JPH09315875A - Aluminum-ceramic composite substrate and its production - Google Patents

Aluminum-ceramic composite substrate and its production

Info

Publication number
JPH09315875A
JPH09315875A JP15633096A JP15633096A JPH09315875A JP H09315875 A JPH09315875 A JP H09315875A JP 15633096 A JP15633096 A JP 15633096A JP 15633096 A JP15633096 A JP 15633096A JP H09315875 A JPH09315875 A JP H09315875A
Authority
JP
Japan
Prior art keywords
aluminum
substrate
ceramic
composite substrate
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15633096A
Other languages
Japanese (ja)
Inventor
Mitsuru Ota
充 太田
Takashi Zenimori
隆志 銭盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP15633096A priority Critical patent/JPH09315875A/en
Publication of JPH09315875A publication Critical patent/JPH09315875A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve heat cycle resistance by joining a molten aluminum sheet on the main surface of a ceramic substrate, and after executing an etching treatment, executing an annealing treatment. SOLUTION: A aluminum 2 is set in a crucible 6, and after closing a cap 9, an inert gas is filled in a case 8 and the aluminum 2 is heated and the molten aluminum is obtained. Then the ceramic substrate 1 is inserted from a guide integrated type die 10 provide in the crucible 6, and after allowing the ceramic substrate to contact with the molten aluminum, the substrate is cooled and an aluminum-ceramic composite substrate is obtained. Then, an etching resist is subjected to heat-contact bonding, and after light shielding and developing, the etching is executed to from a prescribed circuit. Then, this circuit is annealed at a temp. lower that the melting point of the aluminum to regulate the crystal grain size of the aluminum material to <=1mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パワーモジュール
等の大電力電子部品の実装に好適な金属−セラミックス
複合基板及びその製造方法に関し、更に詳しくは特に優
れたヒートサイクル耐量が要求される自動車又は電車用
電子部品の実装に好適な複合基板及びその製造方法を提
供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite substrate suitable for mounting high-power electronic components such as power modules and a method for producing the same, and more particularly to an automobile or a vehicle that requires particularly excellent heat cycle resistance. An object of the present invention is to provide a composite substrate suitable for mounting electronic components for electric trains and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、パワーモジュールのような大電力
電子部品の実装に使用する基板として、セラミックス基
板の表面に銅板を接合して作製された銅張りセラミック
ス複合基板が使用されている。この複合基板は更に、使
用するセラミックス基板の種類やその製造法によって、
銅/アルミナ直接接合基板、銅/窒化アルミニウム直接
接合基板、銅/アルミナろう接基板、及び銅/窒化アル
ミニウムろう接基板に分けられている。
2. Description of the Related Art Conventionally, as a substrate used for mounting a high-power electronic component such as a power module, a copper-clad ceramic composite substrate produced by bonding a copper plate to a surface of a ceramic substrate has been used. This composite substrate further depends on the type of ceramic substrate used and its manufacturing method.
It is divided into a copper / alumina direct bonding substrate, a copper / aluminum nitride direct bonding substrate, a copper / alumina brazing substrate, and a copper / aluminum nitride brazing substrate.

【0003】上述のように銅/セラミックス複合基板は
広く使用されるにもかかわらず、製造中及び実用上幾つ
かの問題点がある。その中で最も重大な問題点は、電子
部品の実装及び使用中にセラミックス基板の内部にクラ
ックが形成し、基板の表裏間を電気的に導通することに
よる故障である。
Although the copper / ceramic composite substrate is widely used as described above, there are some problems in manufacturing and in practical use. The most serious problem among them is a failure due to the formation of cracks inside the ceramic substrate during the mounting and use of electronic components, and electrical conduction between the front and back of the substrate.

【0004】これは銅の熱膨張係数がセラミックスの係
数より約一桁大きいことに起因するが、接合の場合、セ
ラミックス基板と銅が1000℃近くまで加熱され、接
合温度から室温に冷却する時に、熱膨張係数の違いによ
り複合基板の内部に多大の熱応力が発生する。
This is because the coefficient of thermal expansion of copper is about one order of magnitude larger than that of ceramics. In the case of bonding, when the ceramics substrate and copper are heated up to about 1000 ° C. and cooled from the bonding temperature to room temperature, Due to the difference in the coefficient of thermal expansion, a large amount of thermal stress is generated inside the composite substrate.

【0005】また、パワーモジュール等の電子部品を実
装するときに、銅・セラミックス複合基板は400℃近
くまで加熱されるため、さらに使用環境や使用中の発熱
により、同複合基板の温度が常に変化し、同複合基板に
変動熱応力が掛けられる。これらの熱応力によってセラ
ミックス基板にクラックが発生する。
Further, since the copper / ceramics composite substrate is heated to nearly 400 ° C. when mounting electronic components such as a power module, the temperature of the composite substrate is constantly changed due to the operating environment and heat generated during use. Then, a varying thermal stress is applied to the composite substrate. Cracks occur in the ceramic substrate due to these thermal stresses.

【0006】上記複合基板の重要な評価項目の一つにヒ
ートサイクル耐量がある。これは基板を−40℃から1
25℃まで繰り返し加熱・冷却する際の熱応力によって
基板にクラックが発生するまでの循環回数で示すもので
あるが、近年、電気自動車用パワーモジュールの開発に
より、ヒートサイクル耐量の優れた複合基板への要望が
特に高まっている。特に、電気自動車や電車のように温
度変化が激しく、振動が大きい使用条件の場合、複合基
板のヒートサイクル耐量が500回以上必要であると言
われているが、現在使用されている銅・セラミックス複
合基板ではこのような要望には対応できないものであっ
た。
One of the important evaluation items of the above composite substrate is the heat cycle resistance. This puts the substrate from -40 ° C to 1
It shows the number of cycles until cracks occur in the substrate due to thermal stress during repeated heating / cooling to 25 ° C. In recent years, due to the development of power modules for electric vehicles, a composite substrate with excellent heat cycle resistance has been developed. The demand for is particularly high. In particular, it is said that the composite substrate needs to have a heat cycle resistance of 500 times or more under the use condition where the temperature changes drastically and the vibration is large, such as an electric car or a train. The composite substrate could not meet such a demand.

【0007】銅と同じように優れた電気と熱伝導性を有
するアルミニウムを導電回路材料として使う構想は以前
からあり(特開昭59−121890号)、アルミニウ
ムとセラミックスをろう材を介して接合するアルミニウ
ム−セラミックス基板についても特開平3−12546
3号、特開平4−12554号に開示されているが、上
述のように高いヒートサイクル耐量が要求される用途に
は依然として充分対応できないものであった。
There has been a concept of using aluminum as a conductive circuit material having excellent electric and thermal conductivity similar to copper (Japanese Patent Laid-Open No. 59-121890), and aluminum and ceramics are bonded through a brazing material. The aluminum-ceramic substrate is also disclosed in JP-A-3-12546.
No. 3, JP-A No. 4-125454, but it has not been able to sufficiently cope with the use requiring high heat cycle resistance as described above.

【0008】[0008]

【発明が解決しようとする課題】アルミニウム−セラミ
ックス基板が優れたヒートサイクル耐量を持つ一方、ヒ
ートサイクルが200回以上になるとアルミニウムの表
面にしわが発生し始め、その上に搭載する電子部品に悪
影響を及ぼす恐れがあるという問題があった。
While the aluminum-ceramic substrate has an excellent heat cycle resistance, when the heat cycle exceeds 200 times, wrinkles start to appear on the surface of aluminum, which adversely affects the electronic parts mounted thereon. There was a problem that it might affect.

【0009】[0009]

【課題を解決するための手段】上述の問題点を解決する
ために、本発明者らはアルミニウム−セラミックス直接
接合法で作製したアルミニウム−セラミックス基板にお
いて、回路部分並びに電子部品搭載部分3のアルミニウ
ムの結晶粒径を1mm以下に焼鈍処理することによって
アルミニウム表面のしわ発生を防止した。このように作
製した基板のヒートサイクル耐量を調べたところ、優れ
たヒートサイクル耐量を有することが確認され、上述の
問題点が解決でき、本発明を提出することができた。
In order to solve the above-mentioned problems, the present inventors have found that in the aluminum-ceramic substrate manufactured by the aluminum-ceramic direct bonding method, the aluminum of the circuit portion and the electronic component mounting portion 3 is Wrinkles on the aluminum surface were prevented by annealing the crystal grain size to 1 mm or less. When the heat cycle resistance of the substrate thus manufactured was examined, it was confirmed that it had an excellent heat cycle resistance, the above-mentioned problems could be solved, and the present invention could be submitted.

【0010】即ち、本発明において、第1の発明は、セ
ラミックス基板の少なくとも一主面にアルミニウム材か
らなる電気導通及び電子部品搭載のための金属部分を形
成した金属−セラミックス複合基板において、上記アル
ミニウム材の結晶粒径を1mm以下にしたことを特徴と
するアルミニウム−セラミックス複合基板に関する。上
記セラミックス基板は、A12 3 ,A1N,BeO,
SiC,Si3 4 ,ZrO2 から選択される少なくと
も1種のセラミックス基板である。
That is, in the present invention, the first invention is a metal-ceramic composite substrate in which a metal portion for electrical conduction and electronic component mounting made of an aluminum material is formed on at least one main surface of the ceramic substrate. The present invention relates to an aluminum-ceramics composite substrate having a crystal grain size of 1 mm or less. The ceramic substrate is made of A1 2 O 3 , A1N, BeO,
It is at least one ceramic substrate selected from SiC, Si 3 N 4 , and ZrO 2 .

【0011】また、本発明における第2の発明は、セラ
ミックス基板の少なくとも一主面に溶湯アルミニウム材
を接合せしめる第1工程、次いで得られた接合体表面を
エッチング処理することにより所定の回路を形成する第
2工程、次いで得られた回路を融点以下の温度で焼鈍処
理して結晶粒径を1mm以下とする第3工程、とから成
るアルミニウム−セラミックス複合基板の製造方法に関
する。
A second aspect of the present invention is to form a predetermined circuit by performing a first step of joining a molten aluminum material to at least one main surface of a ceramic substrate, and then etching the surface of the obtained joined body. And a third step of annealing the obtained circuit at a temperature equal to or lower than the melting point to reduce the crystal grain size to 1 mm or less.

【0012】本発明において使用する基板としては、A
2 3 ,A1N,BeO,SiC,Si3 4 ,Zr
2 等のセラミックス基板やガラス等であり、この場
合、高純度の素材であればなおさらに好ましい。
The substrate used in the present invention is A
1 2 O 3 , A1N, BeO, SiC, Si 3 N 4 , Zr
It is a ceramic substrate such as O 2 or glass, and in this case, a high-purity material is even more preferable.

【0013】また、本発明でベースとして用いる金属は
アルミニウムの純金属または合金であるが、これにより
導電性が向上し、且つ、軟らかさを得るものである。こ
の場合、純度が高い程導電性が向上するが、逆に価格が
高くなるため、本発明では99.9%(3N)の純アル
ミニウムを使用した。
The metal used as the base in the present invention is a pure metal or an alloy of aluminum, which improves the conductivity and obtains softness. In this case, the higher the purity, the higher the conductivity, but the higher the price. Conversely, 99.9% (3N) pure aluminum was used in the present invention.

【0014】この金属とセラミックス基板との接合は溶
湯接合法で行ない、これにより高い接合強度と未接欠陥
の少ない複合基板が得られる。また、接合雰囲気として
窒素雰囲気下で行なうことができるため、従来法のよう
に真空下で行なう必要がなく製造コストが安くなり、更
に、窒化アルミニウム基板や炭化硅素基板にも、表面改
質することなく直接に接合することができる(第1工
程)。
The metal and the ceramic substrate are joined by the molten metal joining method, whereby a composite substrate having high joining strength and few non-contact defects can be obtained. In addition, since it can be performed in a nitrogen atmosphere as a bonding atmosphere, it is not necessary to perform it in a vacuum unlike the conventional method, and the manufacturing cost is low. Furthermore, the surface of the aluminum nitride substrate or the silicon carbide substrate should be modified. It can be directly joined without using (first step).

【0015】上記溶湯接合法で得られた金属−セラミッ
クス複合基板の一主面にエッチングレジストを加熱圧着
し、遮光、現像処理を行なって所望のパターンを形成し
た後、塩化第2鉄溶液にてエッチングを行なって回路4
を形成する(第2工程)。
An etching resist is thermocompression-bonded to one main surface of the metal-ceramic composite substrate obtained by the above-mentioned molten metal joining method, and a light-shielding and developing treatment is carried out to form a desired pattern, followed by ferric chloride solution. Circuit 4 after etching
Is formed (second step).

【0016】本発明において、第2工程で得られた回路
4や放熱板5でのアルミニウム材の結晶粒径は約2〜6
mm前後であるため、特に回路面を焼鈍処理することに
よって回路面の粒径を1mm以下にする(第3工程)。
In the present invention, the crystal grain size of the aluminum material in the circuit 4 and the heat sink 5 obtained in the second step is about 2-6.
Since the diameter is about mm, the grain size of the circuit surface is reduced to 1 mm or less by annealing the circuit surface (third step).

【0017】この焼鈍処理は、第2工程で得られたアル
ミニウム−セラミックス複合基板を回路面を上方にして
炉中温度350〜400℃で約80〜120時間かけて
高温状態で維持してアルミニウム粒径を大きくする。
In this annealing treatment, the aluminum-ceramic composite substrate obtained in the second step is maintained at a high temperature in a furnace at a temperature of 350 to 400 ° C. for about 80 to 120 hours with the circuit surface facing upward, and aluminum grains are kept. Increase the diameter.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して本発明複合
基板(以下、アルミニウム−セラミックス直接接合基板
とする)について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite substrate of the present invention (hereinafter referred to as an aluminum-ceramics direct bonding substrate) will be described in detail below with reference to the drawings.

【0019】(実施例1)(Embodiment 1)

【0020】図2は本発明のアルミニウム−セラミック
ス直接接合基板を製造するための設備の原理図である。
純度99.9%のアルミニウム2をルツボ6にセットし
てから蓋9をしめて、ケース8の内部に窒素ガスを充填
する。ルツボ6をヒーター7で750℃に加熱し、アル
ミニウムを溶化してから、ルツボ6内に設けたガイド一
体型ダイス10の左側入口からセラミックス基板1とし
て36mm×52mm×0.635mmのアルミナ基板
を順番に挿入した。ルツボ6内に入った該アルミナ基板
にアルミニウム溶湯を接触させ、次いで出口側において
凝固させることによって、厚さ0.5mmのアルミニウ
ム板が両面に接合されたアルミニウム−アルミナ直接接
合基板を得た(第1工程)。
FIG. 2 is a principle view of equipment for manufacturing the aluminum-ceramics direct bonding substrate of the present invention.
The aluminum 2 having a purity of 99.9% is set in the crucible 6, the lid 9 is closed, and the inside of the case 8 is filled with nitrogen gas. The crucible 6 is heated to 750 ° C. by the heater 7 to melt the aluminum, and then a 36 mm × 52 mm × 0.635 mm alumina substrate is sequentially placed as the ceramic substrate 1 from the left entrance of the integrated guide die 10 provided in the crucible 6. Was inserted. The molten aluminum was brought into contact with the alumina substrate contained in the crucible 6 and then solidified on the outlet side to obtain an aluminum-alumina direct bonding substrate in which aluminum plates having a thickness of 0.5 mm were bonded on both sides (No. 1). 1 step).

【0021】次いで、該複合基板上のアルミニウム部に
エッチングレジストを加熱圧着し、遮光、現像処理を行
なって所望のパターンを形成した後、塩化第2鉄溶液に
てエッチングを行なって回路4を形成した(第2工
程)。
Then, an etching resist is heated and pressure-bonded to the aluminum portion on the composite substrate to form a desired pattern by light-shielding and developing treatment, and then etching is performed with a ferric chloride solution to form a circuit 4. (Second step).

【0022】次いで、上記回路付接合基板を加熱炉内で
380℃一定・100時間保持して回路表面のアルミニ
ウム粒径を大きくして徐冷した。得られたアルミニウム
粒径を電子顕微鏡で測定後、拡大写真で調べたところ、
当初4mmであったものが0.5mmまで小さくなって
いた。
Next, the bonded substrate with a circuit was held in a heating furnace at 380 ° C. for 100 hours to increase the aluminum grain size on the surface of the circuit and gradually cooled. After measuring the obtained aluminum particle size with an electron microscope, when examined with an enlarged photograph,
What was initially 4 mm was reduced to 0.5 mm.

【0023】該接合基板のヒートサイクル耐量を調べた
ところ、ヒートサイクル1500回以上でもクラックの
発生は見られなかった。また、同様に従来200回以上
で生じたアルミニウムのしわも見られなかった。
When the heat resistance of the bonded substrate was examined, no cracks were found even after 1,500 heat cycles. Further, similarly, no wrinkles of aluminum, which have been conventionally produced 200 times or more, were observed.

【0024】(実施例2)(Example 2)

【0025】セラミックス基板としてアルミナに代えて
窒化アルミニウム板(36mm×52mm×0.635
mm)を用いた他は、実施例1と同様の手段でアルミニ
ウム−窒化アルミニウム直接接合基板を得、そのアルミ
ニウム粒径を調べたところ0.7mmであった。
An aluminum nitride plate (36 mm × 52 mm × 0.635) is used instead of alumina as a ceramic substrate.
(mm) was used, and an aluminum-aluminum nitride direct bonding substrate was obtained by the same means as in Example 1, and the aluminum grain size was 0.7 mm.

【0026】得られた接合基板のヒートサイクル耐量を
調べたところ、ヒートサイクル3000回でもクラック
の発生は見られなかった。
When the heat resistance of the bonded substrate thus obtained was examined, no cracks were found even after 3000 heat cycles.

【0027】(比較例1)(Comparative Example 1)

【0028】比較のため実施例1に示すアルミナ基板を
用いて、厚さ0.3mmの銅板を1063℃で直接接合
して得た複合基板にエッチング処理を施して図1a,図
1bに示すと同一の電子回路を形成した銅−セラミック
ス基板を得、実施例同様ヒートサイクル耐量を調べたと
ころ、ヒートサイクル40回でクラックが発生した。
For comparison, a composite substrate obtained by directly bonding a copper plate having a thickness of 0.3 mm at 1063 ° C. using the alumina substrate shown in Example 1 was subjected to an etching treatment, and as shown in FIGS. 1a and 1b. When a copper-ceramic substrate on which the same electronic circuit was formed was obtained and the heat cycle resistance was examined as in the examples, cracks were generated after 40 heat cycles.

【0029】[0029]

【発明の効果】上述のように本発明方法及び装置によっ
て得たアルミニウム−セラミックス直接接合基板は、従
来の複合基板では得られなかったヒートサイクル耐量に
富み、電気自動車や電車向けのように大電力パワーモジ
ュール基板として特に好ましいものである。
As described above, the aluminum-ceramics direct bonding substrate obtained by the method and apparatus of the present invention is rich in heat cycle resistance, which cannot be obtained by the conventional composite substrate, and has high power consumption such as for electric vehicles and trains. It is particularly preferable as a power module substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1a】本発明に係るアルミニウム−セラミックス直
接接合基板の模式平面図である。
FIG. 1a is a schematic plan view of an aluminum-ceramics direct bonding substrate according to the present invention.

【図1b】図1aのアルミニウム−セラミックス直接基
板の側面図である。
1b is a side view of the aluminum-ceramic direct substrate of FIG. 1a.

【図2】本発明複合基板の製造装置の原理図である。FIG. 2 is a principle diagram of an apparatus for manufacturing a composite substrate of the present invention.

【符号の説明】 1 セラミックス基板 2 アルミニウム 3 電子部品搭載部 4 回路 5 放熱板 6 ルツボ 7 ヒーター 8 ケース 9 蓋 10 ガイド一体型ダイス[Explanation of reference symbols] 1 ceramics substrate 2 aluminum 3 electronic component mounting part 4 circuit 5 heat sink 6 crucible 7 heater 8 case 9 lid 10 guide integrated die

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板の少なくとも一主面に
アルミニウム材からなる電気導通及び電子部品搭載のた
めの金属部分を形成した金属−セラミックス複合基板に
おいて、上記アルミニウム材の結晶粒径を1mm以下に
したことを特徴とするアルミニウム−セラミックス複合
基板。
1. A metal-ceramic composite substrate comprising a ceramic substrate and at least one main surface of which a metal portion made of an aluminum material for electrical conduction and electronic component mounting is formed, and the grain size of the aluminum material is 1 mm or less. An aluminum-ceramics composite substrate characterized by the above.
【請求項2】 上記セラミックス基板はA12 3 ,A
1N,BeO,SiC,Si3 4 ,ZrO2 から選択
される少なくとも1種のセラミックス基板であることを
特徴とする請求項1記載のアルミニウム−セラミックス
複合基板。
2. The ceramic substrate is A1 2 O 3 , A
The aluminum-ceramic composite substrate according to claim 1, wherein the aluminum-ceramic composite substrate is at least one ceramic substrate selected from 1N, BeO, SiC, Si 3 N 4 , and ZrO 2 .
【請求項3】 セラミックス基板の少なくとも一主面に
溶湯アルミニウム材を接合せしめる第1工程、 次いで得られた接合体表面をエッチング処理することに
より所定の回路を形成する第2工程、 次いで得られた回路を融点以下の温度で焼鈍処理して結
晶粒径を1mm以下とする第3工程、 とから成ることを特徴とするアルミニウム−セラミック
ス複合基板の製造方法。
3. A first step of joining a molten aluminum material to at least one main surface of a ceramic substrate, a second step of forming a predetermined circuit by etching the surface of the obtained joined body, and then a second step And a third step of annealing the circuit at a temperature equal to or lower than the melting point to reduce the crystal grain size to 1 mm or less, and a method for manufacturing an aluminum-ceramic composite substrate.
JP15633096A 1996-05-29 1996-05-29 Aluminum-ceramic composite substrate and its production Pending JPH09315875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15633096A JPH09315875A (en) 1996-05-29 1996-05-29 Aluminum-ceramic composite substrate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15633096A JPH09315875A (en) 1996-05-29 1996-05-29 Aluminum-ceramic composite substrate and its production

Publications (1)

Publication Number Publication Date
JPH09315875A true JPH09315875A (en) 1997-12-09

Family

ID=15625429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15633096A Pending JPH09315875A (en) 1996-05-29 1996-05-29 Aluminum-ceramic composite substrate and its production

Country Status (1)

Country Link
JP (1) JPH09315875A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090277A1 (en) * 2002-04-19 2003-10-30 Mitsubishi Materials Corporation Circuit board, process for producing the same and power module
EP1400500A1 (en) * 2002-09-13 2004-03-24 Dowa Mining Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
JP2005103560A (en) * 2003-09-29 2005-04-21 Dowa Mining Co Ltd Aluminum-ceramic joined substrate and method for producing same
US7255931B2 (en) * 2003-09-29 2007-08-14 Dowa Mining Co., Ltd. Aluminum/ceramic bonding substrate and method for producing same
JP2018163995A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof
US10898946B2 (en) 2016-06-16 2021-01-26 Mitsubishi Electric Corporation Semiconductor-mounting heat dissipation base plate and production method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090277A1 (en) * 2002-04-19 2003-10-30 Mitsubishi Materials Corporation Circuit board, process for producing the same and power module
US7128979B2 (en) 2002-04-19 2006-10-31 Mitsubishi Materials Corporation Circuit board, method of producing same, and power module
CN100364078C (en) * 2002-04-19 2008-01-23 三菱麻铁里亚尔株式会社 Circuit board, process for producing the same and power module
EP1400500A1 (en) * 2002-09-13 2004-03-24 Dowa Mining Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
US7131483B2 (en) 2002-09-13 2006-11-07 Dowa Mining Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
US8011416B2 (en) 2002-09-13 2011-09-06 Dowa Metaltech Co., Ltd. Apparatus, mold, and method for manufacturing metal-ceramic composite member
JP2005103560A (en) * 2003-09-29 2005-04-21 Dowa Mining Co Ltd Aluminum-ceramic joined substrate and method for producing same
US7255931B2 (en) * 2003-09-29 2007-08-14 Dowa Mining Co., Ltd. Aluminum/ceramic bonding substrate and method for producing same
US10898946B2 (en) 2016-06-16 2021-01-26 Mitsubishi Electric Corporation Semiconductor-mounting heat dissipation base plate and production method therefor
DE112017002999B4 (en) 2016-06-16 2022-03-24 Mitsubishi Electric Corporation SEMICONDUCTOR MOUNTING HEAT DISSIPATION BASE PLATE AND METHOD OF MANUFACTURING THE SAME
US11484936B2 (en) 2016-06-16 2022-11-01 Mitsubishi Electric Corporation Semiconductor-mounting heat dissipation base plate and production method therefor
JP2018163995A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof

Similar Documents

Publication Publication Date Title
JP4965305B2 (en) Method for producing metal / ceramic bonding substrate
JP4756200B2 (en) Metal ceramic circuit board
US7256353B2 (en) Metal/ceramic bonding substrate and method for producing same
KR100374379B1 (en) Substrate
JPH09315875A (en) Aluminum-ceramic composite substrate and its production
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
EP1518847B1 (en) Aluminum/ceramic bonding substrate and method for producing same
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JP3613759B2 (en) Metal-ceramic composite substrate
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP4057436B2 (en) Copper base alloy and heat sink material using the copper base alloy
WO2020262015A1 (en) Metal-ceramic joined substrate and manufacturing method thereof
JP2000256081A (en) Reforming of insulating substrate for mounting semiconductor
JPH107480A (en) Composite metal-ceramic substrate and its production
JP2019141879A (en) Aluminum-ceramic bonded substrate and method for manufacturing same
JPH09286681A (en) Metal-ceramic composite substrate
JP2000281462A (en) Production of metal-ceramic composite substrate
JP2006028018A (en) Aluminum-ceramic compound substrate
JP4124589B2 (en) Wafer holding device
JP3837680B2 (en) Mold for metal-ceramic composite substrate manufacturing
JPH09315874A (en) Aluminum-ceramic composite substrate
US20220033317A1 (en) Aluminum/ceramic bonding substrate and method for producing same
JP3430348B2 (en) Metal-ceramic composite substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060501

A02 Decision of refusal

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A02