JPH09315874A - Aluminum-ceramic composite substrate - Google Patents

Aluminum-ceramic composite substrate

Info

Publication number
JPH09315874A
JPH09315874A JP15476196A JP15476196A JPH09315874A JP H09315874 A JPH09315874 A JP H09315874A JP 15476196 A JP15476196 A JP 15476196A JP 15476196 A JP15476196 A JP 15476196A JP H09315874 A JPH09315874 A JP H09315874A
Authority
JP
Japan
Prior art keywords
substrate
aluminum
ceramic substrate
copper
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15476196A
Other languages
Japanese (ja)
Inventor
Takashi Zenimori
隆志 銭盛
Michihiro Kosaka
満弘 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP15476196A priority Critical patent/JPH09315874A/en
Publication of JPH09315874A publication Critical patent/JPH09315874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat cycle resistance and joining strength by directly joining a molten aluminum on one surface or both surfaces of a ceramic substrate having a specified surface roughness. SOLUTION: Aluminum 2 is set in a crucible 6 having a heater 7, and after closing a cap 9, an inert gas is filled in a case 8 and the aluminum 2 is heated and the molten aluminum is obtained. Then the ceramic substrate 1 having 1.0-5.0μmRy max. surface roughness is inserted from a guide integrated type die 10 provided in the crucible 6, and the ceramic substrate 1 is brought into contact with the molten aluminum to directly joining the molten aluminum to the one surface or the both surfaces of the ceramic substrate 1, and an Al- ceramic substrate having >=5.0kg/cm<2> joining strength is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス基板
にアルミニウム溶湯を直接接合した接合強度の大きいA
l−セラミックス複合基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate having a high joining strength obtained by directly joining an aluminum melt.
The present invention relates to an l-ceramics composite substrate.

【0002】[0002]

【従来の技術】従来、パワーモジュールのような大電力
電子部品の実装に使用する基板として、セラミックス基
板の表面に銅板を接合して作製された銅張りセラミック
ス複合基板が使用されている。この複合基板は更に、使
用するセラミックス基板の種類やその製造法によって、
銅/アルミナ直接接合基板、銅/窒化アルミニウム直接
接合基板、銅/アルミナろう接基板、及び銅/窒化アル
ミニウムろう接基板に分けられている。
2. Description of the Related Art Conventionally, as a substrate used for mounting a high-power electronic component such as a power module, a copper-clad ceramic composite substrate produced by bonding a copper plate to a surface of a ceramic substrate has been used. This composite substrate further depends on the type of ceramic substrate used and its manufacturing method.
It is divided into a copper / alumina direct bonding substrate, a copper / aluminum nitride direct bonding substrate, a copper / alumina brazing substrate, and a copper / aluminum nitride brazing substrate.

【0003】このうち、銅/アルミナ直接接合基板は、
特開昭52−37914号公報に開示されるように、酸
素を含有する銅板を使用するか、無酸素銅板を使用して
酸化性雰囲気中で加熱することによって無酸素銅板の表
面に酸化銅を発生させてから、銅板とアルミナ基板を重
ねて不活性雰囲気中で加熱し、銅板とアルミナ基板との
界面に銅とアルミニウムとの複合酸化物を生成させ銅板
とアルミナ基板とを接合するものである。
Of these, the copper / alumina direct bonding substrate is:
As disclosed in JP-A-52-37914, copper oxide is used on the surface of an oxygen-free copper plate by using a copper plate containing oxygen or by using an oxygen-free copper plate and heating in an oxidizing atmosphere. After the generation, the copper plate and the alumina substrate are superposed and heated in an inert atmosphere to generate a composite oxide of copper and aluminum at the interface between the copper plate and the alumina substrate and join the copper plate and the alumina substrate. .

【0004】一方、銅/窒化アルミニウム直接接合基板
の場合には、予め窒化アルミニウム基板の表面に酸化物
を形成する必要がある。例えば特開平3−93687号
公報に開示するように、予め空気中において、約100
0℃の温度で窒化アルミニウム基板を処理し、表面に酸
化物を生成させてから、この酸化物層を介して上述の方
法により銅板と窒化アルミニウム基板とを接合してい
る。
On the other hand, in the case of a copper / aluminum nitride direct bonding substrate, it is necessary to previously form an oxide on the surface of the aluminum nitride substrate. For example, as disclosed in Japanese Patent Application Laid-Open No. 3-93687, about 100
After treating the aluminum nitride substrate at a temperature of 0 ° C. to generate an oxide on the surface, the copper plate and the aluminum nitride substrate are joined via the oxide layer by the above-described method.

【0005】また銅/アルミナろう接基板及び銅/窒化
アルミニウムろう接基板は、銅板とセラミックス基板と
の間に低触点のろう材を用いて接合するが、この場合、
使用するろう材に銅の他、融点を下げる為の合金元素及
びセラミックスとの濡れを良くする為の合金元素が添加
され、一例としてAg−Cu−Ti系のような活性金属
ろう材はよく使用されている。
A copper / alumina brazing substrate and a copper / aluminum nitride brazing substrate are joined between a copper plate and a ceramic substrate by using a brazing material having a low contact point.
In addition to copper, an alloying element for lowering the melting point and an alloying element for improving the wettability with ceramics are added to the brazing material to be used. For example, active metal brazing materials such as Ag-Cu-Ti are often used. Have been.

【0006】上述のように銅/セラミックス複合基板は
広く使用されるにもかかわらず、製造中及び実用上幾つ
かの問題点がある。その中で最も重大な問題点は、電子
部品の実装及び使用中にセラミックス基板の内部にクラ
ックが形成し、基板の表裏間を電気的に導通することに
よる故障である。
Although the copper / ceramic composite substrate is widely used as described above, there are some problems during manufacturing and practically. The most serious problem among them is a failure due to the formation of cracks inside the ceramic substrate during the mounting and use of electronic components, and electrical conduction between the front and back of the substrate.

【0007】これは銅の熱膨張係数がセラミックスの係
数より約一桁大きいことに起因するが、接合の場合、セ
ラミックス基板と銅が1000℃近くまで加熱され、接
合温度から室温に冷却する時に、熱膨張係数の違いによ
り複合基板の内部に多大の熱応力が発生する。
This is due to the fact that the coefficient of thermal expansion of copper is about one order of magnitude greater than that of ceramics. In the case of joining, when the ceramic substrate and copper are heated to nearly 1000 ° C. and cooled from the joining temperature to room temperature, A great deal of thermal stress is generated inside the composite substrate due to the difference in thermal expansion coefficient.

【0008】また、パワーモジュール等の電子部品を実
装するときに、銅・セラミックス複合基板は400℃近
くまで加熱されるため、さらに使用環境や使用中の発熱
により、同複合基板の温度が常に変化し、同複合基板に
変動熱応力が掛けられる。これらの熱応力によってセラ
ミックス基板にクラックが発生する。
Further, when mounting electronic components such as power modules, the copper / ceramic composite substrate is heated to nearly 400 ° C., and the temperature of the composite substrate constantly changes due to the use environment and heat generation during use. Then, a fluctuating thermal stress is applied to the composite substrate. Cracks occur in the ceramic substrate due to these thermal stresses.

【0009】近年、電気自動車用パワーモジュールの開
発により、ヒートサイクル耐量の優れた複合基板への要
望が特に高まっており、例えば電気自動車の様に温度変
化が激しく、振動が大きい使用条件の場合、複合基板の
ヒートサイクル耐量が500回以上必要であると言われ
ているが現在使用されている銅・セラミックス複合基板
では、このような要望に対応できない。
In recent years, with the development of power modules for electric vehicles, the demand for composite substrates having excellent heat cycle resistance has been particularly increased. For example, in the case of use conditions in which temperature changes are severe and vibration is large, as in electric vehicles, It is said that the heat resistance of the composite substrate is required to be 500 times or more, but the copper / ceramic composite substrate currently used cannot meet such a demand.

【0010】銅と同じような優れた電気と熱伝導性を有
するアルミニウムを導電回路材料として使う構想は以前
からあり、例えば特開昭59−121890号にこのよ
うな構想が記述されている。アルミニウムとセラミック
スとの接合に一般的にろう接法は使用され、特開平3−
125463号、特開平4−12554号及び特開平4
−18746号にろう接法で作製したアルミニウム−セ
ラミックス基板を開示しているが、上述のように高いヒ
ートサイクル耐量が要求される用途には、依然として充
分対応できないものであった。
The concept of using aluminum having excellent electrical and thermal conductivity similar to copper as a conductive circuit material has been known for a long time, and such a concept is described in, for example, Japanese Patent Application Laid-Open No. Sho 59-121890. Generally, a brazing method is used for joining aluminum and ceramics.
125463, JP-A-4-12554 and JP-A-4-12554
No. 18746 discloses an aluminum-ceramic substrate manufactured by a brazing method, but it was still unsatisfactory for the use requiring high heat cycle resistance as described above.

【0011】[0011]

【発明が解決しようとする課題】上述のように従来の銅
/セラミックス複合基板やアルミニウム材をAl−Si
系ろう材を介して接合したアルミニウム−セラミックス
基板はいずれも自動車用又は電車用パワーモジュール体
として使用するには問題があった。
As described above, the conventional copper / ceramic composite substrate or aluminum material is replaced with Al-Si.
All of the aluminum-ceramic substrates bonded via a brazing filler metal have a problem in being used as a power module body for automobiles or trains.

【0012】本発明はアルミニウム溶湯を特定範囲の表
面粗さを有するセラミックス基板に直接的接合せしめる
ことによって接合強度を高め最終的にヒートサイクル耐
量の高い接合基板を開発することを目的とする。
An object of the present invention is to develop a bonded substrate having a high heat cycle resistance by increasing the bonding strength by directly bonding the molten aluminum to a ceramic substrate having a surface roughness within a specific range.

【0013】[0013]

【課題を解決するための手段】本発明者らは斯かる課題
を解決するために鋭意研究したところ使用するセラミッ
クス基板によって表面粗さ(最大表面粗さ)の範囲が異
なるが、特定範囲のセラミックス基板を用いると接合強
度並びにヒートサイクル耐量に富むアルミニウム−セラ
ミックス複合基板を得ることができることを見出し本発
明を提出することができた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve such problems, but the range of surface roughness (maximum surface roughness) varies depending on the ceramic substrate to be used, but ceramics within a specific range It was found that an aluminum-ceramics composite substrate having excellent bonding strength and heat cycle resistance can be obtained by using the substrate, and the present invention can be submitted.

【0014】即ち、本発明の第1は、表面粗さ(最大表
面粗さ)が1.0〜5.0μmRyのセラミックス基板
の片面または両面にアルミニウム溶湯を直接接合せしめ
たことを特徴とするAl−セラミックス複合基板に関す
る。
That is, the first aspect of the present invention is characterized in that an aluminum melt is directly bonded to one or both surfaces of a ceramic substrate having a surface roughness (maximum surface roughness) of 1.0 to 5.0 μmRy. -Ceramics composite substrate.

【0015】本発明の第2は、上記セラミックス基板と
アルミニウム材との接合強度が5.0kg/cm2 以上
であることを特徴とする請求項1記載のAl−セラミッ
クス複合基板に関する。
A second aspect of the present invention relates to the Al-ceramic composite substrate according to claim 1, wherein the bonding strength between the ceramic substrate and the aluminum material is 5.0 kg / cm 2 or more.

【0016】[0016]

【作用】本発明において使用する基板としては、アルミ
ナ、窒化アルミニウム、炭化硅素、ジルコニア等のセラ
ミックス基板やガラス等であり、この場合、高純度の素
材であればなおさら好ましい。そして、これらの基板の
うち、表面粗さ(最大表面粗さ)が1.0〜5.0μm
Ryの範囲にあるものが特に好ましいが、この理由とし
て1.0μmRaより小さいと溶湯アルミニウムが漏れ
にくくなり、接着強度が弱くなり、逆に5.0μmより
大きくなるとポアーが大きくなって溶湯アルミニウムと
接合する面積が小さくなるので接着強度が不充分となる
ことによる。
The substrate used in the present invention is a ceramic substrate made of alumina, aluminum nitride, silicon carbide, zirconia or the like, glass or the like. In this case, a high-purity material is more preferable. Among these substrates, the surface roughness (maximum surface roughness) is 1.0 to 5.0 μm.
The range of Ry is particularly preferable, but for this reason, if it is less than 1.0 μmRa, molten aluminum becomes difficult to leak and the adhesive strength becomes weak, and if it exceeds 5.0 μm, the pore becomes large and it joins with the molten aluminum. This is because the bonding area becomes small and the adhesive strength becomes insufficient.

【0017】また、本発明でベースとして用いる金属は
アルミニウムの純金属または合金であるが、これにより
導電性が向上し、且つ、軟らかさを得るものである。こ
の場合、純度が高い程導電性が向上するが、逆に価格が
高くなるため本発明では99.9%(3N)の純アルミ
ニウムを使用した。
The metal used as the base in the present invention is a pure metal or an alloy of aluminum, which improves the conductivity and obtains softness. In this case, the higher the purity, the higher the conductivity, but on the contrary, the price becomes higher, so 99.9% (3N) of pure aluminum was used in the present invention.

【0018】この金属とセラミックス基板との接合は溶
融接合法で行ない、これにより高い接合強度と未接欠陥
の少ない複合基板が得られる。また、接合雰囲気として
窒素雰囲気下で行なうことができるため、従来法のよう
に真空下で行なう必要がなく製造コストが安くなり、更
に、窒化アルミニウム基板や炭化硅素基板にも表面改質
することなく直接に接合することができる(第1工
程)。
The metal and the ceramic substrate are joined by a fusion joining method, whereby a composite substrate having high joining strength and few uncontacted defects can be obtained. Further, since the bonding atmosphere can be performed in a nitrogen atmosphere, it is not necessary to perform it in a vacuum unlike the conventional method, and the manufacturing cost can be reduced, and further, the surface modification of the aluminum nitride substrate or the silicon carbide substrate can be achieved. It can be directly joined (first step).

【0019】上記溶湯接合法で得られた金属−セラミッ
クス複合基板の一主面にエッチングレジストを加熱圧着
し、遮光・現像処理を行なって所望のパターンを形成し
た後、塩化第2鉄溶液にてエッチングを行なって回路を
形成する(第2工程)。
An etching resist is thermocompression-bonded to one main surface of the metal-ceramic composite substrate obtained by the above-mentioned molten metal joining method, and a desired pattern is formed by light-shielding and developing treatment, and then a ferric chloride solution is used. A circuit is formed by etching (second step).

【0020】[0020]

【発明の実施の形態】以下、図面を参照して本発明複合
基板(以下、アルミニウム−セラミックス直接接合基板
とする)について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite substrate of the present invention (hereinafter referred to as an aluminum-ceramics direct bonding substrate) will be described in detail below with reference to the drawings.

【0021】(実施例1)(Embodiment 1)

【0022】図2は本発明のアルミニウム−セラミック
ス直接接合基板を製造するための設備の原理図である。
純度99.9%のアルミニウム2をヒーター7を有する
ルツボ6にセットしてから蓋9をしめて、ケース8の内
部に窒素ガスを充填する。ルツボ6内に設けたガイド一
体型ダイス10の左側入口からセラミックス基板1(3
6mm×52mm×0.685mm)を順番に挿入し
た。
FIG. 2 is a principle view of equipment for manufacturing the aluminum-ceramics direct bonding substrate of the present invention.
Aluminum 2 having a purity of 99.9% is set in the crucible 6 having the heater 7, the lid 9 is closed, and the case 8 is filled with nitrogen gas. From the left inlet of the guide-integrated die 10 provided in the crucible 6, the ceramic substrate 1 (3
6 mm × 52 mm × 0.685 mm) were inserted in order.

【0023】この場合、セラミックス基板1として表面
粗さ(最大表面粗さ)が1.0〜5.0μmの範囲内に
あるアルミナ基板や窒化アルミニウム基板を選択して用
いた。これらのセラミックス基板1はルツボ6内におい
て、基板両面に純アルミニウム溶湯が接触し、次いで出
口側において凝固されることによって、厚さ0.5mm
のアルミニウム板が接合されたアルミニウム−セラミッ
クス直接接合基板を得た(第1工程)。
In this case, as the ceramic substrate 1, an alumina substrate or an aluminum nitride substrate having a surface roughness (maximum surface roughness) within the range of 1.0 to 5.0 μm was selected and used. These ceramic substrates 1 have a thickness of 0.5 mm as a result of pure aluminum melt contacting both sides of the substrate in the crucible 6 and then solidifying at the outlet side.
An aluminum-ceramics direct bonding substrate to which the aluminum plates of (1) were bonded was obtained (first step).

【0024】次いで、該接合基板上のアルミニウム部に
エッチングレジストを加熱圧着し、遮光・現像処理を行
なって所望のパターンを形成した後、塩化第2鉄溶液に
てエッチングを行なって図1aに示す回路4を形成した
(第2工程)。
Then, an etching resist is thermocompression-bonded to the aluminum portion on the bonded substrate, and a light-shielding / developing process is performed to form a desired pattern, followed by etching with a ferric chloride solution, as shown in FIG. 1a. The circuit 4 was formed (2nd process).

【0025】次いで、得られた上記各接合基板のヒート
サイクル耐性及び接合強度(ピール強度)を調べたとこ
ろ、アルミナ基板及び窒化アルミニウム基板のいずれも
ヒートサイクル耐性を1000回以上でもクラックの発
生は見られず、また接合強度もユーザー指定の5.0k
g/cm2 以上の10〜40kg/cm2 であった。
Next, when the heat cycle resistance and the bonding strength (peel strength) of each of the above-mentioned bonded substrates obtained were examined, cracks were not found on both the alumina substrate and the aluminum nitride substrate even when the heat cycle resistance was 1000 times or more. Not available, and the joint strength is 5.0k specified by the user.
g / cm 2 or more was 10~40kg / cm 2.

【0026】なお、図1aにおいて3は電子部品搭載
部、図1bにおいて5は放熱板である。
In FIG. 1a, 3 is an electronic component mounting portion, and in FIG. 1b, 5 is a heat sink.

【0027】[0027]

【発明の効果】上述のように本発明に斯かるアルミニウ
ム−セラミックス直接接合基板は、従来の複合基板では
得られなかったヒートサイクル耐性に富み、またそのた
めにある程度の接合強度を併せて確保し、電気自動車や
電車向けのように大電力パワーモジュール基板として特
に好ましいものである。
As described above, the aluminum-ceramics direct bonding substrate according to the present invention is rich in heat cycle resistance which cannot be obtained by the conventional composite substrate, and therefore, a certain degree of bonding strength is secured together. It is particularly preferable as a high-power power module substrate for electric vehicles and trains.

【図面の簡単な説明】[Brief description of drawings]

【図1a】本発明におけるアルミニウム−セラミックス
直接接合基板の模式平面図である。
FIG. 1a is a schematic plan view of an aluminum-ceramics direct bonding substrate according to the present invention.

【図1b】本発明におけるアルミニウム−セラミックス
直接接合基板の模式底面図である。
FIG. 1b is a schematic bottom view of an aluminum-ceramics direct bonding substrate according to the present invention.

【図2】本発明接合基板の製造装置の原理図である。FIG. 2 is a principle view of the bonded substrate manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 アルミニウム 3 電子部品搭載部 4 回路 5 放熱板 6 ルツボ 7 ヒーター 8 ケース 9 蓋 10 ガイド一体型ダイス 1 Ceramics Substrate 2 Aluminum 3 Electronic Component Mounting Section 4 Circuit 5 Heat Sink 6 Crucible 7 Heater 8 Case 9 Lid 10 Guide Integrated Dice

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面粗さ(最大表面粗さ)が1.0〜
5.0μmRyのセラミックス基板の片面または両面に
アルミニウム溶湯を直接接合せしめたことを特徴とする
Al−セラミックス複合基板。
1. Surface roughness (maximum surface roughness) is 1.0 to
An Al-ceramics composite substrate, characterized in that a molten aluminum is directly bonded to one or both sides of a 5.0 μm Ry ceramics substrate.
【請求項2】 上記セラミックス基板とアルミニウム材
との接合強度が5.0kg/cm2 以上であることを特
徴とする請求項1記載のAl−セラミックス複合基板。
2. The Al-ceramic composite substrate according to claim 1, wherein the bonding strength between the ceramic substrate and the aluminum material is 5.0 kg / cm 2 or more.
JP15476196A 1996-05-28 1996-05-28 Aluminum-ceramic composite substrate Pending JPH09315874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15476196A JPH09315874A (en) 1996-05-28 1996-05-28 Aluminum-ceramic composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15476196A JPH09315874A (en) 1996-05-28 1996-05-28 Aluminum-ceramic composite substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005223363A Division JP2006028018A (en) 2005-08-01 2005-08-01 Aluminum-ceramic compound substrate

Publications (1)

Publication Number Publication Date
JPH09315874A true JPH09315874A (en) 1997-12-09

Family

ID=15591325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15476196A Pending JPH09315874A (en) 1996-05-28 1996-05-28 Aluminum-ceramic composite substrate

Country Status (1)

Country Link
JP (1) JPH09315874A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283210A (en) * 2008-07-14 2008-11-20 Dowa Holdings Co Ltd Manufacturing method of metal-ceramic circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283210A (en) * 2008-07-14 2008-11-20 Dowa Holdings Co Ltd Manufacturing method of metal-ceramic circuit board

Similar Documents

Publication Publication Date Title
JP4756200B2 (en) Metal ceramic circuit board
JPS60177635A (en) Manufacture of good heat conductive substrate
JP2004115337A (en) Aluminum-ceramic bonded body
KR100374379B1 (en) Substrate
JPH08255973A (en) Ceramic circuit board
JPH06342940A (en) Thermoelectric generator and manufacture thereof
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
US5754403A (en) Constraining core for surface mount technology
JP3613759B2 (en) Metal-ceramic composite substrate
JPH09315874A (en) Aluminum-ceramic composite substrate
JPH09315875A (en) Aluminum-ceramic composite substrate and its production
US6699571B1 (en) Devices and methods for mounting components of electronic circuitry
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JPH107480A (en) Composite metal-ceramic substrate and its production
JP2006028018A (en) Aluminum-ceramic compound substrate
JP3890540B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JP3392594B2 (en) Method for etching aluminum-ceramic composite substrate and etchant
JP3157520B2 (en) Manufacturing method of aluminum nitride substrate
JP2503778B2 (en) Substrate for semiconductor device
JP3430348B2 (en) Metal-ceramic composite substrate
JPH09286681A (en) Metal-ceramic composite substrate
JP2000256081A (en) Reforming of insulating substrate for mounting semiconductor
JPH0967685A (en) Parallel flat plate electrode for plasma etching

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Effective date: 20050509

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A131 Notification of reasons for refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Effective date: 20080104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205