JP3188033B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3188033B2
JP3188033B2 JP10052293A JP10052293A JP3188033B2 JP 3188033 B2 JP3188033 B2 JP 3188033B2 JP 10052293 A JP10052293 A JP 10052293A JP 10052293 A JP10052293 A JP 10052293A JP 3188033 B2 JP3188033 B2 JP 3188033B2
Authority
JP
Japan
Prior art keywords
battery
powder
particle size
present
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10052293A
Other languages
Japanese (ja)
Other versions
JPH06295725A (en
Inventor
佳典 喜田
浩司 上野
正久 藤本
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14276295&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3188033(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10052293A priority Critical patent/JP3188033B2/en
Publication of JPH06295725A publication Critical patent/JPH06295725A/en
Application granted granted Critical
Publication of JP3188033B2 publication Critical patent/JP3188033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水系二次電池に係わ
り、詳しくは負極材料として黒鉛粉末を使用した非水系
二次電池の当該黒鉛粉末の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to an improvement of a non-aqueous secondary battery using graphite powder as a negative electrode material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
黒鉛粉末が、可撓性に優れること、樹枝状の電析リチウ
ムの成長に因る内部短絡の虞れが無いことなどの理由か
ら、従前の金属リチウムに代わる非水系二次電池用負極
材料として提案されている。
2. Description of the Related Art In recent years,
Graphite powder is excellent in flexibility, because there is no risk of internal short-circuit due to the growth of dendritic lithium, as a negative electrode material for non-aqueous secondary batteries to replace conventional metallic lithium Proposed.

【0003】而して、従来、平均粒径10〜30μm程
度に粉砕された黒鉛粉末が使用されているが、この黒鉛
粉末には、粒径10μm以下のかなり小さな粉末や、粒
径30μm以上のかなり大きな粉末が多量に含まれてい
る。
[0003] Conventionally, graphite powder pulverized to an average particle size of about 10 to 30 µm has been used. This graphite powder includes a considerably small powder having a particle size of 10 µm or less and a powder having a particle size of 30 µm or more. It contains a large amount of fairly large powder.

【0004】しかしながら、このような黒鉛粉末を使用
した従来電池には、初期充放電効率、保存特性、急速充
電特性及び高率放電特性などの電池特性があまり良くな
いという問題があった。
However, conventional batteries using such graphite powder have a problem that battery characteristics such as initial charge / discharge efficiency, storage characteristics, rapid charge characteristics and high rate discharge characteristics are not very good.

【0005】これらの問題を解決するべく鋭意研究した
結果、本発明者らは、粒径の小さい粉末を多量に含む黒
鉛粉末を使用した場合は初期充放電効率及び保存特性が
悪くなり、一方粒径の大きい粉末を多量に含む黒鉛粉末
を使用した場合は急速充電特性及び高率放電特性が悪く
なるという、黒鉛粉末の粒径と電池特性との間に密接な
関連があることを見出した。
As a result of intensive studies to solve these problems, the present inventors have found that when graphite powder containing a large amount of powder having a small particle size is used, the initial charge / discharge efficiency and storage characteristics are deteriorated. It has been found that when a graphite powder containing a large amount of a powder having a large diameter is used, the rapid charge characteristics and the high rate discharge characteristics are deteriorated, that is, there is a close relationship between the particle size of the graphite powder and the battery characteristics.

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、従来電池に比し
電池特性に優れた非水系二次電池を提供するにある。
The present invention has been made based on such findings, and an object of the present invention is to provide a non-aqueous secondary battery having excellent battery characteristics as compared with conventional batteries.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の請求項1記載の発明に係る非水系二次電池(以下「第
1電池」と称する。)は、BET法による比表面積が1
〜10m 2 /gであり、平均粒径が10〜30μmであ
り、且つ、粒径30μm以上の粉末の含有率が10%以
下である黒鉛粉末が負極材料として使用されてなる。
According to a first aspect of the present invention, there is provided a non-aqueous secondary battery (hereinafter referred to as a "first battery") having a specific surface area of 1 according to a BET method .
10 to 10 m 2 / g, and the average particle size is 10 to 30 μm.
And the content of powder having a particle size of 30 μm or more is 10% or less.
The lower graphite powder is used as a negative electrode material.

【0008】また、請求項2記載の発明に係る非水系二
次電池(以下「第2電池」と称する。)は、BET法に
よる比表面積が1〜10m 2 /gであり、平均粒径が1
0〜30μmであり、且つ、粒径10μm以下の粉末の
含有率及び粒径30μm以上の粉末の含有率がいずれも
10%以下である黒鉛粉末が負極材料として使用されて
なる。ここに、BET(Brunauer-Emmett-Teller)法と
は、吸着等温線上で単分子層吸着量を求め、吸着分子の
断面積から表面積を決定して比表面積を算出する方法で
ある。以下において、上記の第1電池及び第2電池を総
称して、本発明電池と称することがある。
[0008] The non-aqueous secondary battery (hereinafter referred to as "second battery") according to the second aspect of the invention is a BET method .
Has a specific surface area of 1 to 10 m 2 / g and an average particle size of 1
0-30 μm, and powder having a particle size of 10 μm or less.
Both the content and the content of powder with a particle size of 30 μm or more
10% or less of graphite powder is used as negative electrode material
Become. Here, BET (Brunauer-Emmett-Teller) method and
Calculates the adsorption amount of the monolayer on the adsorption isotherm,
By calculating the specific surface area by determining the surface area from the cross-sectional area
is there. Hereinafter, the first battery and the second battery are referred to as a total.
The battery of the present invention may be referred to as the battery of the present invention.

【0009】[0009]

【0010】本発明電池では、いずれもBET法による
比表面積(以下、「BET比表面積」と称する。)が1
〜10m2 /gであり、平均粒径が10〜30μmであ
る黒鉛粉末が使用される。これは、BET比表面積が1
2 /g未満の場合は、電解液との接触面積が過小なた
め急速充電特性及び高率放電特性が低下し、一方BET
比表面積が10m2 /gを越えた場合は、電解液との接
触面積が過大なため保存特性及び初期充放電効率が低下
するとともに、活物質と銅箔等の芯体(負極集電体)と
の密着性が低下して充放電容量が低下するからであり、
また平均粒径が10μm未満の場合は、初期充放電効率
が著しく低下し、一方平均粒径が30μmを越えた場合
は、高率放電特性が著しく低下するからである。
Each of the batteries of the present invention has a specific surface area (hereinafter, referred to as "BET specific surface area") of 1 according to the BET method.
~10m a 2 / g, the graphite powder having an average particle diameter of 10~30μm is used. This means that the BET specific surface area is 1
If it is less than m 2 / g, the contact area with the electrolytic solution is too small, so that the quick charge characteristics and the high rate discharge characteristics are reduced.
When the specific surface area exceeds 10 m 2 / g, the storage area and the initial charge / discharge efficiency are reduced due to an excessive contact area with the electrolyte, and the active material and a core such as a copper foil (negative electrode current collector) And the charge / discharge capacity is reduced,
Further, when the average particle size is less than 10 μm, the initial charge / discharge efficiency is significantly reduced, while when the average particle size is more than 30 μm, the high-rate discharge characteristics are significantly reduced.

【0011】[0011]

【0012】第1電池では、上記比表面積及び平均粒径
についての規制のほか、さらに粒径30μm以上の粉末
の含有率が10%以下に規制された黒鉛粉末が使用され
る。これは、粒径30μm以上の大きな粉末の含有率が
10%を越えると、充放電時の反応面積が小さくなると
ともに、充電時に大きな粉末の中心部までリチウムイオ
ン等の金属イオンを吸蔵したり放電時にその中心部から
金属イオンを放出したりするのに時間がかかるため、急
速充電特性及び高率放電特性が低下するからである。
In the first battery , in addition to the regulation on the specific surface area and the average particle size, graphite powder whose content of powder having a particle size of 30 μm or more is regulated to 10% or less is used. This is because, when the content of a large powder having a particle diameter of 30 μm or more exceeds 10%, the reaction area during charging and discharging becomes small, and at the time of charging, metal ions such as lithium ions are occluded or discharged to the center of the large powder. This is because it sometimes takes time to release metal ions from the central portion, so that the rapid charge characteristics and the high-rate discharge characteristics deteriorate.

【0013】第2電池では、上記比表面積及び平均粒径
についての規制のほか、さらに粒径10μm以下の粉末
の含有率及び粒径30μm以上の粉末の含有率がいずれ
も10%以下に規制された黒鉛粉末が使用される。この
第2電池は、第1電池をさらに限定した電池であり、従
来電池と比較して、初期充放電効率、保存特性、急速充
電特性及び高率放電特性のいずれの点においても優れる
電池である。
In the second battery , in addition to the regulation on the specific surface area and the average particle diameter, the content of powder having a particle diameter of 10 μm or less and the content of powder having a particle diameter of 30 μm or more are both regulated to 10% or less. Graphite powder is used. this
The second battery is a battery in which the first battery is further limited , and is superior in all of the initial charge / discharge efficiency, storage characteristics, rapid charge characteristics, and high-rate discharge characteristics as compared with conventional batteries.

【0014】本発明における黒鉛粉末は、上記した比表
面積及び粒径に関する規制以外は特に限定されないが、
電池特性に優れた非水系二次電池を得る上で、格子面
(002)面におけるd値(d002 )が3.350〜
3.365Å、就中3.355〜3.360Å、またc
軸方向の結晶子の大きさ(Lc)が200Å以上、就中
500Å以上の黒鉛粉末を使用することが好ましい。
[0014] The graphite powder in the present invention is not particularly limited except for the regulation on the specific surface area and the particle size described above.
In order to obtain a non-aqueous secondary battery having excellent battery characteristics, the d value (d 002 ) on the lattice plane (002) plane should be 3.350 to 3.350.
3.365Å, especially 3.355 to 3.360Å, and c
It is preferable to use graphite powder having an axial crystallite size (Lc) of 200 ° or more, particularly 500 ° or more.

【0015】上述したように、本発明電池は、粒度調整
された黒鉛粉末を負極材料として使用した点に最大の特
徴を有するものであり、正極材料、非水系電解質、セパ
レータ(液体電解質を使用する場合)などの電池を構成
する他の部材については、従来非水系二次電池用として
実用され、或いは提案されている種々の材料を使用する
ことが可能である。
As described above, the battery of the present invention has the greatest feature in that the graphite powder whose particle size has been adjusted is used as a negative electrode material. The battery of the present invention has a positive electrode material, a non-aqueous electrolyte, and a separator (using a liquid electrolyte). For the other members constituting the battery such as (case), it is possible to use various materials which have been conventionally used or proposed for non-aqueous secondary batteries.

【0016】例えば、正極材料(活物質)としては、L
iCoO2 、LiNiO2 、LiMnO2 、LiFeO
2 が好適なものとして挙げられる。
For example, as the positive electrode material (active material), L
iCoO 2 , LiNiO 2 , LiMnO 2 , LiFeO
2 is preferred.

【0017】また、非水系電解液としては、エチレンカ
ーボネート、ビニレンカーボネート、プロピレンカーボ
ネートなどの有機溶媒や、これらとジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、エトキシメトキシエタ
ンなどの低沸点溶媒との混合溶媒に、LiPF6 、Li
ClO4 、LiCF3 SO3 などの電解液溶質を0.7
〜1.5M(モル/リットル)、就中1Mの割合で溶か
した溶液が例示される。液漏れの無いポジションフリー
の電池を得るために固体電解質を使用してもよい。
Examples of the non-aqueous electrolyte include organic solvents such as ethylene carbonate, vinylene carbonate, and propylene carbonate, and organic solvents such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, and ethoxy. LiPF 6 , LiPF 6 and LiPF 6 are added to a mixed solvent with a low boiling point solvent such as methoxyethane.
Electrolyte solutes such as ClO 4 , LiCF 3 SO 3
For example, a solution dissolved at a rate of 1.51.5 M (mol / liter), particularly 1 M is exemplified. A solid electrolyte may be used to obtain a position-free battery without liquid leakage.

【0018】[0018]

【作用】第1電池では、粒径30μm以上の粉末の含有
率が10%以下に規制された黒鉛粉末が使用されている
ので、反応面積が大きいとともに、充放電時の金属イオ
ンの吸蔵放出が速やかに行われる。
The first battery contains a powder having a particle diameter of 30 μm or more.
Graphite powder whose rate is regulated to 10% or less is used
Therefore, the reaction area is large and metal ions
Is quickly absorbed and released.

【0019】[0019]

【0020】第2電池では、粒径10μm以下の粉末の
含有率及び粒径30μm以上の粉末の含有率がいずれも
10%以下に規制された黒鉛粉末が使用されているの
で、自己放電し難く、また充放電時の金属イオンの吸蔵
放出が速やかに行われる。
In the second battery , graphite powder whose content of powder having a particle size of 10 μm or less and content of powder having a particle size of 30 μm or more are both regulated to 10% or less is used. In addition, the occlusion and release of metal ions at the time of charge and discharge are performed quickly.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0022】(実施例1)単3型(AA)の非水系二次
電池(本発明電池)を作製した。
(Example 1) AA type (AA) non-aqueous secondary batteries (batteries of the present invention) were prepared.

【0023】〔正極〕正極活物質としてのLiCoO2
と導電剤としての人造黒鉛とを重量比9:1で混合して
得た混合物を、ポリフッ化ビニリデンの5重量%N−メ
チルピロリドン(NMP)溶液に分散させてスラリーを
調製し、このスラリーをドクターブレード法にて正極集
電体としてのアルミニウム箔の両面に塗布した後、15
0°Cで2時間真空乾燥して正極を作製した。
[Positive electrode] LiCoO 2 as positive electrode active material
A mixture obtained by mixing the graphite and artificial graphite as a conductive agent at a weight ratio of 9: 1 was dispersed in a 5% by weight N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride to prepare a slurry. After applying to both sides of aluminum foil as a positive electrode current collector by doctor blade method, 15
Vacuum drying was performed at 0 ° C. for 2 hours to produce a positive electrode.

【0024】〔負極〕BET比表面積9.4m 2 /g、平均粒径10μm、粒
径10μm以下の粉末の含有率24%、粒径30μm以
上の粉末の含有率4%の 黒鉛粉末を結着剤としてのポリ
フッ化ビニリデンの5重量%NMP溶液に分散させてス
ラリーを調製し、このスラリーをドクターブレード法に
て負極集電体としての銅箔の両面に塗布した後、150
°Cで2時間真空乾燥して負極を作製した。
[Negative electrode] BET specific surface area 9.4 m 2 / g, average particle size 10 μm, particle size
24% content of powder with a diameter of 10 μm or less, particle diameter of 30 μm or less
A graphite powder having a powder content of 4% is dispersed in a 5% by weight NMP solution of polyvinylidene fluoride as a binder to prepare a slurry, and this slurry is subjected to a doctor blade method to form a copper as a negative electrode current collector. After applying on both sides of the foil, 150
Vacuum drying was performed at 2 ° C. for 2 hours to produce a negative electrode.

【0025】〔電解液〕エチレンカーボネートとジメチ
ルカーボネートとの等体積混合溶媒に、LiPF6 を1
Mの割合で溶かして電解液を調製した。
[Electrolytic Solution] LiPF 6 is added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
M was dissolved at a ratio of M to prepare an electrolytic solution.

【0026】〔電池の作製〕 以上の正負両極及び電解液を用いて単3型の本発明電池
BA2(第1電池)を作製した。なお、セパレータとし
ては、ポリプロピレン製の微多孔膜(セラニーズ社製、
商品名「セルガード」)を使用し、これに先の電解液を
含浸させた。
[Preparation of Battery] AA type battery of the present invention using both the positive and negative electrodes and the electrolytic solution described above.
BA2 (first battery) was produced. In addition, as a separator, a polypropylene microporous membrane (manufactured by Celanese Corporation,
(Trade name "Celgard"), which was impregnated with the electrolytic solution.

【0027】図1は作製した本発明電池BA2を模式的
に示す断面図であり、図示の電池BA2は、正極1、負
極2、これら両電極を離間するセパレータ3、正極リー
ド4、負極リード5、正極外部端子6、負極缶7などか
らなる。正極1及び負極2は、非水系電解液を注入され
たセパレータ3を介して渦巻き状に巻き取られた状態で
負極缶7内に収容されており、正極1は正極リード4を
介して正極外部端子6に、また負極2は負極リード5を
介して負極缶7に接続され、電池内部で生じた化学エネ
ルギーを電気エネルギーとして外部へ取り出し得るよう
になっている。
[0027] Figure 1 is a sectional view schematically showing a present battery BA2 fabricated battery BA2 shown, positive electrode 1, negative electrode 2, a separator 3 for separating the both electrodes, a positive electrode lead 4, a negative electrode lead 5 , A positive electrode external terminal 6, a negative electrode can 7, and the like. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 in a state of being spirally wound through a separator 3 into which a non-aqueous electrolyte is injected. The terminal 6 and the negative electrode 2 are connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery can be taken out as electric energy.

【0028】[0028]

【0029】(実施例2) 負極材料として、BET比表面積6.9m2 /g、平均
粒径12μm、粒径10μm以下の粉末の含有率3%、
粒径30μm以上の粉末の含有率5%の黒鉛粉末を使用
したこと以外は実施例1と同様にして、本発明電池BA
3(第2電池)を作製した。
Example 2 As a negative electrode material, a BET specific surface area of 6.9 m 2 / g, an average particle diameter of 12 μm, and a content of powder having a particle diameter of 10 μm or less 3%,
Battery BA of the present invention was prepared in the same manner as in Example 1 except that graphite powder having a content of 5% of powder having a particle size of 30 μm or more was used.
3 ( second battery ) was produced.

【0030】(比較例)負極材料として、黒鉛塊に空気
流を噴射して粉砕した黒鉛粉末を粒度選別せずにそのま
ま使用したこと以外は実施例1と同様にして、比較電池
BC1を作製した。因みに、このとき使用した黒鉛粉末
は、BET比表面積7.5m2 /g、平均粒径12μ
m、粒径10μm以下の粉末の含有率20%、粒径30
μm以上の粉末の含有率17%のものであった。
(Comparative Example) A comparative battery BC1 was produced in the same manner as in Example 1 except that graphite powder pulverized by injecting an air stream into a graphite lump was used as it was without being subjected to particle size selection. . Incidentally, the graphite powder used at this time had a BET specific surface area of 7.5 m 2 / g and an average particle size of 12 μm.
m, content of powder having a particle size of 10 μm or less 20%, particle size 30
The content of the powder having a particle size of μm or more was 17%.

【0031】〔初期充放電効率〕 本発明電池BA3及び比較電池BC1について、200
mAで充電終止電圧5Vまで充電した後、200mAで
放電終止電圧2Vまで放電して、各電池の初期充放電効
率を調べた。結果を図2に示す。
[Initial Charge / Discharge Efficiency] For the battery BA3 of the present invention and the comparative battery BC1, a 200
After charging the battery to a charge end voltage of 5 V at mA, the battery was discharged to a discharge end voltage of 2 V at 200 mA, and the initial charge / discharge efficiency of each battery was examined. The results are shown in FIG.

【0032】図2は、各電池の初期充放電効率を、縦軸
に電池電圧(V)を、また横軸に黒鉛粉末1g当たりの
充電容量又は放電容量(mAh/g)をとって示したグ
ラフである。同図より、粒径の小さい粉末の含有量が少
ない本発明電池BA3は、微粉末を多く含む比較電池B
C1に比し、初期充放電効率が高いことが分かる。
FIG. 2 shows the initial charge / discharge efficiency of each battery, the vertical axis represents the battery voltage (V), and the horizontal axis represents the charge capacity or discharge capacity (mAh / g) per gram of graphite powder. It is a graph. As shown in the figure, the battery BA3 of the present invention having a small content of the powder having a small particle size is a comparative battery B containing a large amount of fine powder.
Compared to C1, is Ru divided high initial charge-discharge efficiency.

【0033】〔保存特性〕 本発明電池BA3及び比較電池BC1について、200
mAで充電終止電圧5Vまで充電した後、室温(25°
C)にて3日間保存し、次いで200mAで放電終止電
圧2Vまで放電して、各電池の保存特性を調べた。結果
を図3に示す。
[Storage Characteristics] The battery BA3 of the present invention and the comparative battery BC1 have a storage capacity of 200
After charging the battery to a charge termination voltage of 5 V with mA, the room temperature (25 ° C.)
C) for 3 days, and then discharged at 200 mA to a discharge end voltage of 2 V, and the storage characteristics of each battery were examined. The results are shown in FIG.

【0034】図3は、各電池の保存特性を、縦軸に電池
電圧(V)を、また横軸に黒鉛粉末1g当たりの充電容
量又は放電容量(mAh/g)をとって示したグラフで
ある。同図より、粒径の小さい粉末の含有量が少ない本
発明電池BA3は、微粉末を多く含む比較電池BC1に
比し、保存後の放電容量の減少が小さく保存特性に優れ
ていることが分かる。
FIG. 3 is a graph showing the storage characteristics of each battery, the vertical axis representing battery voltage (V), and the horizontal axis representing charge capacity or discharge capacity (mAh / g) per gram of graphite powder. is there. The figure shows that Battery BA3 of the present invention, which has a small content of powder having a small particle size, has a small decrease in discharge capacity after storage and is excellent in storage characteristics as compared with Comparative Battery BC1, which contains a large amount of fine powder. that either.

【0035】〔急速充電特性〕本発明電池BA2、BA
3及び比較電池BC1について、500mAで充電終止
電圧5Vまで充電して、各電池の急速充電特性を調べ
た。結果を図4に示す。
[Quick Charging Characteristics] Batteries BA2 and BA of the present invention
3 and comparative battery BC1 were charged at 500 mA to a charge termination voltage of 5 V, and the rapid charging characteristics of each battery were examined. FIG. 4 shows the results.

【0036】図4は、各電池の急速充電特性を、縦軸に
電池電圧(V)を、また横軸に黒鉛粉末1g当たりの充
電容量(mAh/g)をとって示したグラフである。な
お、図中には、比較のために、200mAで充電したと
きの充電特性も示してある。図4より、粒径の大きい粉
末の含有量が少ない本発明電池BA2及びBA3は、大
きな粉末を多く含む比較電池BC1に比し、200mA
充電時の充電容量と500mA充電時の充電容量との差
が小さく急速充電特性に優れていることが分かる。な
お、本発明電池BA2とBA3とを比較した場合、本発
明電池BA3の方が急速充電特性に若干優れる傾向が認
められるが、これは本発明電池BA3の黒鉛粉末は充電
時に副反応を起こし易い粒径の小さい粒子の含有量が少
ないためリチウムイオンの吸蔵が速やかになされるため
と推察される。
FIG. 4 is a graph showing the rapid charging characteristics of each battery, the battery voltage (V) on the vertical axis, and the charging capacity (mAh / g) per gram of graphite powder on the horizontal axis. In the figure, for comparison, the charging characteristics when charged at 200 mA are also shown. As shown in FIG. 4, the batteries BA2 and BA3 of the present invention having a small content of the powder having a large particle size had 200 mA compared to the comparative battery BC1 having a large amount of the large powder.
It can be seen that the difference between the charging capacity at the time of charging and the charging capacity at the time of 500 mA charging is small, and the rapid charging characteristics are excellent. When the batteries BA2 and BA3 of the present invention are compared with each other, the battery BA3 of the present invention tends to have slightly better quick charge characteristics. It is presumed that because the content of particles having a small particle size is small, lithium ions are quickly absorbed.

【0037】〔高率放電特性〕本発明電池BA2、BA
3及び比較電池BC1について、500mAで放電終止
電圧2Vまで放電して、各電池の高率放電特性を調べ
た。結果を図5に示す。
[High Rate Discharge Characteristics] Batteries BA2 and BA of the present invention
3 and the comparative battery BC1 were discharged at 500 mA to a discharge end voltage of 2 V, and the high rate discharge characteristics of each battery were examined. The results are shown in FIG.

【0038】図5は、各電池の高率放電特性を、縦軸に
電池電圧(V)を、また横軸に黒鉛粉末1g当たりの放
電容量(mAh/g)をとって示したグラフである。な
お、図中には、比較のために、200mAで放電したと
きの放電特性も示してある。図5より、本発明電池BA
2及びBA3は、比較電池BC1に比し、200mA放
電時の放電容量と500mA放電時の放電容量との差が
小さく高率放電特性に優れていることが分かる。なお、
本発明電池BA2とBA3とを比較した場合、高率放電
特性についても、本発明電池BA3の方が若干優れてい
ることが分かる。
FIG. 5 is a graph showing the high rate discharge characteristics of each battery, the battery voltage (V) on the vertical axis, and the discharge capacity (mAh / g) per gram of graphite powder on the horizontal axis. . In the figure, for comparison, the discharge characteristics when discharging at 200 mA are also shown. FIG. 5 shows that the battery BA of the present invention
2 and BA3 show that the difference between the discharge capacity at the time of 200 mA discharge and the discharge capacity at the time of 500 mA discharge is smaller than that of the comparative battery BC1, and the battery is excellent in high-rate discharge characteristics. In addition,
When the batteries BA2 and BA3 of the present invention are compared, it is understood that the battery BA3 of the present invention is slightly superior in high-rate discharge characteristics.

【0039】叙上の実施例では、本発明を単3型電池に
適用する場合について説明したが、本発明電池はその形
状に特に制限はなく、扁平型、角型など、他の種々の形
状の非水系二次電池に適用し得るものである。
In the above embodiment, the case where the present invention is applied to an AA type battery is described. However, the shape of the battery of the present invention is not particularly limited, and various other shapes such as a flat type and a square type can be used. It can be applied to the non-aqueous secondary battery.

【0040】また、実施例では液体電解質を使用した非
水系二次電池を例に挙げて説明したが、本発明は固体電
解質電池にも適用し得るものである。
Further, in the embodiments, a non-aqueous secondary battery using a liquid electrolyte has been described as an example, but the present invention is also applicable to a solid electrolyte battery.

【0041】[0041]

【発明の効果】以上詳述したように、いずれの本発明電
池においても、粒度調整された黒鉛粉末が負極材料とし
て使用されており、特に第1電池は、急速充電特性及び
高率放電特性に優れ、また第2電池は初期充放電効率、
保存特性、急速充電特性及び高率放電特性の全ての特性
に優れるなど、本発明は優れた特有の効果を奏する。
As described in detail above, in any of the present battery, the graphite powders particle size control are used as a negative electrode material, particularly the first battery, rapid charge characteristics and
Excellent high rate discharge characteristics, and the second battery has initial charge and discharge efficiency,
All characteristics of storage characteristics, quick charge characteristics and high rate discharge characteristics
For example , the present invention has excellent unique effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単3型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of an AA battery of the present invention.

【図2】実施例及び比較例で作製した各電池の初期充放
電効率を示すグラフである。
FIG. 2 is a graph showing the initial charge / discharge efficiency of each battery produced in Examples and Comparative Examples.

【図3】実施例及び比較例で作製した各電池の保存特性
を示すグラフである。
FIG. 3 is a graph showing storage characteristics of each battery manufactured in Examples and Comparative Examples.

【図4】実施例及び比較例で作製した各電池の急速充電
特性を示すグラフである。
FIG. 4 is a graph showing the rapid charging characteristics of each battery produced in the examples and comparative examples.

【図5】実施例及び比較例で作製した各電池の高率放電
特性を示すグラフである。
FIG. 5 is a graph showing high-rate discharge characteristics of each of the batteries manufactured in Examples and Comparative Examples.

【符号の説明】BA2 本発明電池 1 正極 2 負極 3 セパレータ[Description of Signs ] BA2 battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平2−284354(JP,A) 特開 平5−74453(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Nishio, inventor 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-2-284354 (JP, A) JP-A-5-74453 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】BET法による比表面積が1〜10m 2
gであり、平均粒径が10〜30μmであり、且つ、粒
径30μm以上の粉末の含有率が10%以下である黒鉛
粉末が負極材料として使用されていることを特徴とする
非水系二次電池。
1. A specific surface area by a BET method of 1 to 10 m 2 /
g, the average particle size is 10 to 30 μm, and the
Graphite having a content of powder having a diameter of 30 μm or more of 10% or less
Characterized in that powder is used as negative electrode material
Non-aqueous secondary battery.
【請求項2】BET法による比表面積が1〜10m 2
gであり、平均粒径が10〜30μmであり、且つ、粒
径10μm以下の粉末の含有率及び粒径30μm以上の
粉末の含有率がいずれも10%以下である黒鉛粉末が負
極材料として使用されていることを特徴とする非水系二
次電池。
2. A specific surface area by a BET method of 1 to 10 m 2 /
g, the average particle size is 10 to 30 μm, and the
Powder having a diameter of 10 μm or less and a particle diameter of 30 μm or more
Graphite powder having a powder content of 10% or less was negative.
Non-aqueous system characterized by being used as an electrode material
Next battery.
JP10052293A 1993-04-02 1993-04-02 Non-aqueous secondary battery Expired - Lifetime JP3188033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10052293A JP3188033B2 (en) 1993-04-02 1993-04-02 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10052293A JP3188033B2 (en) 1993-04-02 1993-04-02 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH06295725A JPH06295725A (en) 1994-10-21
JP3188033B2 true JP3188033B2 (en) 2001-07-16

Family

ID=14276295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10052293A Expired - Lifetime JP3188033B2 (en) 1993-04-02 1993-04-02 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3188033B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660948A (en) * 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
CN1275341C (en) 1996-08-08 2006-09-13 日立化成工业株式会社 Negative-pole producing method for lithium secondary cell
JP5534440B2 (en) * 1996-12-04 2014-07-02 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
EP1009056B1 (en) * 1997-05-27 2007-04-04 TDK Corporation Non-aqueous electrolyte secondary battery
ID21573A (en) * 1997-05-30 1999-06-24 Matsushita Electric Ind Co Ltd SECONDARY ELECTROLITE CELLS NOT WATER AND THE METHOD OF MAKING NEGATIVE ELECTRODES
CN1118880C (en) * 1997-05-30 2003-08-20 松下电器产业株式会社 Nonaqueous electrolyte secondary battery
CH693053A5 (en) 1997-07-04 2003-01-31 Hitachi Powdered Metals graphitic material for a negative electrode of a battery cell to lithium ions and a method to manufacture it.
US6989137B1 (en) 1998-10-09 2006-01-24 Showa Denko K.K. Carbonaceous material for cell and cell containing the carbonaceous material
CA2346752C (en) * 1998-10-09 2010-08-17 Kunio Nishimura Carbon material for battery and battery containing the carbon material
JP2002029720A (en) * 2000-07-04 2002-01-29 Sumitomo Electric Ind Ltd Reformed graphite particles and battery using the same
JP3579340B2 (en) * 2000-09-29 2004-10-20 株式会社東芝 Non-aqueous electrolyte secondary battery
JP4729716B2 (en) * 2003-02-20 2011-07-20 三菱化学株式会社 Lithium secondary battery negative electrode and lithium secondary battery
EP1596451A4 (en) * 2003-02-20 2008-07-09 Mitsubishi Chem Corp Active substance for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
HUE038917T2 (en) 2004-01-16 2018-12-28 Hitachi Chemical Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP4379432B2 (en) * 2006-05-10 2009-12-09 トヨタ自動車株式会社 Power output device, vehicle equipped with the same, and secondary battery setting method

Also Published As

Publication number Publication date
JPH06295725A (en) 1994-10-21

Similar Documents

Publication Publication Date Title
JP4878687B2 (en) Lithium secondary battery
JP3316412B2 (en) Lithium secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP4412778B2 (en) Polymer electrolyte battery
JP3188033B2 (en) Non-aqueous secondary battery
US6764791B2 (en) Rechargeable lithium battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP3244389B2 (en) Lithium secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JPH07122297A (en) Non-aqueous electrolyte battery
JP3188032B2 (en) Lithium secondary battery
JPH08171936A (en) Lithium secondary battery
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP3519766B2 (en) Non-aqueous secondary battery
JP3213458B2 (en) Non-aqueous electrolyte secondary battery
JP2000277111A (en) Lithium secondary battery
JP3615416B2 (en) Lithium secondary battery
JP3349373B2 (en) Lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP3321541B2 (en) Lithium secondary battery
JP2000277112A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12