度90%の湿潤状態に12Hr保持)を60サイクル、すなわち、60日間施した後、最大腐食深さを比較して評価した。腐食試験後の試験片は、腐食深さ(孔食)を極値統計処理により最大腐食深さを求めた。基準の鋼板としては、めっき付着量45g/m2の合金化溶融亜鉛鋼板(従来法)を使用した。基準の鋼板の最大腐食深さの半分以下のものを良好(◎)、基準の鋼板と同程度(基準の鋼板の最大腐食深さの半分超〜1.5倍以下)のものを良(○)、基準の鋼板より劣るものを不良(×)として評価した。
(Corrosion resistance evaluation)
Corrosion resistance was determined by subjecting each specimen to a composite corrosion cycle test (0.5% salt spray was applied for 6 hours at 35 ° C., then dried for 6 hours at 70 ° C., and then held at 40 ° C. in a wet state of 90% humidity for 12 hours) After cycling, i.e. 60 days, the maximum corrosion depth was compared and evaluated. For the test piece after the corrosion test, the maximum corrosion depth was determined by extreme statistical processing of the corrosion depth (pitting corrosion). As a reference steel plate, an alloyed hot-dip galvanized steel plate (conventional method) having a coating adhesion of 45 g / m 2 was used. Good with less than half the maximum corrosion depth of the standard steel plate (◎), good with the same level as the standard steel plate (greater than half the maximum corrosion depth of the standard steel plate to 1.5 times or less) ), Those inferior to the standard steel plate were evaluated as defective (x).

Figure 2005256042
Figure 2005256042

Figure 2005256042
Figure 2005256042

表1および表2に示す様に、従来例及び比較例の合金化溶融亜鉛めっき鋼板では、50g/m2以上の付着量の厚いめっき皮膜で耐パウダリング性を満足させることができないことが分かる。 As shown in Tables 1 and 2, it can be seen that the alloyed hot-dip galvanized steel sheets of the conventional example and the comparative example cannot satisfy the powdering resistance with a thick plating film having an adhesion amount of 50 g / m 2 or more. .

これに対して、本発明の構成を満足する鋼板は、鋼板とめっき層の界面にΓ相が生成せずζ相が存在するため、めっき剥離はほとんど起こらない。従って、本発明により、めっき層の耐パウダリング性に優れたZn−Fe合金めっき鋼板を得ることができる。これらの結果から、本発明鋼板を用いれば、めっき剥離が発生し易い複雑な形状の部品への適用が可能となり、用途の拡大が期待できる。   On the other hand, in the steel sheet satisfying the configuration of the present invention, the Γ phase is not generated at the interface between the steel sheet and the plating layer and the ζ phase is present, so that the plating peeling hardly occurs. Therefore, according to the present invention, a Zn—Fe alloy-plated steel sheet excellent in powdering resistance of the plated layer can be obtained. From these results, if the steel sheet of the present invention is used, it can be applied to a component having a complicated shape in which plating peeling is likely to occur, and expansion of the use can be expected.

また、めっき層の上に平均膜厚が20nm以上の酸化物層を形成した試料No.8(発明例)はさらに摺動特性が大幅に改善されている。耐剥離性と優れた動摺動特性が要求される部品への適用が可能である。   In addition, sample No. 1 in which an oxide layer having an average film thickness of 20 nm or more was formed on the plating layer. No. 8 (invention example) is further improved in sliding characteristics. It can be applied to parts that require exfoliation resistance and excellent dynamic sliding characteristics.

本発明の合金化溶融亜鉛めっき鋼板は、耐パウダリング性が要求される自動車パネル部品等の用途に使用される合金化溶融亜鉛めっき鋼板として利用することができる。   The alloyed hot-dip galvanized steel sheet of the present invention can be used as an alloyed hot-dip galvanized steel sheet used in applications such as automotive panel parts that require powdering resistance.

本発明の合金化溶融亜鉛めっき鋼板は、めっき層表面に平均膜厚が20nm以上の酸化物層を形成することで、更に摺動特性を大幅に改善でき、耐パウダリング性と摺動特性が要求される用途に使用される合金化溶融亜鉛めっき鋼板として利用することができる。   The alloyed hot-dip galvanized steel sheet of the present invention can further improve the sliding characteristics by forming an oxide layer having an average film thickness of 20 nm or more on the surface of the plating layer, and has powdering resistance and sliding characteristics. It can be used as an alloyed hot-dip galvanized steel sheet used for required applications.

本発明の製造方法は、上記用途に使用する耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板を製造する方法として利用することができる。   The manufacturing method of this invention can be utilized as a method of manufacturing the galvannealed steel sheet excellent in the powdering resistance used for the said use.

摩擦係数測定装置を示す概略正面図である。It is a schematic front view which shows a friction coefficient measuring apparatus. 図1中のビード形状・寸法を示す概略斜視図である。It is a schematic perspective view which shows the bead shape and dimension in FIG.

符号の説明Explanation of symbols

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
P 引張荷重
DESCRIPTION OF SYMBOLS 1 Sample for friction coefficient measurement 2 Sample stand 3 Slide table 4 Roller 5 Slide table support stand 6 Bead 7 1st load cell 8 2nd load cell 9 Rail N Push load F Sliding resistance force P Tensile load

Claims (6)

めっき層がζ相のみからなり、前記めっき層最表面におけるFe含有率が前記めっき層の鋼板界面部分のFe含有率より高いことを特徴とする合金化溶融亜鉛めっき鋼板。 An alloyed hot-dip galvanized steel sheet, wherein the plated layer is composed of only a ζ phase, and the Fe content at the outermost surface of the plated layer is higher than the Fe content at the steel sheet interface portion of the plated layer. めっき層がζ相およびη相からなり、前記めっき層最表面におけるFe含有率が前記めっき層の鋼板界面部分のFe含有率より高いことを特徴とする合金化溶融亜鉛めっき鋼板。 An alloyed hot-dip galvanized steel sheet, wherein the plated layer comprises a ζ phase and an η phase, and the Fe content at the outermost surface of the plated layer is higher than the Fe content at the steel plate interface portion of the plated layer. めっき層表面に、平均厚さが20nm以上の酸化物層を有することを特徴とする請求項1又は2に記載の合金化溶融亜鉛めっき鋼板。 The alloyed hot-dip galvanized steel sheet according to claim 1 or 2, further comprising an oxide layer having an average thickness of 20 nm or more on the surface of the plating layer. 鋼板をAl:0.06〜0.25質量%を含有する溶融亜鉛めっき浴に浸漬通板して、50g/m2以上120g/m2以下の下層めっき皮膜を形成する溶融めっき工程と、
前記鋼板の少なくとも一方の面における前記下層めっき皮膜の上に、Feめっき又はFe50質量%以上のFe−Zn合金めっきからなる、付着量が0.5g/m2以上10g/m2以下の上層めっき皮膜を形成する上層皮膜形成工程と、
前記鋼板を300℃〜500℃で1秒〜300秒加熱して前記下層めっき皮膜と前記上層めっき皮膜とを合金化させる加熱工程と、
を有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
A hot dipping process in which the steel sheet is immersed in a hot dip galvanizing bath containing Al: 0.06 to 0.25% by mass to form a lower plating film of 50 g / m 2 or more and 120 g / m 2 or less;
On the lower plating film on at least one surface of the steel sheet, Fe plating or Fe50 consisting wt% or more Fe-Zn alloy plating, coating weight of 0.5 g / m 2 or more 10 g / m 2 or less of the upper layer plating An upper layer film forming step for forming a film;
A heating step in which the steel sheet is heated at 300 ° C. to 500 ° C. for 1 second to 300 seconds to alloy the lower plating film and the upper plating film;
A method for producing an alloyed hot-dip galvanized steel sheet, comprising:
前記溶融めっき工程と、前記上層皮膜形成工程の間に、下層めっき皮膜表面の酸化膜を酸またはアルカリ溶液を用いて取り除く酸化膜除去工程を有することを特徴とする請求項4に記載の合金化溶融亜鉛めっき鋼板の製造方法。 5. The alloying according to claim 4, further comprising an oxide film removing step of removing an oxide film on the surface of the lower plating film using an acid or an alkali solution between the hot dipping process and the upper film forming process. Manufacturing method of hot dip galvanized steel sheet. 鋼板をAl:0.06〜0.25質量%を含有する溶融亜鉛めっき浴に浸漬通板して、50g/m2以上120g/m2以下の下層めっき皮膜を形成する溶融めっき工程と、
前記鋼板の少なくとも一方の面における下層めっき皮膜の上に、Fe粒子又はFe50質量%以上のFe−Zn合金粒子からなる、付着量が0.5g/m2以上10g/m2以下の金属粒子を付着させる粒子付着工程と、
前記鋼板を300℃〜500℃で1秒〜300秒加熱して前記下層めっき皮膜と前記金属粒子とを合金化させる加熱工程と、
を有することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
A hot dipping process in which the steel sheet is immersed in a hot dip galvanizing bath containing Al: 0.06 to 0.25% by mass to form a lower plating film of 50 g / m 2 or more and 120 g / m 2 or less;
On the lower plating film on at least one surface of the steel sheet, made of Fe particles or Fe50 mass% or more Fe-Zn alloy particles, a deposition amount 0.5 g / m 2 or more 10 g / m 2 or less of the metal particles A particle adhesion process to be adhered;
A heating step of heating the steel sheet at 300 ° C. to 500 ° C. for 1 second to 300 seconds to alloy the lower plating film and the metal particles;
A method for producing an alloyed hot-dip galvanized steel sheet, comprising:
JP2004066753A 2004-03-10 2004-03-10 Galvannealed steel sheet, and method for manufacturing the same Pending JP2005256042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004066753A JP2005256042A (en) 2004-03-10 2004-03-10 Galvannealed steel sheet, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004066753A JP2005256042A (en) 2004-03-10 2004-03-10 Galvannealed steel sheet, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005256042A true JP2005256042A (en) 2005-09-22

Family

ID=35082074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004066753A Pending JP2005256042A (en) 2004-03-10 2004-03-10 Galvannealed steel sheet, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005256042A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138231A (en) * 2005-11-17 2007-06-07 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
WO2007129678A1 (en) * 2006-05-02 2007-11-15 Jfe Steel Corporation Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
KR100868457B1 (en) 2007-05-31 2008-11-11 주식회사 포스코 Galvannealed steel sheet having superior adhesiveness of plated film and method for manufacturing the same
JP2008285705A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvannealed steel sheet
JP2009280880A (en) * 2008-05-24 2009-12-03 Ck Metals Co Ltd Hot dip galvanization treating method
JP2010121189A (en) * 2008-11-21 2010-06-03 Jfe Steel Corp Hot dip galvanized steel sheet and method for producing the same
KR101736628B1 (en) * 2015-12-22 2017-05-17 주식회사 포스코 Multi-plated steel sheet having excellent corrosion resistance for hot press forming, and the method therefor
JP2017524804A (en) * 2014-05-12 2017-08-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for manufacturing a steel member provided with a corrosion-resistant metal coating and a steel member
JP2019503434A (en) * 2016-01-19 2019-02-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for producing a steel product having a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to this method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138231A (en) * 2005-11-17 2007-06-07 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
KR101138042B1 (en) * 2006-05-02 2012-04-24 제이에프이 스틸 가부시키가이샤 Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
WO2007129678A1 (en) * 2006-05-02 2007-11-15 Jfe Steel Corporation Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
US8268095B2 (en) 2006-05-02 2012-09-18 Jfe Steel Corporation Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet
JP2008285705A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvannealed steel sheet
KR100868457B1 (en) 2007-05-31 2008-11-11 주식회사 포스코 Galvannealed steel sheet having superior adhesiveness of plated film and method for manufacturing the same
WO2008147010A1 (en) * 2007-05-31 2008-12-04 Posco Galvannealed steel sheet having superior adhesiveness of plated film and method for manufacturing the same
JP2009280880A (en) * 2008-05-24 2009-12-03 Ck Metals Co Ltd Hot dip galvanization treating method
JP2010121189A (en) * 2008-11-21 2010-06-03 Jfe Steel Corp Hot dip galvanized steel sheet and method for producing the same
JP2017524804A (en) * 2014-05-12 2017-08-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for manufacturing a steel member provided with a corrosion-resistant metal coating and a steel member
KR101736628B1 (en) * 2015-12-22 2017-05-17 주식회사 포스코 Multi-plated steel sheet having excellent corrosion resistance for hot press forming, and the method therefor
JP2019503434A (en) * 2016-01-19 2019-02-07 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method for producing a steel product having a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to this method

Similar Documents

Publication Publication Date Title
JP4085876B2 (en) Hot press-formed product and method for producing the same
CN110777319B (en) Plating solution for highly corrosion-resistant highly formable hot-formed steel, hot-formed steel sheet, hot-dip plating production process, hot-stamped part, and application
JP4970632B2 (en) Hot-dip galvanized steel sheet
JP2007297686A (en) Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
WO2006112515A1 (en) Galvannealed sheet steel and process for production thereof
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JP4506128B2 (en) Hot press-formed product and method for producing the same
KR20150052376A (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
JP2005256042A (en) Galvannealed steel sheet, and method for manufacturing the same
JP7160203B2 (en) Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact
JP2003253416A (en) Hot-dip zincing steel sheet
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3397150B2 (en) Hot-dip galvanized steel sheet
KR101665912B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
JP2007231375A (en) Galvannealed steel sheet
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JP7453583B2 (en) Al-plated hot stamping steel material
JPH0645853B2 (en) Method for producing galvannealed steel sheet
CN114761602B (en) Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same
JP2009235430A (en) Galvanized steel sheet and manufacturing method therefor
JP2010248602A (en) Plated steel sheet for hot press and hot press molded article
JP5533730B2 (en) Method for producing galvannealed steel sheet
JP3097472B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921