JPH09307042A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09307042A
JPH09307042A JP12347296A JP12347296A JPH09307042A JP H09307042 A JPH09307042 A JP H09307042A JP 12347296 A JP12347296 A JP 12347296A JP 12347296 A JP12347296 A JP 12347296A JP H09307042 A JPH09307042 A JP H09307042A
Authority
JP
Japan
Prior art keywords
protective resin
electrode
support electrode
semiconductor device
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12347296A
Other languages
Japanese (ja)
Other versions
JP2950468B2 (en
Inventor
Takaaki Yokoyama
隆昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP12347296A priority Critical patent/JP2950468B2/en
Publication of JPH09307042A publication Critical patent/JPH09307042A/en
Application granted granted Critical
Publication of JP2950468B2 publication Critical patent/JP2950468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation of electric characteristics of a semiconductor device used in a severe environment to which a heat shock is repetitively applied. SOLUTION: The semiconductor device comprises a support electrode 2 of copper as its main component, having a concave portion 2a, a lead electrode 3, a diode chip 1 fixed between a bottom portion 2b of the concave 2a of the support electrode 2 and the lead electrode 3, and a protective resin, filled in the concave portion 2a and covering the diode chip 1. The protective resin has a first protective resin 7 surrounding the diode chip 1 and a second protective resin 8 surrounding a lower part of the lead electrode 3. A ring projection 9 formed at the bottom portion 2b of the support electrode 2 suppresses flow of the first protective resin. The linear expansion coefficient of the second protective resin is equal to that of the support electrode 2. As the ring projection 9 formed on the bottom portion 2b of the support electrode 2 suppresses the flow of the first protective resin, a side surface 1a of the diode chip 1 can be completely covered with the first protective resin 7. Thus, the distance from the periphery to the diode chip 1 along the concave portion 2a of the support electrode 2 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置、特に反
復する熱衝撃が加えられる環境下でも電気的特性が劣化
しない半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device whose electrical characteristics do not deteriorate even under an environment where repeated thermal shocks are applied.

【0002】[0002]

【従来の技術】例えば、実公平5−19957号公報に
示されるように、金属により形成され且つ凹部を有する
支持電極と、リード電極と、支持電極の凹部の底部とリ
ード電極との間に固着された半導体チップと、凹部内に
充填され且つ半導体チップを被覆する保護樹脂とを備え
た自動車用交流発電機の出力整流ダイオードは公知であ
る。この出力整流ダイオードでは、図2に示すように、
皿状の支持電極2とリード電極3のヘッダ部3aとの間
にダイオードチップ(半導体チップ)1を固着し、支持
電極2内に充填した保護樹脂4によりダイオードチップ
1及びリード電極3のヘッダ部3a側を封止している。
支持電極2は、銅を主成分とする金属にニッケルめっき
を施した金属板から構成され、皿状に形成された凹部2
aを有し、ダイオードチップ1の放熱板を兼ねる。リー
ド電極3は、ニッケルめっきを施した棒状の銅製リード
部材から構成され、フランジ状に形成されたヘッダ部3
aと、ヘッダ部3aから略垂直に延びるリード部3b
と、リード部3b中にU字形に形成されたベンド部3c
とを有する。ダイオードチップ1は、支持電極2の凹部
2aの底部2b及びリード電極3のヘッダ部3aの各々
に対してそれぞれ半田5、6により固着される。ダイオ
ードチップ1及びリード電極3のヘッダ部3a側は、支
持電極2の凹部2a内に充填されたシリコーン樹脂から
成る保護樹脂4によって被覆され、水分又はイオン性不
純物等の有害物質がダイオードチップ1の側面1aに侵
入することを防止する。
2. Description of the Related Art For example, as disclosed in Japanese Utility Model Publication No. 5-19957, a support electrode formed of metal and having a recess, a lead electrode, and a bottom of the recess of the support electrode and the lead electrode are fixed to each other. An output rectifier diode for an automotive alternator including a semiconductor chip formed as described above and a protective resin that fills the recess and covers the semiconductor chip is known. In this output rectifier diode, as shown in FIG.
A diode chip (semiconductor chip) 1 is fixed between the dish-shaped support electrode 2 and the header portion 3a of the lead electrode 3, and the header portion of the diode chip 1 and the lead electrode 3 is formed by the protective resin 4 filled in the support electrode 2. The 3a side is sealed.
The supporting electrode 2 is composed of a metal plate obtained by nickel-plating a metal containing copper as a main component, and has a dish-shaped recess 2
It has a and also serves as a heat sink of the diode chip 1. The lead electrode 3 is composed of a nickel-plated rod-shaped copper lead member, and has a flange-shaped header portion 3
a and a lead portion 3b extending substantially vertically from the header portion 3a
And a bend portion 3c formed in a U shape in the lead portion 3b
And The diode chip 1 is fixed to the bottom portion 2b of the recess 2a of the support electrode 2 and the header portion 3a of the lead electrode 3 by solders 5 and 6, respectively. The header portion 3a side of the diode chip 1 and the lead electrode 3 is covered with a protective resin 4 made of a silicone resin filled in the concave portion 2a of the support electrode 2 so that harmful substances such as moisture or ionic impurities can be absorbed in the diode chip 1. It prevents the side surface 1a from entering.

【0003】[0003]

【発明が解決しようとする課題】ところで、図2に示す
出力整流ダイオードでは、銅製の支持電極2の線膨張係
数が16.8×10-6/℃であり、シリコーン樹脂から
成る保護樹脂4の線膨張係数が6.0〜8.0×10-6
℃であるから、接着される両者間で線膨張係数が大きく
異なる。このため、ヒートサイクルが反復して加わる厳
しい環境下で使用すると、支持電極2と保護樹脂4との
線膨張係数差により保護樹脂4に過大な熱応力が生じ、
保護樹脂4が支持電極2から剥離することがある。特
に、保護樹脂4を構成するシリコーン樹脂は熱硬化過程
の際に生ずる収縮が極めて大きいので、矢印A及びBで
示す接着部にストレスが集中し、保護樹脂4がリード電
極3のリード部3bの接着面又は支持電極2の凹部2a
の接着面から剥離し易い状態になる。したがって、熱衝
撃が多数回反復して加わる厳しい環境下で図2に示す出
力整流ダイオードを使用すると、接着部A及びBを起点
としてリード電極3のリード部3b及びヘッダ部3aの
接着面又は支持電極2の凹部2aの接着面に沿って保護
樹脂4の剥離が進行し、最終的にはダイオードチップ1
の側面1aにまで保護樹脂4の剥離が到達することがあ
る。このように保護樹脂4の剥離が進行した状態では、
その剥離した界面から水分又はイオン性不純物等の有害
物質がダイオードチップ1の側面1aに侵入し、これに
よって絶縁不良や逆方向電流が増加して半導体装置の電
気的特性の劣化が生ずる。
In the output rectifying diode shown in FIG. 2, the copper support electrode 2 has a linear expansion coefficient of 16.8 × 10 −6 / ° C., and the protective resin 4 made of a silicone resin is used. Linear expansion coefficient 6.0-8.0 × 10 -6 /
Since the temperature is ° C, the linear expansion coefficient greatly differs between the both bonded. Therefore, when used in a severe environment in which heat cycles are repeatedly applied, excessive thermal stress is generated in the protective resin 4 due to the difference in linear expansion coefficient between the support electrode 2 and the protective resin 4,
The protective resin 4 may peel from the support electrode 2. In particular, since the silicone resin that constitutes the protective resin 4 has a very large shrinkage that occurs during the thermosetting process, stress concentrates on the bonded portions indicated by the arrows A and B, and the protective resin 4 causes the lead portion 3b of the lead electrode 3 to move. Adhesive surface or recess 2a of support electrode 2
It becomes easy to peel from the adhesive surface of. Therefore, when the output rectifier diode shown in FIG. 2 is used in a severe environment in which thermal shock is repeatedly applied many times, the bonding surface or the supporting surface of the lead portion 3b of the lead electrode 3 and the header portion 3a is started from the bonding portions A and B as starting points. The peeling of the protective resin 4 progresses along the bonding surface of the recess 2a of the electrode 2, and finally the diode chip 1
The peeling of the protective resin 4 may reach the side surface 1a of the. In this state where the protective resin 4 is peeled off,
A harmful substance such as water or an ionic impurity enters the side surface 1a of the diode chip 1 from the separated interface, which causes insulation failure and reverse current increase to deteriorate the electrical characteristics of the semiconductor device.

【0004】そこで、本発明は熱衝撃が多数回反復して
加わる厳しい環境下で使用しても電気的特性が劣化しな
い半導体装置を提供することを目的とする。
Therefore, it is an object of the present invention to provide a semiconductor device whose electrical characteristics do not deteriorate even when used in a severe environment where thermal shock is repeatedly applied many times.

【0005】[0005]

【課題を解決するための手段】本発明による半導体装置
は、銅を主成分とする金属により形成され且つ凹部を有
する支持電極と、リード電極と、支持電極の凹部の底部
と前記リード電極との間に固着された半導体チップと、
凹部内に充填され且つ半導体チップを被覆する保護樹脂
とを備えている。保護樹脂は半導体チップの周囲を包囲
する第1の保護樹脂と、第1の保護樹脂及びリード電極
の下部を包囲する第2の保護樹脂とを有する。支持電極
の底部に形成された環状突起は第1の保護樹脂の流動を
抑制する。第2の保護樹脂の線膨張係数は支持電極の線
膨張係数に実質的に等しい。保護樹脂は、線膨張係数1
5.0〜19.0×10-6/℃を有するエポキシ樹脂であ
り、銅製の前記支持電極2の線膨張係数は15.0〜1
7.0×10-6/℃である。環状突起の外側で且つ支持
電極の凹部の底部又は支持電極の凹部の側壁部の内周面
に環状溝部を形成する。環状溝部は底部に向かって幅が
広がる蟻形断面を有する。
A semiconductor device according to the present invention comprises a support electrode formed of a metal containing copper as a main component and having a recess, a lead electrode, a bottom of the recess of the support electrode, and the lead electrode. A semiconductor chip fixed between
And a protective resin that fills the recess and covers the semiconductor chip. The protective resin has a first protective resin that surrounds the periphery of the semiconductor chip and a second protective resin that surrounds the first protective resin and the lower portion of the lead electrode. The annular protrusion formed on the bottom of the support electrode suppresses the flow of the first protective resin. The linear expansion coefficient of the second protective resin is substantially equal to the linear expansion coefficient of the support electrode. The protective resin has a linear expansion coefficient of 1
It is an epoxy resin having 5.0 to 19.0 × 10 −6 / ° C., and the linear expansion coefficient of the support electrode 2 made of copper is 15.0 to 1
It is 7.0 × 10 -6 / ° C. An annular groove is formed outside the annular protrusion and on the bottom of the recess of the support electrode or the inner peripheral surface of the sidewall of the recess of the support electrode. The annular groove portion has a dovetail-shaped cross section that widens toward the bottom.

【0006】支持電極の底部に形成された環状突起は第
1の保護樹脂の流動を抑制するので、半導体チップの側
面を第1の保護樹脂により完全に被覆することができ、
支持電極の凹部に沿う外部から半導体チップまでの沿面
距離が増加する。第1の保護樹脂の外側を第2の保護樹
脂により被覆するので、半導体チップに達する水分又は
イオン性不純物等の有害物質の侵入を抑制することがで
きる。更に、環状突起の外側で且つ支持電極の凹部の底
部又は支持電極の凹部の側壁部の内周面に環状溝部を形
成すると、支持電極の側壁部と第2の保護樹脂との接着
がより強固となり、支持電極と第2の保護樹脂との密着
性を向上できると共に、沿面距離が更に増加する。ま
た、支持電極と第2の保護樹脂との線膨張係数差を低減
して線膨張係数を均等にするので、ヒートサイクルが反
復して加えられても、保護樹脂に過大な熱応力が生じな
い。このため、熱衝撃が多数回反復して加わる厳しい環
境下で使用しても保護樹脂の支持電極からの剥離を抑制
することができ、水分又はイオン性不純物等の有害物質
の内部への侵入を抑制し、半導体装置の電気的特性の劣
化を防止できる。
Since the annular protrusion formed on the bottom of the supporting electrode suppresses the flow of the first protective resin, the side surface of the semiconductor chip can be completely covered with the first protective resin.
The creepage distance from the outside to the semiconductor chip along the recess of the support electrode increases. Since the outer side of the first protective resin is covered with the second protective resin, invasion of harmful substances such as moisture or ionic impurities reaching the semiconductor chip can be suppressed. Further, when the annular groove is formed outside the annular protrusion and on the bottom of the recess of the support electrode or the inner peripheral surface of the sidewall of the recess of the support electrode, the adhesion between the sidewall of the support electrode and the second protective resin becomes stronger. Therefore, the adhesion between the support electrode and the second protective resin can be improved, and the creepage distance is further increased. Further, since the difference in linear expansion coefficient between the support electrode and the second protective resin is reduced and the linear expansion coefficient is made uniform, even if heat cycles are repeatedly applied, excessive thermal stress does not occur in the protective resin. . Therefore, even when used in a severe environment where thermal shock is repeatedly applied many times, it is possible to suppress peeling of the protective resin from the supporting electrode, and to prevent harmful substances such as moisture or ionic impurities from entering the inside. It is possible to suppress the deterioration of the electrical characteristics of the semiconductor device.

【0007】[0007]

【発明の実施の形態】以下、自動車用交流発電機の出力
整流ダイオードに適用した本発明による半導体装置の一
実施形態を図1について説明する。図1では図2と実質
的に同一の箇所には同一の符号を付し、その説明を省略
する。本実施形態の出力整流ダイオードは、図1に示す
ように、保護樹脂は、ダイオードチップ1の周囲を包囲
する第1の保護樹脂7と、第1の保護樹脂7及びリード
電極3の下部を包囲する第2の保護樹脂8とを有する。
第1の保護樹脂7は例えばシリコーン樹脂から成り、第
2の保護樹脂8は銅製の支持電極2の線膨張係数16.
8×10-6/℃に極めて近い線膨張係数15.0〜19.
0×10-6/℃を有するエポキシ樹脂から成る。従っ
て、第2の保護樹脂8の線膨張係数は支持電極2の線膨
張係数に実質的に等しい。第1の保護樹脂7を構成する
シリコーン樹脂はエポキシ樹脂より密着性に優れ、全体
をエポキシ樹脂により被覆する場合に比べてダイオード
チップ1に達する水分又はイオン性不純物等の有害物質
の侵入を抑制することができる。第2の保護樹脂8を構
成するエポキシ樹脂は、シリコーン樹脂に近い耐熱性を
有しかつシリコーン樹脂よりも硬化収縮が極めて小さ
く、安価である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a semiconductor device according to the present invention applied to an output rectifying diode of an automotive alternator will be described below with reference to FIG. In FIG. 1, substantially the same parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In the output rectifying diode of this embodiment, as shown in FIG. 1, the protective resin surrounds the first protective resin 7 surrounding the diode chip 1 and the lower portions of the first protective resin 7 and the lead electrode 3. The second protective resin 8 is provided.
The first protective resin 7 is made of, for example, a silicone resin, and the second protective resin 8 is a linear expansion coefficient 16.
A linear expansion coefficient of 15.0 to 19. Very close to 8 × 10 -6 / ° C.
It consists of an epoxy resin having 0 × 10 −6 / ° C. Therefore, the linear expansion coefficient of the second protective resin 8 is substantially equal to the linear expansion coefficient of the support electrode 2. The silicone resin that constitutes the first protective resin 7 is superior in adhesiveness to the epoxy resin and suppresses invasion of harmful substances such as water or ionic impurities reaching the diode chip 1 as compared with the case where the whole is covered with the epoxy resin. be able to. The epoxy resin forming the second protective resin 8 has heat resistance close to that of a silicone resin, has a curing shrinkage extremely smaller than that of the silicone resin, and is inexpensive.

【0008】また、支持電極2の底部2bには、環状突
起9と、環状突起9の外側に形成された底部に向かって
幅が広がる蟻形断面を有する環状溝部10が形成され
る。環状突起9及び環状溝部10は、例えば支持電極2
の凹部2aと一体に蟻形断面にプレス加工するか又は支
持電極2の側壁部2cの内周面を旋盤により切削加工し
て形成される。プレス加工により形成する場合には、一
度環状の突起及び環状の溝部を第1のプレス加工により
形成した後、第2のプレス加工を施して、蟻形断面の環
状溝部に形成することができる。
Further, the bottom portion 2b of the support electrode 2 is formed with an annular protrusion 9 and an annular groove portion 10 having a dovetail cross section whose width is widened toward the bottom portion formed outside the annular protrusion 9. The annular protrusion 9 and the annular groove 10 are, for example, the support electrode 2
It is formed by pressing the dovetail-shaped cross-section integrally with the concave portion 2a or cutting the inner peripheral surface of the side wall portion 2c of the support electrode 2 by a lathe. In the case of forming by press working, the annular protrusion and the annular groove can be formed once by the first pressing and then the second pressing can be performed to form the annular groove having a dovetail cross section.

【0009】本実施形態では、支持電極2の底部2aに
形成された環状突起9は、第1の保護樹脂7をダイオー
ドチップ1の周囲に塗布するとき、第1の保護樹脂7の
流動を抑制するので、ダイオードチップ1の側面を第1
の保護樹脂7により完全に被覆することができ、支持電
極2の凹部2aに沿う外部からダイオードチップ1まで
の沿面距離が増加する。第1の保護樹脂7の外側を第2
の保護樹脂8により被覆するので、ダイオードチップ1
に達する水分又はイオン性不純物等の有害物質の侵入を
抑制することができる。更に、環状突起9の外側で且つ
支持電極2の凹部2aの底部2bに蟻形断面の環状溝部
10を形成すると、支持電極2と第2の保護樹脂8との
接着がより強固となり、支持電極2の凹部2aと第2の
保護樹脂8との密着性を向上できると共に、沿面距離が
更に増加する。
In this embodiment, the annular protrusion 9 formed on the bottom portion 2a of the support electrode 2 suppresses the flow of the first protective resin 7 when the first protective resin 7 is applied around the diode chip 1. The side of the diode chip 1
Can be completely covered with the protective resin 7, and the creeping distance from the outside along the recess 2a of the support electrode 2 to the diode chip 1 increases. The outside of the first protective resin 7 is the second
Since it is covered with the protective resin 8 of the diode chip 1
It is possible to suppress invasion of harmful substances such as water or ionic impurities reaching the temperature. Further, when the annular groove portion 10 having a dovetail cross section is formed outside the annular protrusion 9 and in the bottom portion 2b of the recess 2a of the support electrode 2, the adhesion between the support electrode 2 and the second protective resin 8 becomes stronger and the support electrode The adhesion between the second concave portion 2a and the second protective resin 8 can be improved, and the creepage distance is further increased.

【0010】また、ダイオードチップ1及びリード電極
3のヘッダ部3a側を封止する第2の保護樹脂8として
銅製の支持電極2の線膨張係数16.8×10-6/℃に
実質的に等しい線膨張係数15.0〜19.0×10-6
℃を有するエポキシ樹脂を使用する。このため、支持電
極2と保護樹脂7との線膨張係数差を低減し又は均等と
なり、高温下において保護樹脂7に過大な熱応力が生じ
ない。このため、熱衝撃が多数回反復して加わる厳しい
環境下で使用しても第2の保護樹脂7bの支持電極2か
らの剥離を抑制することができ、ダイオードチップ1の
側面1aに至る水分又はイオン性不純物等の有害物質の
内部への侵入を抑制し、絶縁不良や逆方向電流が増加す
る等の出力整流ダイオードの電気的特性の劣化を防止す
ることが可能となる。
Further, as the second protective resin 8 for sealing the header portion 3a side of the diode chip 1 and the lead electrode 3, the linear expansion coefficient of the support electrode 2 made of copper is substantially 16.8 × 10 -6 / ° C. Equal linear expansion coefficient 15.0 to 19.0 × 10 -6 /
An epoxy resin having a temperature of 0 ° C is used. Therefore, the difference in linear expansion coefficient between the support electrode 2 and the protective resin 7 is reduced or equalized, and excessive thermal stress does not occur in the protective resin 7 under high temperature. Therefore, even if the second protective resin 7b is used in a severe environment in which thermal shock is repeatedly applied many times, peeling of the second protective resin 7b from the supporting electrode 2 can be suppressed, and moisture reaching the side surface 1a of the diode chip 1 or It is possible to suppress entry of harmful substances such as ionic impurities into the interior, and prevent deterioration of electrical characteristics of the output rectifying diode such as insulation failure and increase in reverse current.

【0011】本発明は上記の実施形態に限定されず、種
々の変更が可能である。例えば、環状突起9の外側で且
つ支持電極2の凹部2aの側壁部2cの内周面に環状溝
部10を形成してもよい。支持電極2の凹部2a及び第
2の保護樹脂8間の接着が十分強固である場合は、環状
溝部10を省略してもよい。接着部Aの下方のリード部
3bにリード部3bの外面又はヘッダ部3aに環状の溝
部を形成して保護樹脂7とリード部3b又はヘッダ部3
aとの密着性を増加すると共に、接着部Aからダイオー
ドチップ1に至る沿面距離を増加してもよい。また、本
発明は自動車用交流発電機の出力整流ダイオード以外に
トランジスタ又はサイリスタ等の他の半導体装置にも本
発明を適用することが可能である。
The present invention is not limited to the above embodiment, and various modifications can be made. For example, the annular groove portion 10 may be formed outside the annular protrusion 9 and on the inner peripheral surface of the side wall portion 2c of the recess 2a of the support electrode 2. If the adhesion between the recess 2a of the support electrode 2 and the second protective resin 8 is sufficiently strong, the annular groove 10 may be omitted. An annular groove is formed in the outer surface of the lead portion 3b or the header portion 3a in the lead portion 3b below the adhesive portion A to form the protective resin 7 and the lead portion 3b or the header portion 3
The creepage distance from the adhesive portion A to the diode chip 1 may be increased while increasing the adhesiveness with a. Further, the present invention can be applied to other semiconductor devices such as a transistor or a thyristor other than the output rectifying diode of the automotive alternator.

【0012】[0012]

【発明の効果】本発明による半導体装置では、熱衝撃が
多数回反復して加わる厳しい環境下で使用しても、保護
樹脂と電極との剥離がなく、水分やイオン性不純物等の
有害物質の内部への侵入を抑制できるので、特性劣化の
極めて少ない信頼性の高い半導体装置を得ることができ
る。
In the semiconductor device according to the present invention, even if the semiconductor device is used in a severe environment in which thermal shock is repeatedly applied many times, the protective resin and the electrode are not separated from each other, and harmful substances such as moisture and ionic impurities are not generated. Since the intrusion into the interior can be suppressed, it is possible to obtain a highly reliable semiconductor device in which characteristic deterioration is extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】 自動車用交流発電機の出力整流ダイオードに
適用した本発明による半導体装置の一実施形態を示す断
面図
FIG. 1 is a sectional view showing an embodiment of a semiconductor device according to the present invention applied to an output rectifying diode of an automotive alternator.

【図2】 従来の自動車用交流発電機の出力整流ダイオ
ードを示す断面図
FIG. 2 is a sectional view showing an output rectifying diode of a conventional automotive AC generator.

【符号の説明】[Explanation of symbols]

1...ダイオードチップ(半導体チップ)、 1
a...側面、 2...支持電極、 2a...凹
部、 2b...底部、 2c...側壁部、
3...リード電極、 3a...ヘッダ部、 3
b...リード部、 5、6...半田、 7...保
護樹脂、7a...第1の保護樹脂、 7b...第2
の保護樹脂、 9...環状突起、 10...環状溝
部、
1. . . Diode chip (semiconductor chip), 1
a. . . Side, 2. . . Supporting electrode, 2a. . . Recess, 2b. . . Bottom, 2c. . . Side wall,
3. . . Lead electrode, 3a. . . Header part, 3
b. . . Lead part, 5, 6. . . Solder, 7. . . Protective resin, 7a. . . First protective resin, 7b. . . Second
Protective resin of 9. . . Annular protrusion, 10. . . Annular groove,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅を主成分とする金属により形成され且
つ凹部を有する支持電極と、リード電極と、前記支持電
極の凹部の底部と前記リード電極との間に固着された半
導体チップと、前記凹部内に充填され且つ該半導体チッ
プを被覆する保護樹脂とを備えた半導体装置において、 前記保護樹脂は前記半導体チップの周囲を包囲する第1
の保護樹脂と、該第1の保護樹脂及び前記リード電極の
下部を包囲する第2の保護樹脂とを有し、 前記支持電極の底部に形成された環状突起は前記第1の
保護樹脂の流動を抑制し、 前記第2の保護樹脂の線膨張係数は前記支持電極の線膨
張係数に実質的に等しいことを特徴とする半導体装置。
1. A support electrode formed of a metal containing copper as a main component and having a recess, a lead electrode, a semiconductor chip fixed between the bottom of the recess of the support electrode and the lead electrode, A semiconductor device comprising a protective resin filled in the recess and covering the semiconductor chip, wherein the protective resin surrounds the periphery of the semiconductor chip.
And a second protective resin that surrounds the lower portion of the lead electrode and the first protective resin, and the annular protrusion formed on the bottom of the support electrode is a flow of the first protective resin. And a coefficient of linear expansion of the second protective resin is substantially equal to a coefficient of linear expansion of the support electrode.
【請求項2】 前記第1の保護樹脂はシリコーン樹脂で
あり、前記第2の保護樹脂は、線膨張係数15.0〜1
9.0×10-6/℃を有するエポキシ樹脂であり、銅製
の前記支持電極の線膨張係数は15.0〜17.0×10
-6/℃である請求項1に記載の半導体装置。
2. The first protective resin is a silicone resin, and the second protective resin is a linear expansion coefficient of 15.0 to 1.
It is an epoxy resin having 9.0 × 10 −6 / ° C., and the coefficient of linear expansion of the supporting electrode made of copper is 15.0 to 17.0 × 10.
The semiconductor device according to claim 1, wherein the semiconductor device has a temperature of -6 / ° C.
【請求項3】 前記環状突起の外側で且つ前記支持電極
の凹部の底部又は前記支持電極の凹部の側壁部の内周面
に環状溝部を形成した請求項1に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein an annular groove is formed outside the annular protrusion and on the inner peripheral surface of the bottom of the recess of the support electrode or the side wall of the recess of the support electrode.
【請求項4】 前記環状溝部は底部に向かって幅が広が
る蟻形断面を有する請求項3に記載の半導体装置。
4. The semiconductor device according to claim 3, wherein the annular groove has a dovetail-shaped cross section whose width increases toward the bottom.
JP12347296A 1996-05-17 1996-05-17 Semiconductor device Expired - Fee Related JP2950468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12347296A JP2950468B2 (en) 1996-05-17 1996-05-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12347296A JP2950468B2 (en) 1996-05-17 1996-05-17 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP36437298A Division JP3171330B2 (en) 1998-12-22 1998-12-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH09307042A true JPH09307042A (en) 1997-11-28
JP2950468B2 JP2950468B2 (en) 1999-09-20

Family

ID=14861478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12347296A Expired - Fee Related JP2950468B2 (en) 1996-05-17 1996-05-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2950468B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007714A1 (en) * 2005-07-11 2007-01-18 Powerd Co., Ltd. Diode element device for solar cell
JP2009252951A (en) * 2008-04-04 2009-10-29 Hitachi Ltd Semiconductor device
CN101819952A (en) * 2009-02-26 2010-09-01 株式会社日立制作所 Semiconductor device
JP2011222869A (en) * 2010-04-13 2011-11-04 Kansai Electric Power Co Inc:The Semiconductor device
JP2011249801A (en) * 2010-05-27 2011-12-08 Semikron Elektronik Gmbh & Co Kg Low temperature compression sinter joining method of two junction devices and constitution body manufactured by the same
CN107516652A (en) * 2017-08-18 2017-12-26 江苏云意电气股份有限公司 Automobile current generator commutation diode
CN110289220A (en) * 2019-07-07 2019-09-27 陕西航空电气有限责任公司 A kind of 250 DEG C of junction temperature of silicon carbide diode chip insulation guard method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007714A1 (en) * 2005-07-11 2007-01-18 Powerd Co., Ltd. Diode element device for solar cell
JP2009252951A (en) * 2008-04-04 2009-10-29 Hitachi Ltd Semiconductor device
CN101819952A (en) * 2009-02-26 2010-09-01 株式会社日立制作所 Semiconductor device
JP2010199369A (en) * 2009-02-26 2010-09-09 Hitachi Ltd Semiconductor device
JP2011222869A (en) * 2010-04-13 2011-11-04 Kansai Electric Power Co Inc:The Semiconductor device
JP2011249801A (en) * 2010-05-27 2011-12-08 Semikron Elektronik Gmbh & Co Kg Low temperature compression sinter joining method of two junction devices and constitution body manufactured by the same
CN107516652A (en) * 2017-08-18 2017-12-26 江苏云意电气股份有限公司 Automobile current generator commutation diode
CN110289220A (en) * 2019-07-07 2019-09-27 陕西航空电气有限责任公司 A kind of 250 DEG C of junction temperature of silicon carbide diode chip insulation guard method

Also Published As

Publication number Publication date
JP2950468B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US9035453B2 (en) Semiconductor device
JP3180863B2 (en) Pressure contact type semiconductor device and method of assembling the same
EP0752720A2 (en) Lead for semiconductor device
US4670771A (en) Rectifier module
US5886403A (en) Sealed rectifier
JP2008545279A (en) Schottky diode with improved surge capability
US4305088A (en) Semiconductor device including means for alleviating stress caused by different coefficients of thermal expansion of the device components
US6560167B1 (en) Thermoelectric generation unit and portable electronic device using the unit
JP4526125B2 (en) High power semiconductor devices
US20140367842A1 (en) Power semiconductor device and method of manufacturing the same
JPH09307042A (en) Semiconductor device
US4057825A (en) Semiconductor device with composite metal heat-radiating plate onto which semiconductor element is soldered
US3310716A (en) Connecting device for consolidating the housing of a semiconductor device
JP3171330B2 (en) Semiconductor device
US3280383A (en) Electronic semiconductor device
GB2284301A (en) Pressure-connection type semiconductor device and method of fabricating the same
JPH11214612A (en) Power semiconductor module
JPH09326453A (en) Semiconductor device
JP2802268B2 (en) Thermal response compression type diode assembly
US6897558B2 (en) Power electronic component module and method for assembling same
JP7103437B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP4861200B2 (en) Power module
JPH0613501A (en) Resin-sealed semiconductor device
JPH06120406A (en) Semiconductor device
US3120052A (en) Method of making alloyed junction semiconductor devices

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees