JP4246584B2 - Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater - Google Patents

Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater Download PDF

Info

Publication number
JP4246584B2
JP4246584B2 JP2003333292A JP2003333292A JP4246584B2 JP 4246584 B2 JP4246584 B2 JP 4246584B2 JP 2003333292 A JP2003333292 A JP 2003333292A JP 2003333292 A JP2003333292 A JP 2003333292A JP 4246584 B2 JP4246584 B2 JP 4246584B2
Authority
JP
Japan
Prior art keywords
ammonia
gas
nitrous oxide
catalyst
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003333292A
Other languages
Japanese (ja)
Other versions
JP2005095786A (en
Inventor
淳志 岡村
和徳 吉野
勝則 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003333292A priority Critical patent/JP4246584B2/en
Publication of JP2005095786A publication Critical patent/JP2005095786A/en
Application granted granted Critical
Publication of JP4246584B2 publication Critical patent/JP4246584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

本発明はアンモニア含有排水の浄化方法に関する。   The present invention relates to a method for purifying ammonia-containing wastewater.

アンモニア含有排ガスをアンモニア分解触媒に接触させて排ガス中のアンモニアを窒素ガスと水とに分解して浄化する際、分解後の処理ガス中には未分解アンモニアのほかに、副生する一酸化窒素や二酸化窒素(以下、まとめて「NOx」という。)および亜酸化窒素(NO)が含まれている。しかし、これらアンモニア、NOxおよび亜酸化窒素は環境に対して有害物質であり、これらを含む処理ガスをそのまま大気中に放出することは環境上好ましくない。 When the ammonia-containing exhaust gas is contacted with an ammonia decomposition catalyst to decompose and purify ammonia in the exhaust gas into nitrogen gas and water, the treated gas in addition to undecomposed ammonia is a by-product of nitric oxide. And nitrogen dioxide (hereinafter collectively referred to as “NOx”) and nitrous oxide (N 2 O). However, these ammonia, NOx, and nitrous oxide are harmful substances to the environment, and it is not environmentally preferable to discharge the processing gas containing them into the atmosphere as they are.

上記問題を解決するために、NOxを残留アンモニアとともに還元触媒に接触させて、窒素ガスと水とに分解することが提案されている(特許文献1参照)。しかし、ここでは亜酸化窒素は除去されず処理後のガス中には亜酸化窒素が残留し、この亜酸化窒素は地球の温暖化やオゾン層破壊に影響を及ぼす有害な物質であることから、環境への悪影響が問題となる。   In order to solve the above problem, it has been proposed that NOx is brought into contact with a reduction catalyst together with residual ammonia to be decomposed into nitrogen gas and water (see Patent Document 1). However, nitrous oxide is not removed here, and nitrous oxide remains in the treated gas. This nitrous oxide is a harmful substance that affects global warming and the destruction of the ozone layer. The negative impact on the environment becomes a problem.

上記亜酸化窒素の生成を防止することを目的として、アンモニア含有排ガスをアンモニア酸化触媒層および窒素酸化還元触媒層からなる二段触媒層に導入し、後段の窒素酸化還元触媒層からの処理ガス中の窒素酸化物濃度を測定し、その窒素酸化物濃度が所定濃度となるように処理ガスの一部を分割して、後段の窒素酸化還元触媒層に注入する方法が提案されている(特許文献2)。   For the purpose of preventing the generation of nitrous oxide, ammonia-containing exhaust gas is introduced into a two-stage catalyst layer comprising an ammonia oxidation catalyst layer and a nitrogen oxidation-reduction catalyst layer, and the treatment gas from the nitrogen oxidation-reduction catalyst layer at the latter stage is introduced. A method has been proposed in which the nitrogen oxide concentration of the gas is measured, a part of the processing gas is divided so that the nitrogen oxide concentration becomes a predetermined concentration, and injected into the subsequent nitrogen redox catalyst layer (Patent Document) 2).

また、上記方法と同様に、アンモニア酸化触媒層および窒素酸化還元触媒層からなる二段触媒層を用い、アンモニア酸化触媒での未反応アンモニア濃度に対し、窒素酸化物濃度が常時50ppm以下となるように前段のアンモニア酸化触媒層の温度を制御する方法が提案されている(特許文献3)。   Similarly to the above method, using a two-stage catalyst layer comprising an ammonia oxidation catalyst layer and a nitrogen oxidation-reduction catalyst layer, the nitrogen oxide concentration is always 50 ppm or less relative to the unreacted ammonia concentration in the ammonia oxidation catalyst. A method of controlling the temperature of the ammonia oxidation catalyst layer in the previous stage has been proposed (Patent Document 3).

特許文献2および3に記載の技術は、前段触媒層で亜酸化窒素ができるだけ生成しないようにアンモニアを分解し、後段触媒層では前段触媒層で副生したNOxを、処理ガスから予め分割注入されたアンモニア、あるいは前段アンモニア酸化触媒層温度を制御することで残留させた未反応アンモニアを利用して亜酸化窒素を生成させないようにバランスよく分解し、プロセス全体として亜酸化窒素を低減しようとするものである。   In the techniques described in Patent Documents 2 and 3, ammonia is decomposed so that nitrous oxide is not generated as much as possible in the preceding catalyst layer, and NOx produced as a by-product in the preceding catalyst layer is dividedly injected from the processing gas in advance in the latter catalyst layer. By using the remaining ammonia or unreacted ammonia remaining by controlling the temperature of the previous stage ammonia oxidation catalyst layer, it is decomposed in a well-balanced manner so as not to generate nitrous oxide, and the entire process is attempted to reduce nitrous oxide. It is.

アンモニア含有排水の浄化に際しては、アンモニア含有排水をストリッピング処理に供し、得られるアンモニア含有排ガスを触媒に接触させてアンモニアを分解することが一般に行われており、このアンモニア含有排ガスの処理に際しても上記のような亜酸化窒素の生成という問題が生じる。   When purifying ammonia-containing wastewater, it is generally carried out by subjecting the ammonia-containing wastewater to stripping treatment and bringing the resulting ammonia-containing exhaust gas into contact with a catalyst to decompose ammonia. The problem of nitrous oxide generation occurs.

そこで、アンモニアを分解するに際して、発生する亜酸化窒素濃度が所定の範囲となるように、触媒層でのガス流量を調整するか、あるいは触媒層でのガスの接触時間を調整する方法が提案されている(特許文献4)。   Therefore, a method for adjusting the gas flow rate in the catalyst layer or adjusting the contact time of the gas in the catalyst layer is proposed so that the concentration of nitrous oxide generated when decomposing ammonia is within a predetermined range. (Patent Document 4).

また、アンモニアを分解するに際して、発生する亜酸化窒素濃度が所定の範囲となるように、触媒層に導入するガス中の酸素濃度を調整する方法が提案されている(特許文献5)。   Further, a method has been proposed in which the oxygen concentration in the gas introduced into the catalyst layer is adjusted so that the generated nitrous oxide concentration falls within a predetermined range when decomposing ammonia (Patent Document 5).

特許文献4および5に記載の技術は、特定組成の触媒からなる一段触媒層を用い、触媒層でのガス流量を調整したり、あるいはガス中の酸素濃度を調整することにより、亜酸化窒素の副生を抑制しながらアンモニアを窒素と水とに分解するというものである。   The techniques described in Patent Documents 4 and 5 use a single-stage catalyst layer composed of a catalyst having a specific composition, adjust the gas flow rate in the catalyst layer, or adjust the oxygen concentration in the gas, thereby reducing nitrous oxide. This is to decompose ammonia into nitrogen and water while suppressing by-products.

特開昭54−1978857号公報Japanese Patent Laid-Open No. 54-1978857 特開平10−309437号公報JP-A-10-309437 特開平10−314548号公報Japanese Patent Laid-Open No. 10-314548 特開2002−52381号公報JP 2002-52381 A 特開2002−66538号公報JP 2002-66538 A

前記従来技術のいずれにおいても、亜酸化窒素濃度を低減させるためには、運転条件を厳密に規定する必要があり、またこれを実現するために複雑な制御系が必要である。このため、処理しようとする排ガス中のアンモニアやNOxの濃度が変動したりするときには、応答に遅れが生じて亜酸化窒素が排出される可能性がある。   In any of the above prior arts, in order to reduce the nitrous oxide concentration, it is necessary to strictly define the operating conditions, and a complicated control system is necessary to realize this. For this reason, when the concentration of ammonia or NOx in the exhaust gas to be treated fluctuates, there is a possibility that the response is delayed and nitrous oxide is discharged.

本発明は、アンモニアを含有する排水からアンモニアをストリッピング処理して浄化するに際し、発生するアンモニア含有排ガスを,亜酸化窒素の排出を著しく低減して、効率よく処理する、アンモニア含有排水の浄化方法を提供しようとするものである。   The present invention relates to a method for purifying ammonia-containing wastewater, in which when ammonia is stripped and purified from wastewater containing ammonia, the exhaust gas containing ammonia is efficiently treated by significantly reducing nitrous oxide emissions. Is to provide.

本発明者らの研究によれば、前記目的は下記発明により達成できることがわかった。
アンモニアを含有する排水を下記工程を含むプロセスにしたがって浄化することを特徴とするアンモニア含有排水の浄化方法。
)アンモニア含有排水をストリッピング処理に供してアンモニアを気相中に移行させる工程。
)工程()からのアンモニア含有排ガスを、Co、CeおよびMnを含む酸化物触媒および/または酸化物担体とAgとFeとを含有する触媒に接触させてアンモニアを分解する工程。
)工程()からの処理ガスをRh担持γ−アルミナ触媒に接触させて処理ガス中の亜酸化窒素を分解する工程。
According to the studies by the present inventors, it has been found that the object can be achieved by the following invention.
A method for purifying ammonia-containing wastewater, comprising purifying wastewater containing ammonia according to a process including the following steps.
(A) step of shifting subjecting the ammonia-containing waste water in the stripped ammonia in the gas phase.
( B ) The step of decomposing ammonia by contacting the ammonia-containing exhaust gas from step ( a ) with an oxide catalyst containing Co, Ce and Mn and / or a catalyst containing an oxide carrier, Ag and Fe.
( C ) A step of bringing the processing gas from step ( b ) into contact with the Rh-supported γ-alumina catalyst to decompose nitrous oxide in the processing gas.

本発明によれば、厳密な運転条件の維持、あるいはこれを実現するための複雑な制御系を設定することなく、アンモニア含有排水を効率よく浄化することができる。   According to the present invention, it is possible to efficiently purify ammonia-containing wastewater without maintaining strict operating conditions or setting a complicated control system for realizing this.

本発明によれば、浄化処理後の排出ガス中に含まれる残留アンモニア、NOxおよび亜酸化窒素の濃度を環境上問題がない程度まで低減することができる。   According to the present invention, it is possible to reduce the concentrations of residual ammonia, NOx and nitrous oxide contained in the exhaust gas after the purification treatment to such an extent that there is no environmental problem.

また、本発明によれば、処理しようとする排ガス中のアンモニア濃度が変動しても、これに即応して、浄化処理後の排出ガス中の残留アンモニア、NOxおよび亜酸化窒素の濃度を環境上問題がない程度まで低減することができる。   Further, according to the present invention, even if the ammonia concentration in the exhaust gas to be treated fluctuates, the concentration of residual ammonia, NOx and nitrous oxide in the exhaust gas after the purification treatment is promptly changed in response to this. It can be reduced to the extent that there is no problem.

本発明は、基本的に、(a)アンモニア含有排水をストリッピング処理に供してアンモニアを気相中に移行させる工程と、(b)工程(a)からのアンモニア含有排ガスを、Co、CeおよびMnを含む酸化物触媒および/または酸化物担体とAgとFeとを含有する触媒に接触させてアンモニアを分解する工程と、(c)工程(b)からの処理ガスをRh担持γ−アルミナ触媒に接触させて処理ガス中の亜酸化窒素を分解する工程とからなるものである。 The present invention basically includes (a) a step of subjecting ammonia-containing wastewater to stripping treatment to transfer ammonia into the gas phase, and (b) ammonia-containing exhaust gas from step (a), Co, Ce and A step of decomposing ammonia by contacting an oxide catalyst containing Mn and / or an oxide carrier and a catalyst containing Ag and Fe; and (c) treating the process gas from step (b) with an Rh-supported γ-alumina catalyst. And the step of decomposing nitrous oxide in the processing gas by contacting the substrate .

工程(a)では、アンモニア含有排水中のアンモニアをストリッピングして気相中に移行させる。このストリッピング処理は、一般に知られている方法にしたがって行うことができる。キャリヤーガスとしては、水蒸気や加熱空気などを用いることができる。
工程()においては、環境上問題がない程度まで、NOxの副生を抑制しながら、排ガス中のアンモニアを分解する。
In the step (a), ammonia in the ammonia-containing waste water is stripped and transferred to the gas phase. This stripping process can be performed according to a generally known method. As the carrier gas, water vapor or heated air can be used.
In the step ( b ), ammonia in the exhaust gas is decomposed while suppressing by-product generation of NOx to the extent that there is no environmental problem.

なお、本発明の環境上問題がない程度の濃度とは、アンモニアは5ppm以下、NOxは50ppm以下、また亜酸化窒素は50ppm以下を意味する。したがって、工程()では、処理ガス中のアンモニア濃度およびNOx濃度が、それぞれ、5ppm以下および50ppm以下となるようにアンモニアの酸化分解を行う。 It should be noted that the concentration of the present invention that does not cause environmental problems means that ammonia is 5 ppm or less, NOx is 50 ppm or less, and nitrous oxide is 50 ppm or less. Therefore, in the step ( b ), ammonia is oxidatively decomposed so that the ammonia concentration and the NOx concentration in the processing gas become 5 ppm or less and 50 ppm or less, respectively.

工程()では、アンモニアを酸化分解するために、常法にしたがって、必要量の、具体的には、等量以上の酸素を空気や酸素含有ガスとして供給する。 In the step ( b ), in order to oxidatively decompose ammonia, a necessary amount, specifically, an equal amount or more of oxygen is supplied as air or an oxygen-containing gas according to a conventional method.

工程()からの処理ガス中には亜酸化窒素が含まれているので、工程(b)からの処理ガスは工程()に導入し、ここで処理ガスを亜酸化窒素分解触媒に接触させて亜酸化窒素を環境上問題がない程度まで分解する。 Since the process gas from step ( b ) contains nitrous oxide, the process gas from step ( b ) is introduced into step ( c ), where the process gas contacts the nitrous oxide decomposition catalyst. To decompose nitrous oxide to an extent that there is no environmental problem.

アンモニア分解触媒におけるガス温度は、250〜450℃、好ましくは300〜400℃であり、空間速度(SV)は500〜100000hr−1、好ましくは1000〜50000hr−1である。また、亜酸化窒素分解触媒におけるガス温度は300〜600℃、好ましくは350〜550℃であり、空間速度(SV)は500〜100000hr−1、好ましくは3000〜50000hr−1である。

Gas temperature at the ammonia decomposition catalyst, 250 to 450 ° C., preferably from 300 to 400 ° C., a space velocity (SV) is 500~100000hr -1, preferably 1000~50000hr -1. The gas temperature is 300 to 600 ° C. in the nitrous oxide decomposition catalyst, preferably 350 to 550 ° C., a space velocity (SV) is 500~100000Hr -1, preferably 3000~50000hr -1.

アンモニア分解触媒および亜酸化窒素分解触媒はそれぞれ異なる2つの反応管に充填しても、あるいは一つの反応管にアンモニア分解触媒および亜酸化窒素分解触媒を2段に分けて充填してもよい。   The ammonia decomposition catalyst and the nitrous oxide decomposition catalyst may be charged in two different reaction tubes, or the ammonia decomposition catalyst and the nitrous oxide decomposition catalyst may be charged in two stages in one reaction tube.

上記工程()、()を経て得られる処理ガス中に含まれるアンモニア、NOxおよび亜酸化窒素の濃度は環境上問題がない程度のものであるので、処理ガスはそのまま大気中に放出することができる。 Since the concentrations of ammonia, NOx and nitrous oxide contained in the processing gas obtained through the above steps ( b ) and ( c ) are such that there is no environmental problem, the processing gas is released into the atmosphere as it is. be able to.

本発明の「アンモニアを含有する排水」との用語は、アンモニア含有排水のほかに、アンモニアと同様にストリッピング処理により排水から気相中に移行させることができるメチルアミン、ジメチルアミン、トリメチルアミンのような含窒素化合物を含む排水も包含するものである。

The term “ammonia-containing wastewater” in the present invention refers to, in addition to ammonia-containing wastewater, methylamine, dimethylamine, and trimethylamine that can be transferred from the wastewater to the gas phase by stripping treatment in the same manner as ammonia. It also includes wastewater containing such nitrogen-containing compounds.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。   The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.

<アンモニア分解触媒1>
硝酸コバルト(II)6水和物873g、硝酸セリウム(II)6水和物1303gおよび硝酸マンガン(II)6水和物1292gを純水に均一に溶解した。この水溶液を加熱することで水分を蒸発させCo、Ce、Mnを含む混合粉体を得た。次いで、この混合粉体を550℃にて5時間焼成してCo、Ce、Mnからなる酸化物粉体を調製した。この酸化物粉体800gにγ−アルミナ粉体400gを添加、混合して球状(平均粒子径5mm)に成形した後、120℃にて5時間乾燥し、次いで550℃で3時間焼成してCo−Ce−Mn系アンモニア分解触媒を得た。この触媒組成は、Co:CeO:MnO:Al=1:2.1:1.6:2.4(質量比)であった。
<アンモニア分解触媒2>
チタン酸化物粉体(ミレニアム社製、商品名DT−51)を球状(平均粒径5mm)に成形した後、120℃にて5時間乾燥し、次いで500℃にて3時間焼成した。この球状チタン酸化物を硝酸銀水溶液に含浸した。含浸後、120℃にて5時間乾燥し、次いで500℃にて3時間焼成した。次いで、硫酸第一鉄水溶液に含浸し、120℃にて5時間乾燥し、次いで500℃にて3時間焼成してアンモニア分解触媒2を得た。この触媒の組成は、TiO:Ag:Fe=80:17:3(質量比)であった。
<亜酸化窒素分解触媒>
所定の濃度に調整した硝酸ロジウム水溶液にγ−アルミナペレット(住友化学工業(株)製、平均粒子径5mm)を5分間浸漬し、その後、120℃にて5時間乾燥した後、600℃で5時間焼成してRh担持γ−Al触媒を調製した。この触媒組成は、Rh:Al=5:95(質量比)であった。
実施例1
内径45mm、長さ950mmのステンレス鋼製反応管のガス入口側に上記アンモニア分解触媒1140mlを充填し、ガス出口側に上記亜酸化窒素分解触媒140mlを充填した。そして、アンモニア濃度4000ppm、水蒸気濃度 20%、残り空気からなる模擬アンモニア含有ガスを所定の温度(360℃、380℃および400℃)に加熱、調整した後、供給速度12L/min(STP)でアンモニア分解触媒層、次いで亜酸化窒素分解触媒層に流した。各触媒層の温度が模擬アンモニア含有ガスの温度とほぼ同じになった時点で、亜酸化窒素分解触媒層からの処理ガス中のアンモニア濃度、NOx濃度および亜酸化窒素濃度を下記の方法にしたがって測定し、またアンモニア転化率を下記の式にしたがって求めた。結果を表1に示す。
アンモニア濃度:
0.5質量%のホウ酸水溶液を含む吸収瓶に一定量のガスを通気させてガス中に含まれているアンモニアをホウ酸水溶液に吸収させ、吸収操作後のアンモニアを含むホウ酸水溶液を純水にて所定量に調節した後、日立製作所製陽イオンクロマトグラフにて液中のNH を定量することで吸収されたアンモニアを算出しガス中のアンモニア濃度を計算した。
NOx濃度:
日本サーモエレクトロン製NOx計 MODEL42Cを用い、化学発光法により測定した。
亜酸化窒素濃度:
島津製作所製ガスクロマトグラフ(TCD)にて測定した。
アンモニア転化率(%):
(4000ppm−処理ガス中のアンモニア濃度(ppm))/(4000ppm)(×100)
実施例2
実施例1において、アンモニア分解触媒1をアンモニア分解触媒2に変更した以外は実施例1と同様にして模擬アンモニア含有ガスの処理を行った。結果を表1に示す。
比較例1
実施例1において、後段の亜酸化窒素分解触媒層を設けなかった以外は実施例1と同様にして模擬アンモニア含有ガスの処理を行った。結果を表1に示す。
<Ammonia decomposition catalyst 1>
873 g of cobalt (II) nitrate hexahydrate, 1303 g of cerium (II) nitrate hexahydrate and 1292 g of manganese (II) nitrate hexahydrate were uniformly dissolved in pure water. The aqueous solution was heated to evaporate water and obtain a mixed powder containing Co, Ce, and Mn. Next, this mixed powder was fired at 550 ° C. for 5 hours to prepare an oxide powder composed of Co, Ce, and Mn. After adding 400 g of γ-alumina powder to 800 g of this oxide powder, mixing to form a spherical shape (average particle diameter 5 mm), drying at 120 ° C. for 5 hours, and then firing at 550 ° C. for 3 hours to obtain Co A —Ce—Mn-based ammonia decomposition catalyst was obtained. The catalyst composition was Co 3 O 4 : CeO 2 : MnO 2 : Al 2 O 3 = 1: 2.1: 1.6: 2.4 (mass ratio).
<Ammonia decomposition catalyst 2>
Titanium oxide powder (trade name DT-51, manufactured by Millennium Co., Ltd.) was formed into a spherical shape (average particle size 5 mm), dried at 120 ° C. for 5 hours, and then fired at 500 ° C. for 3 hours. This spherical titanium oxide was impregnated with an aqueous silver nitrate solution. After impregnation, it was dried at 120 ° C. for 5 hours and then calcined at 500 ° C. for 3 hours. Next, it was impregnated with an aqueous ferrous sulfate solution, dried at 120 ° C. for 5 hours, and then calcined at 500 ° C. for 3 hours to obtain an ammonia decomposition catalyst 2. The composition of this catalyst was TiO 2 : Ag: Fe = 80: 17: 3 (mass ratio).
<Nitrous oxide decomposition catalyst>
Γ-alumina pellets (manufactured by Sumitomo Chemical Co., Ltd., average particle size 5 mm) are immersed in an aqueous rhodium nitrate solution adjusted to a predetermined concentration for 5 minutes, then dried at 120 ° C. for 5 hours, and then at 600 ° C. for 5 hours. Rh-supported γ-Al 2 O 3 catalyst was prepared by calcining for a period of time. The catalyst composition was Rh: Al 2 O 3 = 5: 95 (mass ratio).
Example 1
A gas inlet side of a stainless steel reaction tube having an inner diameter of 45 mm and a length of 950 mm was filled with 1140 ml of the ammonia decomposition catalyst, and the gas outlet side was filled with 140 ml of the nitrous oxide decomposition catalyst. Then, after heating and adjusting a simulated ammonia-containing gas comprising an ammonia concentration of 4000 ppm, a water vapor concentration of 20%, and the remaining air to a predetermined temperature (360 ° C., 380 ° C. and 400 ° C.), ammonia is supplied at a supply rate of 12 L / min (STP). It flowed to the cracking catalyst layer and then to the nitrous oxide cracking catalyst layer. When the temperature of each catalyst layer becomes almost the same as the temperature of the simulated ammonia-containing gas, measure the ammonia concentration, NOx concentration and nitrous oxide concentration in the treated gas from the nitrous oxide decomposition catalyst layer according to the following method The ammonia conversion rate was determined according to the following formula. The results are shown in Table 1.
Ammonia concentration:
A certain amount of gas is passed through an absorption bottle containing 0.5 mass% boric acid aqueous solution to absorb the ammonia contained in the gas into the boric acid aqueous solution, and the boric acid aqueous solution containing ammonia after the absorption operation is purified. After adjusting to a predetermined amount with water, the absorbed ammonia was calculated by quantifying NH 4 + in the liquid with a cation chromatograph manufactured by Hitachi, Ltd., and the ammonia concentration in the gas was calculated.
NOx concentration:
Measurement was performed by a chemiluminescence method using a NOx meter MODEL42C manufactured by Nippon Thermo Electron.
Nitrous oxide concentration:
It was measured with a Shimadzu gas chromatograph (TCD).
Ammonia conversion (%):
(4000 ppm-ammonia concentration in treated gas (ppm)) / (4000 ppm) (x100)
Example 2
In Example 1, the treatment of the simulated ammonia-containing gas was performed in the same manner as in Example 1 except that the ammonia decomposition catalyst 1 was changed to the ammonia decomposition catalyst 2. The results are shown in Table 1.
Comparative Example 1
In Example 1, the simulated ammonia-containing gas was treated in the same manner as in Example 1 except that the latter nitrous oxide decomposition catalyst layer was not provided. The results are shown in Table 1.

Figure 0004246584
Figure 0004246584

表1において、NOxおよび亜酸化窒素の濃度は、湿りガス基準の体積濃度である。   In Table 1, the concentrations of NOx and nitrous oxide are volume concentrations based on wet gas.

実施例1、2と比較例1とから、亜酸化窒素分解触媒による処理工程(工程(b))を設けることにより処理ガス中の亜酸化窒素濃度を著しく低減できる。

From Examples 1 and 2 and Comparative Example 1, the concentration of nitrous oxide in the treatment gas can be significantly reduced by providing a treatment step (step (b)) using a nitrous oxide decomposition catalyst.

Claims (1)

アンモニアを含有する排水を下記工程を含むプロセスにしたがって浄化することを特徴とするアンモニア含有排水の浄化方法。
)アンモニア含有排水をストリッピング処理に供してアンモニアを気相中に移行させる工程。
)工程()からのアンモニア含有排ガスを、Co、CeおよびMnを含む酸化物触媒および/または酸化物担体とAgとFeとを含有する触媒に接触させてアンモニアを分解する工程。
)工程()からの処理ガスをRh担持γ−アルミナ触媒に接触させて処理ガス中の亜酸化窒素を分解する工程。
A method for purifying ammonia-containing wastewater, comprising purifying wastewater containing ammonia according to a process including the following steps.
(A) step of shifting subjecting the ammonia-containing waste water in the stripped ammonia in the gas phase.
( B ) The step of decomposing ammonia by contacting the ammonia-containing exhaust gas from step ( a ) with an oxide catalyst containing Co, Ce and Mn and / or a catalyst containing an oxide carrier, Ag and Fe.
( C ) A step of bringing the processing gas from step ( b ) into contact with the Rh-supported γ-alumina catalyst to decompose nitrous oxide in the processing gas.
JP2003333292A 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater Expired - Fee Related JP4246584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333292A JP4246584B2 (en) 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333292A JP4246584B2 (en) 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater

Publications (2)

Publication Number Publication Date
JP2005095786A JP2005095786A (en) 2005-04-14
JP4246584B2 true JP4246584B2 (en) 2009-04-02

Family

ID=34461335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333292A Expired - Fee Related JP4246584B2 (en) 2003-09-25 2003-09-25 Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater

Country Status (1)

Country Link
JP (1) JP4246584B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346642A (en) * 2005-06-20 2006-12-28 Sumiko Eco-Engineering Co Ltd Catalyst for decomposing ammonia and method for treating ammonia
JP5127672B2 (en) * 2008-11-06 2013-01-23 日立造船株式会社 Ammonia decomposition catalyst
IT1401698B1 (en) * 2010-09-13 2013-08-02 Sued Chemie Catalysts Italia CATALYST FOR THE DECOMPOSITION OF DANGEROUS PROSTOSIS.
JP5690158B2 (en) * 2011-02-03 2015-03-25 Agcセイミケミカル株式会社 Ammonia decomposition catalyst and ammonia decomposition method
DK3088080T3 (en) 2013-12-26 2018-06-14 Nikki Universal Co Ltd Ammonia Decomposition Catalyst
CN110918117B (en) * 2019-11-28 2023-03-21 浙江师范大学 Catalyst for eliminating nitrogenous organic matters and preparation method thereof

Also Published As

Publication number Publication date
JP2005095786A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP3269456B2 (en) Method for decomposing fluorine-containing compound, catalyst and decomposition apparatus
CN110479303A (en) A kind of dry method solid desulphurization denitration catalyst and its desulfurization denitrification agent
Jiang et al. High-efficiency removal of NO x from flue gas by multitooth wheel-cylinder corona discharge plasma facilitated selective catalytic reduction process
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
JP2004082013A (en) Method and catalyst for decomposing perfluorocompound and apparatus for treating perfluorocompound
US20200129923A1 (en) Method For Simultaneously Removing SO2 And NOX In Flue Gas
JP2013237045A (en) Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP6495811B2 (en) Selective reduction exhaust gas purification catalyst
JP2012050969A (en) Catalyst for decomposing nitrous oxide and method for cleaning nitrous oxide-containing gas by using the same
JP6680501B2 (en) Method for purifying hazardous substance-containing liquid and apparatus for purifying hazardous substance-containing liquid for carrying out the method
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JPS61133125A (en) Denitration process using ultraviolet ray
KR102224335B1 (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
JPH09313940A (en) Ammonia oxidation decomposition catalyst
BR112021013154A2 (en) PROCESS TO REMOVE NITROGEN OXIDES FROM A GAS
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
RU2809651C2 (en) Method for removing nitrogen oxides from gas
JP2012192338A (en) Method of treating exhaust
JPH1066985A (en) Treatment of nitrogen compound-containing waste water
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees