JPH09306495A - Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery provided with it - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery provided with it

Info

Publication number
JPH09306495A
JPH09306495A JP8148460A JP14846096A JPH09306495A JP H09306495 A JPH09306495 A JP H09306495A JP 8148460 A JP8148460 A JP 8148460A JP 14846096 A JP14846096 A JP 14846096A JP H09306495 A JPH09306495 A JP H09306495A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
atoms
electrolyte secondary
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8148460A
Other languages
Japanese (ja)
Other versions
JP3172444B2 (en
Inventor
Yoshihiro Shoji
良浩 小路
Mayumi Uehara
真弓 上原
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14846096A priority Critical patent/JP3172444B2/en
Publication of JPH09306495A publication Critical patent/JPH09306495A/en
Application granted granted Critical
Publication of JP3172444B2 publication Critical patent/JP3172444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high energy density battery by substitution a fixed ratio of the total carbon atoms with boron atoms and/or nitrogen atoms and using modified carbon material having a prescribed crystal structure as an ion occluded material for negative electrode. SOLUTION: A modified carbon material is so constituted that 0.001-0.1% of the total carbon atoms is substituted by boron atoms and/or nitrogen atoms, the size of crystallites in the c-axial direction is 150Å or more, and the face intervals between grid faces (002) are formed 3.38Å or less. The capacity per unit weight of the negative material used for this material is very large and the reason is supposed to be distortion of the crystal structure caused by disturbance of π electron cloud in the crystal. This negative electrode material is adoptable for a nonaqueous secondary battery, in which a solid electrolyte is used, as well as a lithium secondary battery. This modified carbon material is so provided that, for example, nitrogen ions or boron ions are implanted in a substance which is formed by pelletizing carbon powder such as natural black lead by an ion implanter so as to be pulverized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
用負極及びこれを備えた非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery including the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池に代表される非水電解質二次電池の負
極材料として、従前の金属リチウムなどと異なり、充放
電サイクルを繰り返しても内部短絡の原因となるデンド
ライトが電析する虞れが無い炭素材料が注目されてい
る。而して、炭素材料の中でも、黒鉛などの結晶性の高
い炭素材料については、単位重量当たりの容量が比較的
大きく、非水電解質二次電池の高エネルギー密度化を達
成する上で好適であることから、多くの研究がなされて
きた。
2. Description of the Related Art In recent years,
As a negative electrode material for a non-aqueous electrolyte secondary battery typified by a lithium secondary battery, unlike conventional metallic lithium, carbon that does not cause electrodeposition of dendrites that cause internal short circuits even after repeated charge and discharge cycles. Materials are receiving attention. Thus, among carbon materials, a carbon material having high crystallinity such as graphite has a relatively large capacity per unit weight and is suitable for achieving high energy density of the non-aqueous electrolyte secondary battery. Therefore, much research has been done.

【0003】しかしながら、完全な黒鉛型結晶構造を有
する天然黒鉛の場合でも、理論上、その層間には、リチ
ウムイオンは炭素原子6個に対して多くても1個の割合
でしか挿入されないので(C6 Li)、単位重量当たり
の容量は、最大でも372mAh/g(理論容量)であ
る。このため、負極材料の単位重量当たりの容量が極め
て大きい負極を得ることは困難であり、このことが非水
電解質二次電池の高エネルギー密度化を阻む障壁となっ
ていた。
However, even in the case of natural graphite having a perfect graphite type crystal structure, theoretically, lithium ions are inserted between the layers at a ratio of at most 1 to 6 carbon atoms ( C 6 Li), the capacity per unit weight is 372 mAh / g (theoretical capacity) at the maximum. For this reason, it is difficult to obtain a negative electrode in which the capacity of the negative electrode material is extremely large per unit weight, and this has been a barrier that prevents the nonaqueous electrolyte secondary battery from having a high energy density.

【0004】したがって、本発明は、炭素材料を改良す
ることにより、負極材料の単位重量当たりの容量が極め
て大きい非水電解質二次電池用負極及びこれを備えた非
水電解質二次電池を提供することを目的とする。
Therefore, the present invention provides a negative electrode for a non-aqueous electrolyte secondary battery in which the capacity per unit weight of the negative electrode material is extremely large by improving the carbon material, and a non-aqueous electrolyte secondary battery including the same. The purpose is to

【0005】なお、以下に詳述する本発明における如く
炭素原子の一部をホウ素原子及び/又は窒素原子で置換
した変性炭素材料を負極材料として用いること自体は、
Journal of Power Sources 55巻 (1995年発行)
127−130頁及び特開平7−235305号公報に
より従来公知である。しかし、これらは、負極の充放電
効率を改善するべく変性炭素材料の使用を提案するもの
であり、これらに開示されているBC3 N、BC7 N、
BC10N等の変性炭素材料は、炭素原子の置換率が極め
て高いものである。特に後者に開示されている変性炭素
材料は、結晶性が極めて低いものである。このため、こ
れらに開示の変性炭素材料の単位重量当たりの容量はい
ずれも小さく、これらを負極材料として使用することに
より、充放電効率の高い電池を得ることはできても、本
発明が企図する高エネルギー密度な電池を得ることはで
きない。
The use of a modified carbon material in which a part of carbon atoms is replaced with a boron atom and / or a nitrogen atom as the negative electrode material itself as in the present invention described in detail below
Journal of Power Sources Volume 55 (Published 1995)
It is conventionally known from pages 127-130 and JP-A-7-235305. However, they propose the use of modified carbon materials in order to improve the charge / discharge efficiency of the negative electrode, and BC 3 N, BC 7 N,
Modified carbon materials such as BC 10 N have a very high carbon atom substitution rate. In particular, the modified carbon material disclosed in the latter has extremely low crystallinity. Therefore, the capacities per unit weight of the modified carbon materials disclosed in these are all small, and by using these as the negative electrode material, a battery with high charge / discharge efficiency can be obtained, but the present invention contemplates it. It is not possible to obtain a battery with high energy density.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解質二次電池用負極(本発明電
極)においては、全炭素原子の0.01〜0.1%がホ
ウ素原子及び/又は窒素原子で置換された、c軸方向の
結晶子の大きさ(Lc)が150Å以上であり、且つ格
子面(002)面の面間隔(d002 )が3.38Å以下
である変性炭素材料がイオン吸蔵材として用いられてい
る。また、本発明に係る非水電解質二次電池は、斯かる
本発明電極を負極として用いたものである。
In the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention (the electrode of the present invention) for achieving the above object, 0.01 to 0.1% of all carbon atoms is boron. The crystallite size (Lc) in the c-axis direction, which is substituted with atoms and / or nitrogen atoms, is 150 Å or more, and the lattice spacing (d 002 ) of the lattice plane (002) plane is 3.38 Å or less. Modified carbon materials are used as ion storage materials. Further, the non-aqueous electrolyte secondary battery according to the present invention uses such an electrode of the present invention as a negative electrode.

【0007】本発明における変性炭素材料は、例えば、
ペレット状にした炭素材料(ターゲット)に、イオン注
入装置を用いて、ホウ素イオン及び/又は窒素イオンを
注入して、炭素原子(C)の所定量をホウ素原子(B)
及び/又は窒素原子(N)で置換することにより得られ
る。
The modified carbon material in the present invention is, for example,
Boron ions and / or nitrogen ions are implanted into a pelletized carbon material (target) by using an ion implantation device, so that a predetermined amount of carbon atoms (C) is added to the boron atoms (B).
And / or by substitution with a nitrogen atom (N).

【0008】変性炭素材料のd002 及びLcが、それぞ
れ150Å以上、3.38Å以下に規制されるのは、d
002 又はLcがこの範囲を外れる結晶性の低い変性炭素
材料では、負極材料の単位重量当たりの容量が極めて大
きい非水電解質二次電池用負極が得られないからであ
る。ホウ素原子及び/又は窒素原子による炭素原子の置
換率(全炭素原子のうち、ホウ素原子及び/又は窒素原
子により置換された炭素原子の比率)が0.01〜0.
1%に規制されるのも、炭素原子の置換率がこの範囲を
外れると負極材料の単位重量当たりの容量が極めて大き
い非水電解質二次電池用負極が得られないからである。
The d 002 and Lc of the modified carbon material are restricted to 150 Å or more and 3.38 Å or less, respectively.
This is because a modified carbon material having a low crystallinity of 002 or Lc outside this range cannot provide a negative electrode for a non-aqueous electrolyte secondary battery, which has an extremely large capacity per unit weight of the negative electrode material. The substitution ratio of carbon atoms with boron atoms and / or nitrogen atoms (ratio of carbon atoms substituted with boron atoms and / or nitrogen atoms among all carbon atoms) is 0.01 to 0.
The reason why it is regulated to 1% is that if the substitution rate of carbon atoms is out of this range, a negative electrode for a non-aqueous electrolyte secondary battery, which has an extremely large capacity per unit weight of the negative electrode material, cannot be obtained.

【0009】本発明電極をリチウム二次電池の負極とし
て使用する場合の非水電解質の溶質としては、LiPF
6 、LiBF4 、LiClO4 、LiCF3 SO3 、L
iAsF6 、LiN(CF3 SO2 2 及びLiSO2
(CF2 3 CF3 が例示され、また非水電解質の溶媒
としては、エチレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート、ビニレンカーボネート、
シクロペンタノン、スルホラン、3−メチルスルホラ
ン、2,4−ジメチルスルホラン、3−メチル−1,3
−オキサゾリジン−2−オン、γ−ブチロラクトン、ジ
メチルカーボネート、ジエチルカーボネート、エチルメ
チルカーボネート、メチルプロピルカーボネート、ブチ
ルメチルカーボネート、エチルプロピルカーボネート、
ブチルエチルカーボネート、ジプロピルカーボネート、
1,2−ジメトキシエタン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,3−ジオキソラン、酢
酸メチル、酢酸エチル及びこれらの混合物が例示される
が、特にこれらに限定されない。
When the electrode of the present invention is used as the negative electrode of a lithium secondary battery, the solute of the non-aqueous electrolyte is LiPF.
6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , L
iAsF 6 , LiN (CF 3 SO 2 ) 2 and LiSO 2
(CF 2 ) 3 CF 3 is exemplified, and as the solvent of the non-aqueous electrolyte, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate,
Cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3
-Oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate,
Butyl ethyl carbonate, dipropyl carbonate,
1,2-dimethoxyethane, tetrahydrofuran, 2-
Examples include methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, and mixtures thereof, but are not particularly limited thereto.

【0010】また、本発明電極をリチウム二次電池の負
極として使用する場合の正極活物質としては、LiCo
2 、LiNiO2 、LiMnO2 、LiMn2 4
LiVO2 及びLiNbO2 が例示されるが、特にこれ
らに限定されない。
When the electrode of the present invention is used as the negative electrode of a lithium secondary battery, the positive electrode active material is LiCo
O 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 ,
Examples thereof include LiVO 2 and LiNbO 2, but the invention is not particularly limited thereto.

【0011】本発明電極の適用対象の代表例はリチウム
二次電池の負極であるが、本発明電極は広く非水電解液
二次電池の負極に適用可能であり、さらには固体電解質
を使用した非水系二次電池の負極にも適用可能である。
A typical example of an object to which the electrode of the present invention is applied is a negative electrode of a lithium secondary battery, but the electrode of the present invention is widely applicable to a negative electrode of a non-aqueous electrolyte secondary battery, and a solid electrolyte is used. It can also be applied to the negative electrode of a non-aqueous secondary battery.

【0012】本発明電極は、炭素原子の所定量がホウ素
原子及び/又は窒素原子で置換され、且つ結晶性が比較
的高い変性炭素材料を負極材料として用いているので、
負極材料の単位重量当たりの容量が極めて大きい。この
理由は定かでないが、ホウ素原子及び/又は窒素原子で
炭素原子を所定量置換したことにより、結晶中のπ電子
雲が乱されて結晶構造に歪みが生じ、その結果理論量よ
り多量のイオンがランダムに結晶中に吸蔵及び放出され
るようになるためと推察される。したがって、本発明電
極を非水電解質二次電池の負極として使用することによ
り、極めて高エネルギー密度な電池を得ることが可能と
なる。
In the electrode of the present invention, a predetermined amount of carbon atoms is replaced by a boron atom and / or a nitrogen atom, and a modified carbon material having relatively high crystallinity is used as a negative electrode material.
The capacity per unit weight of the negative electrode material is extremely large. The reason for this is not clear, but by substituting a predetermined amount of carbon atoms with boron atoms and / or nitrogen atoms, the π electron cloud in the crystal is disturbed and the crystal structure is distorted. It is presumed that these are randomly occluded and released in the crystal. Therefore, by using the electrode of the present invention as the negative electrode of the non-aqueous electrolyte secondary battery, it becomes possible to obtain a battery having an extremely high energy density.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲で適宜変更して
実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0014】(実験1) 〔正極の作製〕リチウム原料(炭酸リチウム(Li2
3 ))とニッケル原料(炭酸ニッケル(NiC
3 ))及び/又はコバルト原料(炭酸コバルト(Co
CO3 ))とを、所定の割合で混合し、850°Cで2
0時間焼成して、LiNiO2 、LiCoO2 及びLi
Co0.5 Ni0.5 2 を得た。次いで、これらの複合酸
化物を、石川式らいかい乳鉢中で粉砕して、平均粒径約
5μmの正極活物質粉末を得た。
(Experiment 1) [Preparation of Positive Electrode] Lithium raw material (lithium carbonate (Li 2 C
O 3 )) and nickel raw material (nickel carbonate (NiC
O 3 )) and / or cobalt raw material (cobalt carbonate (Co
CO 3 )) at a predetermined ratio and mixed at 850 ° C for 2
After firing for 0 hours, LiNiO 2 , LiCoO 2 and Li
Co 0.5 Ni 0.5 O 2 was obtained. Next, these composite oxides were crushed in an Ishikawa type raid mortar to obtain a positive electrode active material powder having an average particle size of about 5 μm.

【0015】次いで、各正極活物質粉末90重量部と、
導電剤としての人造黒鉛粉末5重量部と、PVdF(ポ
リフッ化ビニリデン)5重量部のNMP(N−メチル−
2−ピロリドン)溶液とを混練してスラリーを調製し、
このスラリーをドクターブレード法により正極集電体と
してのアルミニウム箔の両面に塗布し、150°Cで2
時間真空乾燥して、各面に厚さ50μmの正極合剤層を
有する極板を作製した。この極板を圧延して、帯状の正
極を作製した。
Next, 90 parts by weight of each positive electrode active material powder,
5 parts by weight of artificial graphite powder as a conductive agent and 5 parts by weight of PVdF (polyvinylidene fluoride) NMP (N-methyl-
2-pyrrolidone) solution is kneaded to prepare a slurry,
This slurry was applied on both sides of an aluminum foil as a positive electrode current collector by the doctor blade method, and then at 150 ° C for 2
After vacuum drying for an hour, an electrode plate having a positive electrode mixture layer with a thickness of 50 μm on each surface was produced. This electrode plate was rolled to produce a strip-shaped positive electrode.

【0016】〔負極の作製〕天然黒鉛粉末(Lc>10
00Å、d002 =3.35Å)をペレット状にし、この
ペレット(ターゲット)に、イオン注入装置(ビームエ
ネルギー:30〜400eV、ビーム電流:50〜30
0nA)を用いて、窒素イオンを注入して、全炭素原子
の0.05%を窒素原子で置換した変性天然黒鉛を得
た。炭素原子の置換率はイオンクロマトグラフィーによ
り定量した。次いで、この変性天然黒鉛を粉砕して、平
均粒径約20μmの変性天然黒鉛粉末を作製した。
[Production of Negative Electrode] Natural graphite powder (Lc> 10)
00Å, d 002 = 3.35Å) is made into a pellet, and an ion implanter (beam energy: 30 to 400 eV, beam current: 50 to 30) is put into this pellet (target).
0 nA) was used to inject nitrogen ions to obtain modified natural graphite in which 0.05% of all carbon atoms were replaced with nitrogen atoms. The substitution rate of carbon atoms was quantified by ion chromatography. Next, the modified natural graphite was pulverized to prepare a modified natural graphite powder having an average particle size of about 20 μm.

【0017】次いで、この変性天然黒鉛粉末95重量部
とPVdF5重量部のNMP溶液とを混練してスラリー
を調製し、このスラリーをドクターブレード法により負
極集電体としての銅箔の両面に塗布し、150°Cで2
時間真空乾燥して、各面に厚さ50μmの負極合剤層を
有する極板を作製した。この極板を圧延して、帯状の試
験電極(本発明電極)を作製した。また、別途、変性し
ていない天然黒鉛粉末(以下、「非変性天然黒鉛粉末」
と称する)95重量部をそのまま負極材料として使用し
たこと以外は上記と同様にして、試験電極(比較電極)
を作製した。
Next, 95 parts by weight of this modified natural graphite powder and 5 parts by weight of PVdF in an NMP solution are kneaded to prepare a slurry, and this slurry is applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method. , 2 at 150 ° C
After vacuum drying for an hour, an electrode plate having a negative electrode mixture layer with a thickness of 50 μm on each surface was produced. This electrode plate was rolled to produce a strip-shaped test electrode (electrode of the present invention). Separately, unmodified natural graphite powder (hereinafter referred to as "non-modified natural graphite powder"
Test electrode (comparative electrode) in the same manner as described above except that 95 parts by weight was directly used as the negative electrode material.
Was produced.

【0018】〔試験電池の組立〕上記の、正極及び負極
を用いて、負極容量が正極容量よりも小さいAAサイズ
のリチウム二次電池(試験電池)を作製した。なお、セ
パレータとしてポリエチレン製の微多孔膜を、非水電解
液としてエチレンカーボネートとジエチルカーボネート
との体積比1:1の混合溶媒にLiPF6 を1モル/リ
ットル溶かしたものを、それぞれ使用した。
[Assembly of Test Battery] Using the above positive electrode and negative electrode, an AA size lithium secondary battery (test battery) having a negative electrode capacity smaller than the positive electrode capacity was produced. A polyethylene microporous film was used as a separator, and a non-aqueous electrolyte solution was prepared by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.

【0019】〔充放電試験〕各試験電池を、25°Cに
て、200mAで4.1Vまで充電した後、200mA
で2.75Vまで放電して、それぞれの電池の放電特性
を調べた。図1は、各電池の放電曲線を、縦軸に電圧
(V)を、また横軸に放電容量(mAh)を、それぞれ
とって示したグラフである。図1中、D1(正極活物
質:LiNiO2、負極材料:変性黒鉛粉末),D2
(正極活物質:LiCoO2 、負極材料:変性黒鉛粉
末),D3(正極活物質:LiNi0.5 Co0.5 2
負極材料:変性黒鉛粉末)は本発明電極を使用した試験
電池であり、X1(正極活物質:LiNiO2 、負極材
料:非変性黒鉛粉末),X2(正極活物質:LiCoO
2 、負極材料:非変性黒鉛粉末),X3(正極活物質:
LiNi0.5 Co0.5 2 、負極材料:非変性黒鉛粉
末)は比較電極を使用した試験電池である。
[Charge / Discharge Test] Each test battery was charged to 200 V at 200 mA at 25 ° C.
Was discharged to 2.75 V and the discharge characteristics of each battery were examined. FIG. 1 is a graph showing the discharge curve of each battery, with the vertical axis representing voltage (V) and the horizontal axis representing discharge capacity (mAh). In FIG. 1, D1 (positive electrode active material: LiNiO 2 , negative electrode material: modified graphite powder), D2
(Positive electrode active material: LiCoO 2 , negative electrode material: modified graphite powder), D3 (positive electrode active material: LiNi 0.5 Co 0.5 O 2 ,
The negative electrode material: modified graphite powder is a test battery using the electrode of the present invention, and X1 (positive electrode active material: LiNiO 2 , negative electrode material: non-modified graphite powder), X2 (positive electrode active material: LiCoO 2).
2 , negative electrode material: non-modified graphite powder), X3 (positive electrode active material:
LiNi 0.5 Co 0.5 O 2 , negative electrode material: unmodified graphite powder) is a test battery using a reference electrode.

【0020】図1に示すように、試験電池D1,D2,
D3は、それぞれ試験電池X1,X2,X3に比べて、
放電容量が大きい。この事実から、正極活物質の種類を
問わず、本発明電極は、比較電極に比べて、負極材料の
単位重量当たりの容量が格段大きいことが分かる。
As shown in FIG. 1, test batteries D1, D2,
D3 is larger than the test batteries X1, X2 and X3, respectively.
The discharge capacity is large. From this fact, it can be seen that the electrode of the present invention has a significantly larger capacity per unit weight of the negative electrode material than the comparative electrode, regardless of the type of the positive electrode active material.

【0021】(実験2) 〔試験電極の作製〕実験1での負極の作製手順と同様に
して、ホウ素原子及び/又は窒素原子による炭素原子の
置換率が異なる種々の変性天然黒鉛粉末を作製し、次い
でこれらを用いて試験電極(本発明電極)を作製した。
ホウ素原子への炭素原子の置換率は原子吸光法により、
また窒素原子への炭素原子の置換率は、実験1における
と同様、イオンクロマトグラフィーにより、それぞれ定
量した。また、別途、非変性天然黒鉛粉末を使用した試
験電極(比較電極)を作製した。
(Experiment 2) [Preparation of Test Electrode] Similar to the procedure for preparing the negative electrode in Experiment 1, various modified natural graphite powders having different carbon atom substitution rates by boron atoms and / or nitrogen atoms were prepared. Then, using these, a test electrode (electrode of the present invention) was produced.
The substitution ratio of carbon atom to boron atom is determined by atomic absorption method.
Further, the substitution rate of the carbon atom for the nitrogen atom was quantified by ion chromatography as in Experiment 1. Separately, a test electrode (reference electrode) using non-modified natural graphite powder was prepared.

【0022】〔試験セルの組立〕上記の各試験電極と、
金属リチウム箔(対極)とを、ポリエチレン製の微多孔
膜(セパレータ)を介して渦巻き状に巻回して渦巻電極
体を作製し、これを金属リチウム板(参照極)ととも
に、容器に収納し、非水電解液を注液して、試験セルA
0〜A6,B1〜B6,C1〜C6を組み立てた。非水
電解液は、実験1で用いたものと同じものを用いた。各
試験セルに使用した変性天然黒鉛粉末の置換元素及び置
換率を表1に示す。なお、試験セルC1〜C6でのBと
Nとの原子比は、いずれも1:1である。
[Assembly of Test Cell] Each test electrode described above,
A metallic lithium foil (counter electrode) and a polyethylene microporous film (separator) are spirally wound to produce a spirally wound electrode body, which is stored in a container together with a metallic lithium plate (reference electrode). Inject non-aqueous electrolyte to test cell A
0-A6, B1-B6, C1-C6 were assembled. The same non-aqueous electrolyte solution as that used in Experiment 1 was used. Table 1 shows the substitution elements and substitution rates of the modified natural graphite powder used in each test cell. The atomic ratios of B and N in the test cells C1 to C6 are all 1: 1.

【0023】[0023]

【表1】 [Table 1]

【0024】〔充放電試験〕各試験セルを、25°Cに
て、電流密度0.1mA/cm2 で0Vまで充電した
後、電流密度0.1mA/cm2 で1Vまで放電して、
それぞれ試験セルの変性天然黒鉛粉末の単位重量当たり
の放電容量を調べた。結果を図2に示す。図2は、ホウ
素原子及び/又は窒素原子による炭素原子の置換率と負
極材料の単位重量当たりの放電容量の関係を、縦軸に単
位重量当たりの放電容量(mAh/g)を、また横軸に
炭素の置換率(%)を、それぞれとって示したグラフで
ある。図2中、□(A1〜A6)は炭素原子をホウ素原
子で置換した試験電極を用いた試験セル、○(B1〜B
6)は炭素原子を窒素原子で置換した試験電極を用いた
試験セル、また△(C1〜C6)は炭素原子をホウ素原
子及び窒素原子(原子比1:1)で置換した試験電極を
用いた試験セルである。
[Charge / Discharge Test] Each test cell was charged at 25 ° C. with a current density of 0.1 mA / cm 2 to 0 V and then discharged with a current density of 0.1 mA / cm 2 to 1 V,
The discharge capacity per unit weight of the modified natural graphite powder in each test cell was examined. The results are shown in FIG. FIG. 2 shows the relationship between the substitution rate of carbon atoms by boron atoms and / or nitrogen atoms and the discharge capacity per unit weight of the negative electrode material, the vertical axis represents the discharge capacity per unit weight (mAh / g), and the horizontal axis. 3 is a graph showing the carbon substitution rate (%). In FIG. 2, □ (A1 to A6) are test cells using test electrodes in which carbon atoms are replaced by boron atoms, and ◯ (B1 to B6).
6) was a test cell using a test electrode in which carbon atoms were replaced by nitrogen atoms, and Δ (C1 to C6) was a test electrode in which carbon atoms were replaced by boron atoms and nitrogen atoms (atomic ratio 1: 1). This is a test cell.

【0025】図2より、ホウ素原子及び/又は窒素原子
による炭素原子の置換率が0.01〜0.1%の場合
に、負極材料の単位重量当たりの容量が極めて大きい非
水電解質二次電池用負極が得られることが分かる。
From FIG. 2, when the substitution rate of carbon atoms by boron atoms and / or nitrogen atoms is 0.01 to 0.1%, the capacity per unit weight of the negative electrode material is extremely large. It can be seen that a negative electrode for use is obtained.

【0026】[0026]

【発明の効果】本発明電極は、負極材料の単位重量当た
りの容量が極めて大きいので、これを非水電解質二次電
池の負極として使用することにより、極めて高エネルギ
ー密度な電池を得ることが可能となる。
Since the electrode of the present invention has a very large capacity per unit weight of the negative electrode material, it can be used as a negative electrode of a non-aqueous electrolyte secondary battery to obtain a battery having an extremely high energy density. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電極を使用した電池及び比較電極を使用
した電池の放電曲線を示したグラフである。
FIG. 1 is a graph showing discharge curves of a battery using an electrode of the present invention and a battery using a reference electrode.

【図2】ホウ素原子及び/又は窒素原子による炭素原子
の置換率と、負極材料の単位重量当たりの放電容量の関
係を示したグラフである。
FIG. 2 is a graph showing the relationship between the substitution rate of carbon atoms with boron atoms and / or nitrogen atoms and the discharge capacity per unit weight of the negative electrode material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】全炭素原子の0.01〜0.1%がホウ素
原子及び/又は窒素原子で置換された、c軸方向の結晶
子の大きさ(Lc)が150Å以上であり、且つ格子面
(002)面の面間隔(d002 )が3.38Å以下であ
る変性炭素材料がイオン吸蔵材として用いられているこ
とを特徴とする非水電解質二次電池用負極。
1. A crystallite size (Lc) in the c-axis direction, in which 0.01 to 0.1% of all carbon atoms are substituted with boron atoms and / or nitrogen atoms, is 150 Å or more, and the lattice A negative electrode for a non-aqueous electrolyte secondary battery, characterized in that a modified carbon material having a surface spacing (d 002 ) of the plane (002) plane of 3.38 Å or less is used as an ion storage material.
【請求項2】請求項1記載の非水電解質二次電池用負極
を備えた非水電解質二次電池。
2. A non-aqueous electrolyte secondary battery comprising the negative electrode for a non-aqueous electrolyte secondary battery according to claim 1.
JP14846096A 1996-05-16 1996-05-16 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same Expired - Fee Related JP3172444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14846096A JP3172444B2 (en) 1996-05-16 1996-05-16 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14846096A JP3172444B2 (en) 1996-05-16 1996-05-16 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same

Publications (2)

Publication Number Publication Date
JPH09306495A true JPH09306495A (en) 1997-11-28
JP3172444B2 JP3172444B2 (en) 2001-06-04

Family

ID=15453258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14846096A Expired - Fee Related JP3172444B2 (en) 1996-05-16 1996-05-16 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same

Country Status (1)

Country Link
JP (1) JP3172444B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022687A1 (en) * 1998-10-09 2000-04-20 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
US6869546B1 (en) * 1999-05-25 2005-03-22 Sanyo Electric Co., Ltd. Carbon materials, electrodes and nonaqueous electrolyte secondary cells
US6989137B1 (en) 1998-10-09 2006-01-24 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022687A1 (en) * 1998-10-09 2000-04-20 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
KR100450348B1 (en) * 1998-10-09 2004-09-30 쇼와 덴코 가부시키가이샤 Carbonaceous material for cell and cell containing the carbonaceous material
US6989137B1 (en) 1998-10-09 2006-01-24 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
US6869546B1 (en) * 1999-05-25 2005-03-22 Sanyo Electric Co., Ltd. Carbon materials, electrodes and nonaqueous electrolyte secondary cells

Also Published As

Publication number Publication date
JP3172444B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
JP3316412B2 (en) Lithium secondary battery
JP4878683B2 (en) Lithium secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
US20080286657A1 (en) Non-aqueous electrolyte secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
KR20020069148A (en) Lithium Secondary Cell
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
US11870055B2 (en) Surface-fluorinated silicon-containing electrodes
US6764791B2 (en) Rechargeable lithium battery
JP7177277B2 (en) Electrodes for lithium secondary batteries
JP3188033B2 (en) Non-aqueous secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
JPH08171935A (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JPH1145715A (en) Manufacture of nonaqueous electrolytic secondary battery and of its negative electrode
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JP3188032B2 (en) Lithium secondary battery
JP4307927B2 (en) Nonaqueous electrolyte secondary battery
JPH08171936A (en) Lithium secondary battery
JP3172444B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same
JP3519766B2 (en) Non-aqueous secondary battery
JP2002025626A (en) Aging method for lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees