JPH07268604A - Production of zn-mg vapor deposition-coated steel sheet - Google Patents

Production of zn-mg vapor deposition-coated steel sheet

Info

Publication number
JPH07268604A
JPH07268604A JP5862494A JP5862494A JPH07268604A JP H07268604 A JPH07268604 A JP H07268604A JP 5862494 A JP5862494 A JP 5862494A JP 5862494 A JP5862494 A JP 5862494A JP H07268604 A JPH07268604 A JP H07268604A
Authority
JP
Japan
Prior art keywords
vapor deposition
steel sheet
alloy
temperature
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5862494A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sakamoto
和志 坂本
Yasumi Ariyoshi
康実 有吉
Hiroshi Tanaka
宏 田中
Masanori Matsuno
雅典 松野
Yasushi Fukui
康 福居
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5862494A priority Critical patent/JPH07268604A/en
Publication of JPH07268604A publication Critical patent/JPH07268604A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a highly corrosion-resistant Zn-Mg alloy vapor deposition- coated steel sheet having a highly adhesive plating layer by suppressing the remaining of pure Mg and its alloying with the substrate steel. CONSTITUTION:A continuously traveled steel strip is introduced into a vacuum chamber, Mg is vapor-deposited on the steel strip kept at >=100 deg.C in a vacuum of 1X10<-6>-8X10<-4>Torr H2O partial pressure, then Zn is deposited, and the steel strip just after leaving the vacuum chamber is heat-treated at 250-370 deg.C in an inert atmosphere or in the atmosphere so that the diffusion reaction between Mg and Zn proceeds until pure Mg is not left. The Zn-plated steel strip is held at 130-250 deg.C for >=1hr in a nonoxidizing atmosphere by using a heating furnace independent of the vacuum chamber to apply alloying heat treatment. Otherwise, the steel strip is kept at >=100 deg.C before Mg vapor deposition, the temp. is controlled so that the Zn-deposited steel strip is kept at 250-370 deg.C, and the alloying heat treatment is conducted by the sensible heat of the strip.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建材,家電,自動車用
構造体,部品等として使用され、耐食性,加工性,塗装
性,溶接性等に優れたZn−Mg系蒸着めっき鋼板を製
造する方法に関する。
FIELD OF THE INVENTION The present invention is used as a building material, a home electric appliance, a structure for automobiles, parts and the like, and produces a Zn-Mg vapor-deposited steel sheet excellent in corrosion resistance, workability, paintability, weldability and the like. Regarding the method.

【0002】[0002]

【従来の技術】鋼材の耐食性を向上させるため、Znめ
っきが従来から採用されてきた。Znめっき鋼板は、溶
融めっきや電気めっき等で製造されている。しかし、従
来よりも優れた耐食性を備えたZnめっき鋼板に対する
要求が最近強くなってきており、この要求に応える手段
としてZnめっきを厚くする高付着量化,耐食性の向上
に有効な合金めっき化等が検討されている。しかし、厚
膜化には溶融めっき法でも製造上の限界があることか
ら、めっき層を厚くして耐食性の向上を図ることにも限
界がある。また、Znめっき層を厚くすると、加工性が
低下し、プレス成形時にカジリ,フレーキング等の欠陥
が多発する。厚膜のめっき層は、スポット溶接性も悪化
させる。電気めっき法で厚いめっき層を形成しようとす
ると、Zn付着量の増大に伴って製造コストが著しく上
昇する。
2. Description of the Related Art Zn plating has been conventionally used to improve the corrosion resistance of steel materials. The Zn-plated steel sheet is manufactured by hot dipping, electroplating or the like. However, demands for Zn-plated steel sheets with better corrosion resistance than before have recently become stronger, and as a means to meet these demands, there is a need to increase the amount of Zn plating to increase the amount of adhesion and to make alloy plating effective for improving corrosion resistance. Is being considered. However, since there is a manufacturing limit in thickening even in the hot dipping method, there is a limit in increasing the corrosion resistance by increasing the thickness of the plating layer. Further, if the Zn plating layer is thickened, the workability deteriorates, and defects such as galling and flaking frequently occur during press molding. The thick plating layer also deteriorates spot weldability. If a thick plating layer is to be formed by the electroplating method, the manufacturing cost will increase remarkably as the amount of Zn deposited increases.

【0003】めっき層の組成により耐食性を改善する方
法では、純Znに代えて耐食性に優れた合金をめっき層
とする。電気めっき法では、Zn−Ni合金めっき鋼板
等の合金めっき鋼板が製造されている。しかし、Zn−
Ni合金めっき層は、硬くて脆いめっき層となり易いた
め、プレス成形時に剥離等の欠陥が発生し易くなる。そ
の結果、欠陥部を起点として下地鋼が腐食され、めっき
層本来の高耐食性が発揮されない。めっき層から剥離し
た粉末粒子は、プレス成形時に点状の押し疵、すなわち
ピンプル欠陥を発生させる。また、金型に堆積して金型
に対する鋼板の流入抵抗を大きくするため、プレス成形
時に鋼板を破断させる原因にもなり、成形加工に悪影響
を及ぼす。
In the method of improving the corrosion resistance by the composition of the plating layer, an alloy having excellent corrosion resistance is used as the plating layer instead of pure Zn. In the electroplating method, alloy-plated steel sheets such as Zn-Ni alloy-plated steel sheets are manufactured. However, Zn-
Since the Ni alloy plating layer is likely to be a hard and brittle plating layer, defects such as peeling are likely to occur during press molding. As a result, the base steel is corroded starting from the defective portion, and the original high corrosion resistance of the plated layer is not exhibited. The powder particles separated from the plating layer cause dot-like push defects, that is, pimple defects, during press molding. In addition, since the steel sheet is deposited on the mold to increase the inflow resistance of the steel plate to the mold, the steel plate may be broken during press forming, which adversely affects the forming process.

【0004】Zn−Al等の合金めっき鋼板は、溶融め
っき法でも製造することができる。しかし、溶融めっき
法で製造されたZn−Al合金めっき鋼板には、下地鋼
とめっき層との間に硬くて脆いFe−Al系の合金層が
形成され、プレス成形時にめっき層の剥離が生じ易くな
る。合金めっき鋼板を製造する電気めっき法や溶融めっ
き法の欠点を解消するものとして、高耐食性のZn系合
金めっき鋼板を蒸着法で製造することが検討されてい
る。なかでも、Zn−Mg合金めっきは、Zn−Ni合
金めっき,Zn−Al合金めっき等に比較して遥かに優
れた防食作用を呈する。この系統の合金めっき鋼板とし
て、たとえば0.5〜40重量%のMgを含むZn−M
g合金蒸着めっきが特開昭64−17852号公報に紹
介されている。
Alloy-plated steel sheets such as Zn-Al can also be manufactured by the hot dipping method. However, in a Zn-Al alloy plated steel sheet produced by the hot dip coating method, a hard and brittle Fe-Al alloy layer is formed between the base steel and the plating layer, and peeling of the plating layer occurs during press forming. It will be easier. As a solution to the drawbacks of the electroplating method and the hot dip coating method for producing an alloy-plated steel sheet, production of a highly corrosion-resistant Zn-based alloy-plated steel sheet by a vapor deposition method has been studied. Among them, Zn-Mg alloy plating exhibits a far superior anticorrosion action as compared with Zn-Ni alloy plating, Zn-Al alloy plating and the like. As the alloy-plated steel sheet of this system, for example, Zn-M containing 0.5 to 40% by weight of Mg
The g-alloy vapor deposition plating is introduced in JP-A-64-17852.

【0005】[0005]

【発明が解決しようとする課題】Zn−Mg合金めっき
鋼板は、純Znめっき鋼板に比較して耐食性が非常に高
い。しかし、塗装後の耐食性や、めっき層が剥離した部
分や切断端面等の下地鋼露出部における耐赤錆性を両立
させることは困難である。Zn−Mg合金蒸着めっき鋼
板の特性に影響を及ぼす因子としては、めっき層のMg
濃度分布や製造時の温度管理等がある。そのため、Zn
−Mg合金蒸着めっき鋼板を工業的に製造することは困
難であった。たとえば、Mg濃度が規定範囲にあって
も、裸及び塗装後の耐食性に問題があったり、切断端面
等の下地鋼露出部に赤錆が発生し易くなることがある。
また、めっき層表層部のMg濃度が過度に高いと、加工
時に割れ,剥離等の欠陥が発生し易く、塗装後の塗膜の
耐水二次密着性に劣ることもある。
The Zn-Mg alloy plated steel sheet has much higher corrosion resistance than the pure Zn plated steel sheet. However, it is difficult to achieve both the corrosion resistance after coating and the red rust resistance in the exposed portion of the base steel such as the peeled portion of the plating layer and the cut end surface. Factors affecting the characteristics of the Zn-Mg alloy vapor-deposited steel sheet include Mg of the plating layer.
There are concentration distribution and temperature control during manufacturing. Therefore, Zn
-It was difficult to industrially produce a Mg alloy vapor deposition plated steel sheet. For example, even if the Mg concentration is within the specified range, there may be a problem in corrosion resistance after bareness and after coating, or red rust may easily occur on the exposed base steel such as a cut end surface.
Further, if the Mg concentration in the surface layer of the plating layer is excessively high, defects such as cracking and peeling are likely to occur during processing, and the water resistance secondary adhesion of the coating film after coating may be poor.

【0006】Mgの表面偏析及び濃度上昇を避ける手段
としては、特開昭64−25990号公報に紹介されて
いるように、Zn−Ti合金めっき層等の他のZn系合
金めっき層又は亜鉛めっき層をZn−Mg合金めっき層
の上に設けることが考えられる。しかし、他のめっき層
を形成するために高価な真空蒸着装置を更に追加するこ
とが要求され、製造コストを上昇させることになる。ま
た、表面に他のZn系めっき層を設けた場合にあって
も、蒸着時の温度上昇等によって鋼板温度が100℃以
上になると、めっき層中のMgが容易に拡散する。結果
として多くの場合、表面にMgが偏析する。また、純M
gがめっき層に残留することがある。純Mg自体は耐食
性が高くなく、純Mgが存在する場合はZnとMgが拡
散し、純Mgが存在しない場合に比較して耐食性の向上
が少ない。本発明は、このような問題を解消すべく案出
されたものであり、鋼板温度やめっき層形成温度を管理
することにより、めっき層に純Mgが残留することな
く、安定した品質を持つZn−Mg合金蒸着めっき層が
形成されためっき鋼板を高い再現性で工業的に製造する
ことを目的とする。
As a means for avoiding surface segregation and concentration increase of Mg, as described in JP-A-64-25990, another Zn-based alloy plating layer such as Zn-Ti alloy plating layer or zinc plating is introduced. It is conceivable to provide the layer on the Zn-Mg alloy plated layer. However, in order to form another plating layer, it is required to add an expensive vacuum vapor deposition device, which increases the manufacturing cost. Further, even when another Zn-based plating layer is provided on the surface, Mg in the plating layer easily diffuses when the steel plate temperature reaches 100 ° C. or higher due to a temperature increase during vapor deposition. As a result, in many cases, Mg segregates on the surface. Also, pure M
g may remain in the plating layer. Pure Mg itself does not have high corrosion resistance, Zn and Mg diffuse in the presence of pure Mg, and the improvement in corrosion resistance is small compared to the case where pure Mg does not exist. The present invention has been devised to solve such a problem, and by controlling the steel plate temperature and the plating layer forming temperature, pure Mg does not remain in the plating layer, and Zn having a stable quality is obtained. -The purpose is to industrially manufacture a plated steel sheet on which a Mg alloy vapor deposition plated layer is formed with high reproducibility.

【0007】[0007]

【課題を解決するための手段】本発明のZn−Mg合金
蒸着めっき鋼板製造方法は、その目的を達成するため、
連続走行する鋼帯を真空室に導入し、100℃以上の鋼
板温度でMg蒸着した後、Zn蒸着し、真空室を出た直
後の鋼帯に、純Mgの残留が無くなるまでMgとZnと
の間の拡散反応が進行するように、窒素,窒素+水素等
の不活性雰囲気又は大気雰囲気中で鋼板温度を250〜
370℃にする加熱処理を施すことを特徴とする。Mg
の蒸着は、H2 O分圧が1×10-6〜8×10-4トール
の真空中で行うことが好ましい。真空雰囲気に含まれる
他のガス成分は、N2 ,Ar,N2 +H2等の不活性雰
囲気及び不可避的不純物ガスである。また、真空の全圧
は、通常5×10-1トール以下に設定する。MgとZn
の拡散は、蒸着工程に連続化させる他、蒸着工程とは別
個の加熱炉によって行うこともできる。この場合、不活
性雰囲気に維持された加熱炉で130〜250℃にZn
めっき後の鋼帯を1時間以上保持する。また、Zn蒸着
後の顕熱を利用して、MgとZnとを拡散させてもよ
い。この場合、Mg蒸着前の鋼板温度を100℃以上と
し、Zn蒸着後の鋼板温度が250〜370℃となるよ
うに温度管理する。
The method for producing a Zn-Mg alloy vapor-deposited plated steel sheet according to the present invention, in order to achieve the object,
A continuously running steel strip was introduced into a vacuum chamber, and Mg was vapor-deposited at a steel plate temperature of 100 ° C. or higher, followed by Zn vapor deposition, and Mg and Zn were added to the steel strip immediately after leaving the vacuum chamber until pure Mg remained. In order to promote the diffusion reaction between the steel sheets, the steel plate temperature is set to 250 to 250 in an inert atmosphere such as nitrogen, nitrogen + hydrogen, or an air atmosphere.
It is characterized in that heat treatment at 370 ° C. is performed. Mg
The vapor deposition of is preferably performed in a vacuum with a H 2 O partial pressure of 1 × 10 −6 to 8 × 10 −4 Torr. Other gas components contained in the vacuum atmosphere are inert atmosphere such as N 2 , Ar, N 2 + H 2 and inevitable impurity gas. The total vacuum pressure is usually set to 5 × 10 −1 torr or less. Mg and Zn
The diffusion of can be carried out in a vapor deposition process, or can be performed in a heating furnace separate from the vapor deposition process. In this case, Zn is heated to 130 to 250 ° C. in a heating furnace maintained in an inert atmosphere.
Hold the steel strip after plating for 1 hour or more. Further, Mg and Zn may be diffused by utilizing sensible heat after Zn vapor deposition. In this case, the temperature of the steel sheet before Mg vapor deposition is set to 100 ° C. or higher, and the temperature of the steel sheet after Zn vapor deposition is controlled to 250 to 370 ° C.

【0008】[0008]

【作用】Zn−Mg合金めっき鋼板を蒸着法で工業的に
製造する場合、めっき原板をMg蒸着めっきする工程,
Zn蒸着めっきする工程及び合金化によりZn−Mg合
金めっき層を形成する工程を経る。本発明者等は、この
製造プロセスにおける良好なめっき層の形成や密着性の
向上に鋼板温度及び加熱処理温度が重要な影響を与えて
いることを解明した。めっき原板である鋼板にMg蒸着
めっきするとき、Mg蒸着めっき層の密着性を確保する
上で、100℃以上の鋼板温度でMgを蒸着させること
が必要である。鋼板温度が100℃より低いとMgめっ
き層と下地鋼との間の密着性が不十分となり、めっき鋼
板として実用化できない。不活性ガスを除き真空雰囲気
に最も多量に含まれるH2 Oの量を規制することによ
り、拡散が効果的に行われる。H2 Oを分圧で1×10
-6トール以上とするとき、蒸着Mgが僅かに酸化され、
下地鋼からのFeの拡散が抑制される。しかし、過剰の
2 Oが含まれるとMgとZnとの拡散も抑制されるの
で、H2 O分圧の上限を8×10-4トールに規制する。
[Operation] When a Zn-Mg alloy-plated steel sheet is industrially manufactured by the vapor deposition method, a step of vapor-depositing a plating original plate by Mg vapor deposition,
A Zn vapor deposition plating step and a step of forming a Zn-Mg alloy plating layer by alloying are performed. The present inventors have clarified that the steel plate temperature and the heat treatment temperature have an important influence on the formation of a good plating layer and the improvement of adhesion in this manufacturing process. When performing Mg vapor deposition plating on a steel sheet which is a plating original plate, it is necessary to vapor deposit Mg at a steel sheet temperature of 100 ° C. or higher in order to secure the adhesion of the Mg vapor deposition plated layer. When the steel sheet temperature is lower than 100 ° C., the adhesion between the Mg plating layer and the base steel becomes insufficient, and it cannot be put to practical use as a plated steel sheet. Diffusion is effectively performed by controlling the amount of H 2 O contained in the vacuum atmosphere in the maximum amount except for the inert gas. Partial pressure of H 2 O 1 × 10
-6 Torr or more, evaporated Mg is slightly oxidized,
The diffusion of Fe from the base steel is suppressed. However, if excessive H 2 O is contained, diffusion of Mg and Zn is also suppressed, so the upper limit of the H 2 O partial pressure is restricted to 8 × 10 −4 Torr.

【0009】めっき層を合金化させるための加熱温度
は、加熱処理時間内にMg層とZn層との間の合金化反
応が完了すること及び鋼板とめっき層との間の合金化反
応を起こさせないことの二つの条件によって規制され
る。特に、拡散が未完了でめっき層に純Mgが残存する
と、耐食性の向上が少なく、完全に純Mg分が無くなっ
た場合に比較して低い耐食性を示す。加熱処理をZn蒸
着めっきの直後に連続して行う場合、めっき鋼板が加熱
される時間が数秒程度あるので、加熱時間を250〜3
70℃とし、窒素,窒素+水素等の不活性雰囲気又は大
気雰囲気で加熱処理できる。加熱温度が250℃より低
いと、MgとZnの拡散速度が遅く、めっき層の拡散が
完了しない。逆に370℃を超える加熱温度では、Mg
蒸着時に真空中のH2 Oを規制しても下地鋼とめっき層
との間の拡散反応が進行し、Zn−Mg合金めっきに比
較して耐食性に劣るZn−Mg−Fe系めっき層が生成
する。
The heating temperature for alloying the plating layer is such that the alloying reaction between the Mg layer and the Zn layer is completed within the heat treatment time and the alloying reaction between the steel sheet and the plating layer occurs. It is regulated by the two conditions of not letting. In particular, if the pure Mg remains in the plating layer due to incomplete diffusion, the corrosion resistance is less improved, and the corrosion resistance is lower than that when the pure Mg content is completely lost. When the heat treatment is continuously performed immediately after the Zn vapor deposition plating, the heating time of the plated steel sheet is about several seconds.
The heat treatment can be performed at 70 ° C. in an inert atmosphere of nitrogen, nitrogen + hydrogen, or the like or an air atmosphere. If the heating temperature is lower than 250 ° C., the diffusion rate of Mg and Zn is slow and the diffusion of the plating layer is not completed. On the contrary, when the heating temperature exceeds 370 ° C., Mg
Even if H 2 O in a vacuum is regulated during vapor deposition, a diffusion reaction between a base steel and a plating layer proceeds, and a Zn-Mg-Fe-based plating layer having poorer corrosion resistance than Zn-Mg alloy plating is formed. To do.

【0010】加熱処理をバッチで行う場合、非酸化性の
雰囲気を使用し、めっき鋼板を130〜250℃の温度
範囲に1時間以上保持する。この場合、加熱時間が比較
的長時間となることから、加熱雰囲気を窒素,窒素+水
素等の不活性雰囲気にする必要がある。保持温度が15
0℃より低いと、Mg層とZn層との間で十分な拡散反
応を完了させるためには長時間の保持が必要とされ、実
用的でない。逆に250℃を超える保持温度では、Mg
蒸着時にH2 Oを規制しても下地鋼とめっき層との間に
望ましくない合金化反応が進行する。特に加熱処理を必
要とすることなく、鋼板温度の調節により自然に合金化
反応を起こさせ、めっき層を合金化させる場合、Zn蒸
着めっき後の鋼板温度を250〜370℃の温度範囲に
調節する。この場合にも、下地鋼に対するMg層の密着
性を確保するため、Mg蒸着めっき時の鋼板温度を10
0℃以上にすることが必要である。
When the heat treatment is carried out in batches, a non-oxidizing atmosphere is used and the plated steel sheet is kept in the temperature range of 130 to 250 ° C. for 1 hour or more. In this case, since the heating time is relatively long, the heating atmosphere needs to be an inert atmosphere such as nitrogen or nitrogen + hydrogen. Hold temperature is 15
When the temperature is lower than 0 ° C, long-term holding is required to complete a sufficient diffusion reaction between the Mg layer and the Zn layer, which is not practical. Conversely, if the holding temperature exceeds 250 ° C, Mg
Even if H 2 O is regulated during vapor deposition, an undesired alloying reaction proceeds between the base steel and the plating layer. When the alloying reaction is naturally caused by adjusting the steel plate temperature to alloy the plated layer without requiring heat treatment, the steel plate temperature after Zn vapor deposition plating is adjusted to a temperature range of 250 to 370 ° C. . Also in this case, in order to secure the adhesiveness of the Mg layer to the base steel, the steel plate temperature during Mg vapor deposition plating is set to 10
It is necessary to set the temperature to 0 ° C or higher.

【0011】本発明に従ったZn−Mg合金蒸着めっき
鋼板は、たとえば概略を図1に示すめっき設備で製造さ
れる。めっき原板10は、ペイオフリール11から巻き
戻され、無酸化炉21,還元焼鈍炉22及び窒素置換室
23からなる前処理ゾーン20から連結ダクト24をを
経て真空室30に導かれる。還元焼鈍炉22では、たと
えば50%H2 −N2組成の還元雰囲気での加熱によ
り、めっき原板10が酸化膜除去及び焼鈍される。真空
室20は、入側真空ロール31及び出側真空ロール32
によって内部が気密状態に維持され、真空ポンプ(図示
せず)により1×10-1トール程度まで減圧される。真
空室20の内部には、めっき原板10の搬送経路に沿っ
てMg蒸着室40,第1Zn蒸着室50及び第2Zn蒸
着室60が配列される。また、必要に応じて、補助的な
Zn蒸着室55を第1Zn蒸着室50と第2Zn蒸着室
60との間に設けても良い。Mg蒸着室40は、入側真
空ロール33及び出側真空ロール34で気密になってお
り、真空ポンプ(図示せず)で更に高真空度に維持され
る。
The Zn-Mg alloy vapor-deposited steel sheet according to the present invention is manufactured, for example, in a plating facility schematically shown in FIG. The original plating plate 10 is rewound from the payoff reel 11 and guided from the pretreatment zone 20 including the non-oxidizing furnace 21, the reduction annealing furnace 22 and the nitrogen substitution chamber 23 to the vacuum chamber 30 via the connecting duct 24. In the reduction annealing furnace 22, the original plating plate 10 is subjected to oxide film removal and annealing by heating in a reducing atmosphere of, for example, 50% H 2 —N 2 composition. The vacuum chamber 20 includes an inlet side vacuum roll 31 and an outlet side vacuum roll 32.
The inside is kept airtight by a vacuum pump (not shown) and the pressure is reduced to about 1 × 10 −1 Torr. Inside the vacuum chamber 20, a Mg vapor deposition chamber 40, a first Zn vapor deposition chamber 50, and a second Zn vapor deposition chamber 60 are arranged along the transport path of the original plating plate 10. If necessary, an auxiliary Zn vapor deposition chamber 55 may be provided between the first Zn vapor deposition chamber 50 and the second Zn vapor deposition chamber 60. The Mg vapor deposition chamber 40 is hermetically sealed by the inlet vacuum roll 33 and the outlet vacuum roll 34, and is maintained at a higher vacuum degree by a vacuum pump (not shown).

【0012】Mgの蒸着は、電気抵抗加熱蒸発,高周波
加熱蒸発,電子ビーム加熱蒸発,アーク蒸発等が採用可
能であるが、Mgが昇華性金属であることから蒸発量の
制御性,Mgの補給性,装置のコンパクト化等からアー
ク蒸発方式が好ましい。図示の設備では、Mg蒸発源4
1及びMg蒸気案内フード42をめっき原板の両面に対
向配置している。Mg蒸発源41は、片面めっき又は両
面めっきに対応させて何れか一方又は双方を稼動させ
る。Zn蒸着室50,60は、Zn蒸気発生器51,6
1及びZn蒸気案内フード52,62を、Mg蒸着され
ためっき原板12の片面に対向させている。Zn蒸着室
50,60は、片面めっき又は両面めっきに対応させて
何れか一方又は双方を稼動させ、巻付けロール53,6
3に巻き付けられためっき原板12にZn蒸着する。
For vapor deposition of Mg, electric resistance heating vaporization, high frequency heating vaporization, electron beam heating vaporization, arc vaporization and the like can be adopted. However, since Mg is a sublimable metal, the evaporation amount can be controlled and the Mg can be replenished. The arc evaporation method is preferable because of its compactness and compactness. In the illustrated equipment, the Mg evaporation source 4
1 and Mg vapor guide hoods 42 are arranged opposite to each other on both sides of the original plating plate. The Mg evaporation source 41 operates either one or both in accordance with single-sided plating or double-sided plating. The Zn vapor deposition chambers 50, 60 have Zn vapor generators 51, 6
The 1 and Zn vapor guide hoods 52 and 62 are opposed to one surface of the Mg-deposited original plate 12. In the Zn vapor deposition chambers 50 and 60, either one or both of them are operated in accordance with single-sided plating or double-sided plating, and winding rolls 53 and 6 are used.
Zn is vapor-deposited on the original plating plate 12 wound around 3.

【0013】Zn蒸着後のめっき鋼帯13は、出側真空
ロール32を経て加熱炉70に導かれる。めっき鋼帯1
3は、加熱炉70で高周波加熱等の適宜に加熱手段によ
り、必要に応じて加熱処理される。加熱後のめっき鋼帯
14は、後処理ゾーン80を通過するとき、必要な化成
処理等の処理が施される。最終的に、Zn−Mg合金蒸
着めっき鋼帯15として巻取りリール16に巻き取られ
る。加熱炉70でめっき層を拡散させる加熱処理を行わ
ない場合、別途の加熱炉でめっき鋼帯13をバッチ加熱
することも可能である。このようにして製造されためっ
き鋼板は、必要に応じて片面又は両面にZn−Mg合金
めっき層を形成している。たとえば、片面にZn−Mg
合金蒸着めっき層を形成する場合には、何れか一方のM
g蒸発源41又は41及びZn蒸気発生器51又は61
を稼動させる。
The plated steel strip 13 after Zn vapor deposition is guided to the heating furnace 70 via the outlet vacuum roll 32. Galvanized steel strip 1
3 is heat-treated in the heating furnace 70 as needed by an appropriate heating means such as high-frequency heating. After passing through the post-treatment zone 80, the plated steel strip 14 after heating is subjected to necessary chemical conversion treatment and the like. Finally, the Zn-Mg alloy vapor deposition plated steel strip 15 is taken up by the take-up reel 16. When the heat treatment for diffusing the plating layer is not performed in the heating furnace 70, the plated steel strip 13 can be batch-heated in a separate heating furnace. The plated steel sheet thus manufactured has a Zn—Mg alloy plating layer formed on one side or both sides as necessary. For example, Zn-Mg on one side
When forming the alloy vapor deposition plating layer, either M
g evaporation source 41 or 41 and Zn vapor generator 51 or 61
To operate.

【0014】[0014]

【実施例】【Example】

実施例1:めっき原板として、表1に示した組成を持つ
板厚0.5mm及び板幅700mmの未焼鈍冷延鋼板を
使用した。めっき原板を図1に示しためっき設備に通板
し、Zn−Mg合金蒸着めっき鋼板を製造した。
Example 1: As an original plating plate, an unannealed cold-rolled steel plate having a composition shown in Table 1 and a plate thickness of 0.5 mm and a plate width of 700 mm was used. The original plating plate was passed through the plating equipment shown in FIG. 1 to manufacture a Zn—Mg alloy vapor deposition plated steel plate.

【0015】[0015]

【表1】 [Table 1]

【0016】めっき層中の平均Mg濃度が5.6重量%
となるように、Mg及びZnをそれぞれ付着量1.8g
/m2 及び30g/m2 で蒸着した。Zn蒸着によって
鋼板温度は20〜25℃程度上昇したが、Mg蒸着では
鋼板温度の上昇はほとんど検出されなかった。Zn蒸着
後のめっき鋼帯13を加熱炉70で連続的に加熱するこ
とにより、Mg層とZn層とを合金化させた。このとき
の加熱条件は、昇温速度30℃/秒,加熱温度220〜
400℃,保持時間なし(0〜10秒),雰囲気1気圧
の窒素に設定した。表2は、各製造段階における鋼板温
度及び拡散加熱温度を示す。このときのH2 O分圧は、
1×10-5トールであった。表2には、各製造条件下で
得られたZn−Mg合金蒸着めっき鋼板について0t曲
げテープ剥離試験で評価しためっき密着性を併せ示す。
The average Mg concentration in the plating layer is 5.6% by weight.
So that each of Mg and Zn has an attached amount of 1.8 g.
/ M 2 and 30 g / m 2 . The steel sheet temperature increased by about 20 to 25 ° C. by Zn vapor deposition, but almost no increase in steel sheet temperature was detected by Mg vapor deposition. The Mg layer and the Zn layer were alloyed by continuously heating the plated steel strip 13 after Zn deposition in the heating furnace 70. The heating conditions at this time are a heating rate of 30 ° C./sec and a heating temperature of 220-
The temperature was set to 400 ° C, no holding time (0 to 10 seconds), and the atmosphere was set to 1 atmosphere of nitrogen. Table 2 shows the steel plate temperature and the diffusion heating temperature at each manufacturing stage. The H 2 O partial pressure at this time is
It was 1 × 10 −5 Torr. Table 2 also shows the plating adhesion evaluated by the 0t bending tape peeling test for the Zn-Mg alloy vapor deposition plated steel sheet obtained under each production condition.

【0017】[0017]

【表2】 [Table 2]

【0018】試験番号1〜2の試験片では、0t曲げ部
のめっき層が下地鋼との界面で全面剥離した。このこと
から、Mg蒸着前の鋼板温度が100℃未満であると、
Zn蒸着めっき時の鋼板温度に拘らず、めっき密着性が
不良であることが判る。これに対し、Mg蒸着前の鋼板
温度を100℃以上に維持した試験番号3〜11の試験
片では、良好なめっき密着性が得られている。真空中の
2 O分圧とZn,Mg及び下地鋼からのFeの拡散状
態を、表3に示す。Mg蒸着前の鋼板温度は150℃,
Zn蒸着前の鋼板温度は130℃,Zn蒸着後の鋼板温
度は150℃,加熱温度は250〜370℃,加熱保持
時間は0〜10秒にそれぞれ設定した。5×10-7トー
ルの分圧では、加熱するとFeがめっき層中に拡散し、
Zn−Mg−Fe系のめっき層が生成した。めっき層中
へのFeの拡散は、H2 O分圧を1×10-6トール以上
にすることによりみられなくなった。MgとZnとの相
互拡散は8×10-4トール以下のH2 O分圧で進行し、
1×10-3トールの高い分圧では拡散が生じることなく
純Mgが残存した。
In the test pieces of Test Nos. 1 and 2, the plating layer at the 0t bent portion was entirely peeled off at the interface with the base steel. From this, when the steel sheet temperature before Mg vapor deposition is less than 100 ° C,
It can be seen that the plating adhesion is poor regardless of the steel plate temperature during Zn vapor deposition plating. On the other hand, the test pieces of test numbers 3 to 11 in which the steel plate temperature before Mg deposition was maintained at 100 ° C. or higher showed good plating adhesion. Table 3 shows the H 2 O partial pressure in vacuum and the diffusion state of Fe from Zn, Mg and the base steel. Steel plate temperature before vapor deposition of Mg is 150 ℃,
The steel plate temperature before Zn vapor deposition was set to 130 ° C, the steel plate temperature after Zn vapor deposition was set to 150 ° C, the heating temperature was set to 250 to 370 ° C, and the heating holding time was set to 0 to 10 seconds. At a partial pressure of 5 × 10 −7 Torr, Fe diffuses into the plating layer when heated,
A Zn-Mg-Fe based plating layer was generated. Diffusion of Fe into the plated layer was abolished by setting the H 2 O partial pressure to 1 × 10 −6 Torr or more. The interdiffusion between Mg and Zn proceeds at a H 2 O partial pressure of 8 × 10 −4 Torr or less,
Pure Mg remained without diffusion at a high partial pressure of 1 × 10 −3 Torr.

【0019】表4には、MgとZnの拡散に及ぼす加熱
条件の影響を示す。Mg蒸着前の鋼板温度は200℃,
Zn蒸着前の鋼板温度は170℃,Zn蒸着後の鋼板温
度は195℃,H2 O分圧は1×10-4トールに設定し
た。加熱温度が220℃と低い試験番号35〜38の試
験片では、めっき層内部でMg及びZnが拡散しておら
ず、Mg層とZn層との合金化がみられなかった。加熱
温度が400℃と高い試験番号55〜58の試験片で
は、めっき層の表層まで下地Feが拡散し、鋼板とめっ
き層との界面に硬くて脆いZn−Mg−Fe合金層が形
成され、0t曲げ部にパウダリングが発生した。これ
は、加熱温度が高すぎたことが原因である。他方、試験
番号39〜54の試験片は良好な密着性を示したことか
ら、加熱温度は250〜370℃の範囲が適切であるこ
とが判った。
Table 4 shows the effect of heating conditions on the diffusion of Mg and Zn. Steel plate temperature before Mg deposition is 200 ℃,
The steel sheet temperature before Zn vapor deposition was set to 170 ° C., the steel sheet temperature after Zn vapor deposition was set to 195 ° C., and the H 2 O partial pressure was set to 1 × 10 −4 Torr. In the test pieces of test numbers 35 to 38, which had a low heating temperature of 220 ° C., Mg and Zn did not diffuse inside the plated layer, and alloying between the Mg layer and the Zn layer was not observed. In the test pieces of test numbers 55 to 58 whose heating temperature is as high as 400 ° C., the underlying Fe diffuses to the surface layer of the plating layer, and a hard and brittle Zn-Mg-Fe alloy layer is formed at the interface between the steel plate and the plating layer. Powdering occurred in the 0t bent portion. This is because the heating temperature was too high. On the other hand, since the test pieces of test numbers 39 to 54 showed good adhesion, it was found that the heating temperature range of 250 to 370 ° C. is appropriate.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】実施例2:表5に示す条件下でMg及びZ
nを蒸着した鋼帯をコイルに巻き、コイルを加熱するバ
ッチ処理でめっき層を合金化させた。H2 O分圧と拡散
の状態を表6に示す。なお、表6では、加熱保持時間を
15時間とした。
Example 2: Mg and Z under the conditions shown in Table 5
A steel strip on which n was vapor-deposited was wound around a coil, and the plating layer was alloyed by a batch process of heating the coil. Table 6 shows the partial pressure of H 2 O and the state of diffusion. In Table 6, the heating and holding time was set to 15 hours.

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】H2 O分圧が1×10-6トール未満では、
下地鋼からFeの拡散が生じ、8×10-4トールを超え
るとZnとMgとの拡散が生じなくなった。表7に、加
熱温度と拡散状態を示す。なお、表7では、H2 O分圧
を1×10-5トールとした。試験番号115〜117
は、加熱温度が100℃であり、25時間保持してもめ
っき層の合金化が完了しなかった。加熱温度130℃で
保持時間を1時間以上に設定した試験番号118〜12
0の試験片では、めっき層は完全に拡散しており、めっ
き層の密着性も良好であった。なお、加熱保持時間を1
時間未満とした場合、ZnとMgが拡散していない部分
があった。しかし、加熱温度が250℃を超えると、試
験番号130〜132にみられるように、保持時間が1
時間であってもFeが下地鋼から拡散してZn−Mg−
Fe系の合金めっき層が生成され、めっき層の0t曲げ
部にパウダリングが発生した。以上の結果から、バッチ
処理でZn−Mg蒸着めっき鋼板のめっき層を合金化す
る場合、加熱温度を130〜250℃の範囲にとり、加
熱保持時間を1時間以上とすることが適正であることが
判る。
When the H 2 O partial pressure is less than 1 × 10 -6 Torr,
Fe diffused from the base steel, and when it exceeded 8 × 10 −4 Torr, Zn and Mg did not diffuse. Table 7 shows the heating temperature and the diffusion state. In Table 7, the H 2 O partial pressure was 1 × 10 −5 Torr. Exam No. 115-117
The heating temperature was 100 ° C., and alloying of the plating layer was not completed even after holding for 25 hours. Test numbers 118 to 12 with the heating temperature set to 130 ° C. and the holding time set to 1 hour or longer
In the test piece of 0, the plating layer was completely diffused and the adhesion of the plating layer was good. The heating and holding time is 1
When it was less than the time, there was a portion where Zn and Mg did not diffuse. However, when the heating temperature exceeds 250 ° C., the holding time is 1 as shown in test numbers 130 to 132.
Fe diffuses from the base steel even for time and Zn-Mg-
An Fe-based alloy plating layer was generated, and powdering occurred at the 0t bent portion of the plating layer. From the above results, when alloying the plating layer of the Zn-Mg vapor-deposited steel sheet by batch processing, it is appropriate to set the heating temperature to a range of 130 to 250 ° C and the heating holding time to 1 hour or more. I understand.

【0026】[0026]

【表7】 [Table 7]

【0027】実施例3:Zn蒸着めっき後の鋼板温度が
250〜370℃となるように鋼板温度を調節し、特に
加熱処理を行うことなく自然にめっき層を合金化させる
製造条件下で、Zn−Mg合金蒸着めっき鋼板を製造し
た。このときの製造条件を、めっき層密着性との関係で
表8に示す。なお、Mg及びZnは、それぞれ付着量
1.8g/m2 及び60g/m2 でめっき原板に蒸着
し、Mg蒸着時のH2 O分圧を1×10-5トールとし
た。また、Zn蒸着後の鋼板温度は、Mgめっき前の鋼
板温度及び/又はZn蒸着室内にある巻付けロールの温
度によって所定範囲に調節した。
Example 3: The Zn temperature was adjusted so that the temperature of the steel sheet after Zn vapor deposition plating was 250 to 370 ° C., and Zn was naturally alloyed in the plating layer without any heat treatment. -Mg alloy vapor deposition plated steel sheet was manufactured. The manufacturing conditions at this time are shown in Table 8 in relation to the plating layer adhesion. Incidentally, Mg and Zn was vapor deposited on the plated original plate in each coating weight 1.8 g / m 2 and 60 g / m 2, and a 1 × 10 -5 Torr of H 2 O partial pressure at the time of Mg deposition. Further, the steel plate temperature after Zn vapor deposition was adjusted to a predetermined range depending on the steel plate temperature before Mg plating and / or the temperature of the winding roll in the Zn vapor deposition chamber.

【0028】[0028]

【表8】 [Table 8]

【0029】Zn蒸着後の鋼板温度が120℃であった
試験番号201の試験片は、めっき層の密着性が良好で
あるものの、拡散反応は全く観察されなかった。Zn蒸
着後の鋼板温度が250℃であった試験番号202の試
験片は、めっき層の密着性が良好であるものの、拡散反
応が完了しておらず、めっき層中に純Mgが残留してい
た。また、Zn蒸着後の鋼板温度が390℃と高い試験
番号209の試験片では、Feが下地鋼から拡散し、Z
n−Mg−Fe合金めっき層に起因するパウダリングが
曲げ加工時に発生した。これに対し、Zn蒸着後の鋼板
温度を250〜370℃の温度範囲に維持した試験番号
203〜208の試験片では、十分に拡散しためっき層
が形成されており、密着性も良好で、パウダリングを起
こすこともなかった。
The test piece of test number 201, in which the steel sheet temperature after vapor deposition of Zn was 120 ° C., had good adhesion of the plating layer, but no diffusion reaction was observed. The test piece of Test No. 202, which had a steel plate temperature of 250 ° C. after Zn vapor deposition, had good adhesion of the plating layer, but the diffusion reaction was not completed, and pure Mg remained in the plating layer. It was Further, in the test piece of test number 209 where the steel sheet temperature after Zn vapor deposition is as high as 390 ° C., Fe diffuses from the base steel and Z
Powdering due to the n-Mg-Fe alloy plating layer occurred during bending. On the other hand, in the test pieces of test numbers 203 to 208 in which the steel sheet temperature after Zn vapor deposition was maintained in the temperature range of 250 to 370 ° C., the sufficiently diffused plating layer was formed, the adhesion was good, and the powder It didn't cause the ring.

【0030】[0030]

【発明の効果】以上に説明したように、本発明において
は、Mg層とZn層とを拡散させてZn−Mg合金蒸着
めっき鋼板を製造する際、各段階における鋼板温度を調
整することにより、下地鋼とめっき層との合金化反応を
抑制しながら、拡散されたZn−Mg合金めっき層を形
成している。このようにして得られたZn−Mg合金蒸
着めっき鋼板は、良好なめっき層密着性を呈することか
ら、Zn−Mg合金めっき層本来の高耐食性を活かした
用途に活用される。また、十分に合金化されたZn−M
g合金蒸着めっき層が形成されることから、得られた製
品の品質信頼性も高いものとなる。
As described above, in the present invention, when a Zn-Mg alloy vapor deposition plated steel sheet is manufactured by diffusing the Mg layer and the Zn layer, by adjusting the steel sheet temperature at each stage, The diffused Zn-Mg alloy plating layer is formed while suppressing the alloying reaction between the base steel and the plating layer. The Zn-Mg alloy vapor-deposited steel sheet thus obtained exhibits good adhesion to the plating layer, and thus is utilized for applications that take advantage of the high corrosion resistance inherent in the Zn-Mg alloy plating layer. Also, a fully alloyed Zn-M
Since the g alloy vapor deposition plating layer is formed, the quality of the obtained product is also highly reliable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従ってZn−Mg合金蒸着めっき鋼
板を製造するめっき設備
FIG. 1 is a plating facility for producing a Zn-Mg alloy vapor-deposited steel sheet according to the present invention.

【符号の説明】[Explanation of symbols]

10:めっき原板 15:Zn−Mg合金蒸着めっき
鋼板 30:真空室 40:Mg蒸着室 50,
60:Zn蒸着室 70:加熱炉
10: original plating plate 15: Zn-Mg alloy vapor deposition plated steel sheet 30: vacuum chamber 40: Mg vapor deposition chamber 50,
60: Zn deposition chamber 70: Heating furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松野 雅典 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所内 (72)発明者 福居 康 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所内 (72)発明者 斎藤 実 大阪府堺市石津西町5番地 日新製鋼株式 会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanori Matsuno 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. (72) Inventor Yasushi Fukui 5 Ishizu Nishimachi, Sakai City, Osaka Nisshin Steel Co., Ltd. Steel Research Laboratory (72) Inventor Minoru Saito 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. Steel Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続走行する鋼帯を真空室に導入し、1
00℃以上の鋼板温度でMg蒸着した後、Zn蒸着し、
真空室を出た直後の鋼帯に、純Mgの残留が無くなるま
でMgとZnとの間の拡散反応が進行するように、不活
性雰囲気又は大気雰囲気中で鋼板温度を250〜370
℃にする加熱処理を施すZn−Mg合金蒸着めっき鋼板
の製造方法。
1. A continuously running steel strip is introduced into a vacuum chamber to
After vapor-depositing Mg at a steel plate temperature of 00 ° C. or higher, vapor-depositing Zn,
Immediately after leaving the vacuum chamber, the steel sheet temperature was set to 250 to 370 in an inert atmosphere or an air atmosphere so that the diffusion reaction between Mg and Zn proceeds until pure Mg remains in the steel strip.
The manufacturing method of the Zn-Mg alloy vapor deposition plated steel plate which heat-processes to (degreeC).
【請求項2】 H2 O分圧が1×10-6〜8×10-4
ールで、他の残留ガスがN2 ,Ar等の不活性ガス及び
不純物ガスである真空中でMgを蒸着する請求項1記載
のZn−Mg合金蒸着めっき鋼板の製造方法。
2. Mg deposition in a vacuum having a H 2 O partial pressure of 1 × 10 −6 to 8 × 10 −4 Torr and other residual gases being an inert gas such as N 2 and Ar and an impurity gas. The method for producing a Zn-Mg alloy vapor deposition plated steel sheet according to claim 1.
【請求項3】 真空室から独立した加熱炉を使用し、非
酸化性雰囲気中で130〜250℃にZnめっき後の鋼
帯を1時間以上保持することにより請求項1又は2記載
の加熱処理を施すZn−Mg合金蒸着めっき鋼板の製造
方法。
3. The heat treatment according to claim 1, wherein a heating furnace independent of the vacuum chamber is used, and the steel strip after Zn plating is held at 130 to 250 ° C. for 1 hour or more in a non-oxidizing atmosphere. A method for manufacturing a Zn-Mg alloy vapor deposition plated steel sheet.
【請求項4】 Mg蒸着前の鋼板温度を100℃以上と
し、H2 O分圧が1×10-6〜8×10-4トールで、他
の残留ガスがN2 ,Ar等の不活性ガス及び不純物ガス
である真空中でMgを蒸着し、Zn蒸着後の鋼板温度が
250〜370℃となるように温度管理し、鋼板の顕熱
により請求項1又は2記載の拡散反応を行わせるZn−
Mg合金蒸着めっき鋼板の製造方法。
4. The steel sheet temperature before vapor deposition of Mg is 100 ° C. or higher, the partial pressure of H 2 O is 1 × 10 −6 to 8 × 10 −4 Torr, and other residual gases are inert such as N 2 and Ar. Mg is vapor-deposited in a vacuum which is a gas and an impurity gas, the temperature of the steel sheet after Zn vapor deposition is controlled to 250 to 370 ° C., and the diffusion reaction according to claim 1 or 2 is performed by sensible heat of the steel sheet. Zn-
Manufacturing method of Mg alloy vapor deposition plated steel sheet.
JP5862494A 1994-03-29 1994-03-29 Production of zn-mg vapor deposition-coated steel sheet Withdrawn JPH07268604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5862494A JPH07268604A (en) 1994-03-29 1994-03-29 Production of zn-mg vapor deposition-coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5862494A JPH07268604A (en) 1994-03-29 1994-03-29 Production of zn-mg vapor deposition-coated steel sheet

Publications (1)

Publication Number Publication Date
JPH07268604A true JPH07268604A (en) 1995-10-17

Family

ID=13089740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5862494A Withdrawn JPH07268604A (en) 1994-03-29 1994-03-29 Production of zn-mg vapor deposition-coated steel sheet

Country Status (1)

Country Link
JP (1) JPH07268604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084848A2 (en) * 2007-12-28 2009-07-09 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2011515574A (en) * 2008-02-25 2011-05-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for coating a metal strip and apparatus for carrying out the method
US10563296B2 (en) 2015-09-29 2020-02-18 Nippon Steel Corporation Coated steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084848A2 (en) * 2007-12-28 2009-07-09 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
WO2009084848A3 (en) * 2007-12-28 2009-09-17 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
US9382630B2 (en) 2007-12-28 2016-07-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
JP2011515574A (en) * 2008-02-25 2011-05-19 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for coating a metal strip and apparatus for carrying out the method
US10072327B2 (en) 2008-02-25 2018-09-11 Arcelormittal Investigacion Desarrollo Sl Method for coating a metal strip and equipment for implementing said method
US11313023B2 (en) 2008-02-25 2022-04-26 Arcelormittal Equipment for coating a metal strip
US10563296B2 (en) 2015-09-29 2020-02-18 Nippon Steel Corporation Coated steel

Similar Documents

Publication Publication Date Title
US5747111A (en) Steel sheet coated with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
JP2016041851A (en) High strength hot-dip galvanized steel sheet excellent in plated surface quality and plating adhesion, and method for manufacturing the same
KR101707981B1 (en) Method for manufacturing galvanized steel sheet
TWI481744B (en) Galvannealed steel sheet with excellent corrosion resistance after coating
JPH07268605A (en) Production of alloyed zn-mg vapor deposition-coated steel sheet
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet
JPH083728A (en) Zinc-magnesium plated steel sheet excellent in corrosion resistance and its production
JPH08134632A (en) Production of zinc-magnesium alloy plated steel sheet
JPS60116787A (en) Method and device for plating
JPS6328857A (en) Alloyed zinc plated steel sheet and its production
JPH0860342A (en) Vapor deposited zinc-magnesium alloy plated steel sheet having excellent adhesion property and its manufacture
JPH0978229A (en) Production of zinc-magnesium alloy plated steel sheet
KR0166099B1 (en) Al-si-cr plated steel sheet excellent in corrosion resistance and production thereof
JPH0711409A (en) Production of galvanized steel sheet
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP2938658B2 (en) Multi-layer alloy plated steel sheet and method for producing the same
JPH02254145A (en) Production of hot dip metal coated steel sheet
JPH02118088A (en) Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property
JP3449244B2 (en) Manufacturing method of galvannealed steel sheet
JPH0971851A (en) Production of zinc-tin alloy plated steel sheet
JPH05320946A (en) Manufacture of alloyed galvanized steel sheet and galvannealed steel sheet
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPH05171390A (en) Manufacture of galvanized steel sheet using steel sheet containing silicon as base metal
JPH04276054A (en) Manufacture of galvanized steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605