JPH09302525A - Readily fibrillating fiber and its production - Google Patents

Readily fibrillating fiber and its production

Info

Publication number
JPH09302525A
JPH09302525A JP8119922A JP11992296A JPH09302525A JP H09302525 A JPH09302525 A JP H09302525A JP 8119922 A JP8119922 A JP 8119922A JP 11992296 A JP11992296 A JP 11992296A JP H09302525 A JPH09302525 A JP H09302525A
Authority
JP
Japan
Prior art keywords
fiber
solvent
polymer
bath
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8119922A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政弘 佐藤
Toshimi Yoshimochi
駛視 吉持
Akio Omori
昭夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8119922A priority Critical patent/JPH09302525A/en
Priority to US08/726,930 priority patent/US5861213A/en
Priority to TW085112699A priority patent/TW339371B/en
Priority to KR1019960046618A priority patent/KR100225318B1/en
Priority to CN96121085A priority patent/CN1068074C/en
Priority to EP96116798A priority patent/EP0769579B1/en
Priority to DE69606007T priority patent/DE69606007T2/en
Publication of JPH09302525A publication Critical patent/JPH09302525A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber which extremely easily gives fibrillated fibers excellent in hydrophilicity, resistance to fusing, wiping-off properties, filtering properties, fine particle-capturing properties and reinforcing properties and having high strength. SOLUTION: (A) A vinyl alcohol polymer and (B) a polymer which is incompatible with the vinyl alcohol polymer are dissolved in an organic common solvent to prepare a spinning dope of an islands-in-sea phase structure in which the polymer (B) disperses as islands of 1-20μm particle sizes. The prepared spinning dope is wet- or dry-spun in a coagulation bath containing an organic solvent which can coagulate both the polymers, and the extruded yarn is passed through a solvent-replacing bath containing alcohols, ketones and water, dried and drawn at a draw ratio of >=8 whereby the objective readily fibrillating fiber is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極めて容易にフィブリ
ル化が可能なビニルアルコール系ポリマー(以下PVA
と略す)とPVAに非相溶なポリマーよりなる繊維に関
するものであり、化学的膨潤力と機械的応力の各々単独
あるいは組み合わせにより、容易に極細フィブリルとな
り、湿式あるいは乾式不織布、摩擦材、セメントやゴム
などの補強繊維などに好適に用いることのできる繊維に
関するものである。
The present invention relates to a vinyl alcohol polymer (hereinafter referred to as PVA) which can be easily fibrillated.
Abbreviated) and a polymer composed of a polymer that is incompatible with PVA. The chemical swelling force and the mechanical stress, individually or in combination, easily form ultrafine fibrils, and wet or dry non-woven fabrics, friction materials, cement, The present invention relates to fibers that can be suitably used as reinforcing fibers such as rubber.

【0002】[0002]

【従来の技術】自動車のブレーキやクラッチ板などに使
用される種々の摩擦材の補強繊維としては、無機微粒子
の捕捉性、耐熱性、難燃性、補強性等の点より、従来か
らアスベストが多用されてきたが、アスベストが発癌性
物質であることから、その使用が厳しく制限され始めて
おり、最近では高価なアラミド繊維のパルプに代替され
つつある。しかし、アラミド繊維は極めて高価であるこ
とより、使用が限定されており、天然パルプなどの安価
で補強性の不十分なものが増量材的に併用されている。
しかしながら、これらの増量材が製品性能を大きく低下
させている。これらのことより、無機微粒子捕捉性を達
成するためのフィブリル性、耐熱難融性および補強性を
兼備し、かつアラミド繊維より安価な易フィブリル化繊
維が切望されている。
BACKGROUND OF THE INVENTION As a reinforcing fiber for various friction materials used for automobile brakes and clutch plates, asbestos has been conventionally used because of its ability to capture inorganic fine particles, heat resistance, flame retardancy and reinforcement. Although it has been widely used, its use is beginning to be severely restricted because asbestos is a carcinogenic substance, and recently, it is being replaced by expensive aramid fiber pulp. However, since aramid fiber is extremely expensive, its use is limited, and inexpensive and insufficiently reinforced materials such as natural pulp are also used as a filler.
However, these extenders significantly reduce product performance. From these facts, there has been a strong demand for an easily fibrillated fiber that has fibrillability, heat-resistant infusibility, and reinforcement for achieving the ability to capture inorganic fine particles and that is cheaper than aramid fiber.

【0003】さらに、スレート板に代表されるセメント
二次製品分野においても、従来補強用に使用されてきた
アスベストが、前述と同様の理由により、厳しく使用制
限されてきているため、アスベスト代替としてビニロ
ン、アクリル繊維などの汎用繊維が使用されているが、
アスベストに比べて繊維が太すぎるため、スレートの曲
げ強度が低く、天然パルプなどのフィブリルを混合する
必要があり、強度の高いフィブリル化可能繊維の開発が
切望されている。また、ゴムなどの補強用にメタ系ある
いはパラ系のアラミド繊維やビニロンなどが使用されて
いるが、これら繊維は接着性向上のためRFL処理が必
要である等の問題があり、高接着、高比表面積、高強度
・高ヤング率の易フィブリル化繊維が要望されている。
Further, in the field of secondary cement products such as slate boards, asbestos that has been used for reinforcement in the past has been severely restricted for the same reason as described above. Therefore, vinylon is used as an alternative to asbestos. , General-purpose fibers such as acrylic fiber are used,
Since the fiber is too thick as compared with asbestos, the bending strength of the slate is low, and it is necessary to mix fibrils such as natural pulp. Therefore, there is a strong demand for the development of fibrillizable fiber having high strength. In addition, meta- or para-type aramid fibers and vinylon are used for reinforcing rubber, but these fibers have a problem that RFL treatment is required to improve adhesiveness. There is a demand for easily fibrillated fibers having a specific surface area, high strength and high Young's modulus.

【0004】上記要望に応えるべく、極細の合成繊維を
得る方法として、ブレンドポリマーの相分離現象を利用
する試みが数多くなされている。例えば、特公昭49−
10617号、特公昭51−17609号、特開昭48
−56925号、特開昭49−6203号等の各公報に
は、ポリアクリロニトリル(以下PANと略す)を海成
分とし、PVAにアクリロニトリルをグラフト共重合し
たポリマーやメチルメタクリレート系ポリマーを島成分
とする海島構造繊維を叩解するとフィブリルが得られる
ことが記載されている。
In order to meet the above demands, many attempts have been made to utilize the phase separation phenomenon of blend polymers as a method for obtaining ultrafine synthetic fibers. For example, Japanese Patent Publication Sho 49-
No. 10617, Japanese Patent Publication No. 51-17609, and Japanese Patent Laid-Open No. 48
In Japanese Patent Laid-Open No. 56925 and JP-A-49-6203, polyacrylonitrile (hereinafter abbreviated as PAN) is used as a sea component, and a polymer obtained by graft copolymerizing acrylonitrile with PVA or a methyl methacrylate polymer is used as an island component. It is described that fibrils are obtained by beating sea-island structural fibers.

【0005】しかし、これらの公報に記載されている技
術は、PANが海成分となっているため、固化浴として
水と原液溶媒の混合系や固化能のある有機溶剤の単独系
が使用されているが、その強い凝固作用により、均一な
ゲル糸を得ることができず、高倍率な延伸が困難であ
り、したがって工業的に安定でかつ安価に高強度・高ヤ
ング率の補強性に優れた繊維を得ることが困難である。
また、グラフトポリマーを混合すると相溶性が良好とな
り、紡糸原液が透明となり相分離構造を形成し難いた
め、フィブリル化が困難となるばかりか、得られたフィ
ブリルがあまりにも細いため絡み易く、ファイバーボー
ルを形成し易いという問題点もある。また、特公昭47
−31376号公報には、完全ケン化PVAを海成分、
部分ケン化PVAを島成分とするPVA系の易フィブリ
ル化繊維が開示されているが、この繊維の場合には、水
中叩解処理時に部分ケン化PVAが溶出し、叩解に使用
した水の処理のために、特殊な装置や薬剤が必要となる
とともに叩解時に泡立ちが生じて叩解作業を妨げるとい
う問題が生じる。
However, in the techniques described in these publications, since PAN is a sea component, a mixed system of water and a stock solution solvent or a single system of an organic solvent having a solidifying ability is used as a solidifying bath. However, due to its strong coagulation action, it is not possible to obtain a uniform gel yarn, and it is difficult to draw at a high magnification. Therefore, it is industrially stable and inexpensive and has excellent strength and high Young's modulus reinforcement. It is difficult to obtain fibers.
Further, when the graft polymer is mixed, the compatibility becomes good, the spinning dope becomes transparent, and it is difficult to form a phase-separated structure, so that not only fibrillation becomes difficult, but also the obtained fibrils are too thin and easily entangled, and the fiber ball There is also a problem that it is easy to form. In addition, Japanese Patent Publication Sho 47
-31376 gazette describes a completely saponified PVA as a sea component,
Although a PVA-based easily fibrillated fiber containing partially saponified PVA as an island component is disclosed, in the case of this fiber, the partially saponified PVA is eluted during the underwater beating treatment, and the treated water used for the beating is treated. Therefore, there is a problem that a special device or a chemical is required and bubbles are generated during beating, which hinders the beating work.

【0006】[0006]

【発明が解決しようとする課題】以上のことより、容易
にフィブリル化し分散性に優れるとともに十分な補強効
果を有する繊維が強く望まれていたが、未だ得られてい
なかった。本発明者等は、このような状況を鑑み、上記
の要望されている性能を満足する易フィブリル化繊維を
得るべく研究を行った結果、本発明に到達した。
From the above, there has been a strong demand for a fiber which is easily fibrillated and has excellent dispersibility and which has a sufficient reinforcing effect, but it has not been obtained yet. In view of such a situation, the present inventors arrived at the present invention as a result of conducting research to obtain easily fibrillated fibers satisfying the above-mentioned desired performance.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、PV
A(A)と(A)に非相溶なポリマー(B)からなり、
(A)が海成分で(B)が島成分となっており、叩解性
15分以下であることを特徴とする易フィブリル化繊維
である。このような易フィブリル化繊維は、PVA
(A)とPVAに非相溶なポリマー(B)を共通の有機
溶媒に溶解し、得られた紡糸原液を、上記両ポリマーに
対して固化能を有する固化溶媒と原液溶媒と同一の溶媒
からなる固化浴に湿式または乾湿式紡糸し、形成された
糸条を置換浴に導き糸条中に含まれている紡糸原液溶媒
を除去したのち乾燥し、さらに延伸して易フィブリル化
繊維を製造するに際し、以下の条件(1)〜(4)を採
用することにより得られる。 (1)原液が、(A)が海成分で(B)が1〜20μm
の粒子径を有している島成分となっている海島相分離構
造であること、(2)固化溶媒が有機溶媒で、かつ固化
浴には15〜75重量%の原液有機溶媒が含まれている
こと、(3)最終置換浴がアルコール類、ケトン類及び
水の3成分系からなり、該アルコール類とケトン類の重
量比が9/1〜1/9で、かつ水が全体の重量に対して
1〜30%であること、(4)全延伸倍率が8倍以上で
あること、
That is, the present invention provides a PV
A (A) and a polymer (B) incompatible with (A),
(A) is a sea component and (B) is an island component, and is a fibrillated fiber characterized by having a beating property of 15 minutes or less. Such easily fibrillated fibers are PVA
The polymer (B) incompatible with (A) and PVA is dissolved in a common organic solvent, and the obtained spinning stock solution is prepared from the same solvent as the solidifying solvent and the stock solution solvent having the solidifying ability for both polymers. Wet- or dry-wet spinning in a solidifying bath, the formed yarn is introduced into a displacement bath, the solvent for the spinning solution contained in the yarn is removed, then dried, and further stretched to produce easily fibrillated fiber. In that case, it is obtained by adopting the following conditions (1) to (4). (1) Undiluted solution, (A) is a sea component and (B) is 1 to 20 μm
Sea-island phase separation structure that is an island component having a particle size of (2), the solidifying solvent is an organic solvent, and the solidifying bath contains 15 to 75% by weight of the undiluted organic solvent. (3) The final displacement bath consists of a three-component system of alcohols, ketones and water, the weight ratio of the alcohols and ketones is 9/1 to 1/9, and water is the total weight. On the other hand, 1 to 30%, (4) the total draw ratio is 8 times or more,

【0008】以下に本発明を詳細に説明する。まず本発
明繊維は、PVA(A)と(A)に非相溶なポリマー
(B)からなり、(A)が海成分、(B)が島成分を構
成している。そして、その重量比(A)/(B)は80
/20〜50/50が好ましい。強い極性基を有するP
VA(A)からは高強度・高ヤング率の繊維を得ること
ができ、かつセメントやゴム等の接着性、耐アルカリ
性、耐湿熱性が高く、補強材としては好適であり、また
親水性に優れているため拭き取り性が重要視されるワイ
パー用の素材として極めて優れて優れている。
The present invention will be described in detail below. First, the fiber of the present invention comprises PVA (A) and a polymer (B) which is incompatible with (A), and (A) constitutes a sea component and (B) constitutes an island component. The weight ratio (A) / (B) is 80.
/ 20 to 50/50 is preferable. P with a strong polar group
Fibers of high strength and high Young's modulus can be obtained from VA (A), and they have high adhesiveness to cement, rubber, etc., high alkali resistance and high resistance to moist heat, and are suitable as a reinforcing material and also excellent in hydrophilicity. Therefore, it is extremely excellent and excellent as a material for wipers for which the wiping property is important.

【0009】本発明でいうPVAとは、ビニルアルコー
ルユニットを70モル%以上有するポリマーを意味して
おり、従ってエチレン、酢酸ビニル、イタコン酸、ビニ
ルアミン、アクリルアミド、ピバリン酸ビニル、無水マ
レイン酸、スルホン酸含有ビニル化合物などのモノマー
が30モル%未満の割合で共重合されていても良い。ケ
ン化度は80モル%以上が好ましく、配向結晶化のため
には、全構成ユニットの95モル%以上がビニルアルコ
ールユニットであるPVAがより好ましく、更に好まし
くは98モル%以上、もっと好ましくは99モル%以
上、最も好ましくは99.8モル%以上である。 PV
Aの重合度に関しては、特に限定はないが、高強度フィ
ブリルを得るためには重合度500以上が好ましく、1
500以上であると更に好ましい。また、耐熱水性改善
のため、繊維化後の後反応によりPVAはホルムアルデ
ヒドで代表されるアルデヒド化合物より、PVA分子内
または分子間がアセタール化され架橋されていても良
い。
The PVA referred to in the present invention means a polymer having 70 mol% or more of vinyl alcohol units, and therefore ethylene, vinyl acetate, itaconic acid, vinylamine, acrylamide, vinyl pivalate, maleic anhydride, sulfonic acid. A monomer such as a vinyl compound contained may be copolymerized at a ratio of less than 30 mol%. The degree of saponification is preferably 80 mol% or more, and for oriented crystallization, PVA in which 95 mol% or more of all constituent units are vinyl alcohol units is more preferable, further preferably 98 mol% or more, and more preferably 99 mol%. It is at least mol%, most preferably at least 99.8 mol%. PV
The degree of polymerization of A is not particularly limited, but a degree of polymerization of 500 or more is preferable in order to obtain high strength fibrils, and 1
More preferably, it is 500 or more. Further, in order to improve hot water resistance, PVA may be cross-linked by acetalizing the inside or the inside of the PVA from an aldehyde compound typified by formaldehyde by a post-reaction after fiber formation.

【0010】また本発明で言うPVAに非相溶なポリマ
ー(B)とは、PAN、セルロースアセテート、コーン
スターチ等があり、好適なポリマーとしてはPAN及び
セルロースアセテートが挙げられる。PANは、アクリ
ロニトリルユニットを70モル%以上有していればよ
く、従って例えばメチルアクリレート、エチルアクリレ
ート、メチルメタクリレートなどの(メタ)アクリル酸
エステル類、酢酸ビニルや酪酸ビニルなどのビニルエス
テル類、塩化ビニルなどのビニル化合物類、アクリル
酸、メタクリル酸、無水マレイン酸などの不飽和カルボ
ン酸類、スルホン酸含有ビニル化合物などのモノマーが
30モル%未満の割合で共重合されていても良い。原液
溶媒に対する溶解性を向上させるためには、PANホモ
ポリマーよりも、他のビニルモノマーを0.5〜10モ
ル%、更に好ましくは2〜8モル%共重合させたPAN
コポリマーが好ましい。またセルロースアセテートとし
ては、セルロースジアセテートやセルローストリアセテ
ート等の酢酸セルロースなどが挙げられ、繊維とした後
に酢酸セルロースをケン化してセルロースに変換したも
のは、極めて容易にフィブリル化することより、本発明
の好適な例である。
The PVA-incompatible polymer (B) referred to in the present invention includes PAN, cellulose acetate, corn starch and the like, and suitable polymers include PAN and cellulose acetate. PAN need only have 70 mol% or more of acrylonitrile units, and therefore, for example, (meth) acrylic acid esters such as methyl acrylate, ethyl acrylate, and methyl methacrylate, vinyl esters such as vinyl acetate and vinyl butyrate, and vinyl chloride. Monomers such as vinyl compounds such as, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride, and vinyl compounds containing sulfonic acid may be copolymerized at a ratio of less than 30 mol%. In order to improve the solubility in the stock solution solvent, PAN obtained by copolymerizing another vinyl monomer in an amount of 0.5 to 10 mol%, more preferably 2 to 8 mol%, rather than PAN homopolymer.
Copolymers are preferred. Examples of the cellulose acetate include cellulose acetate such as cellulose diacetate and cellulose triacetate, and those obtained by saponifying cellulose acetate after conversion into cellulose are fibrillated extremely easily, This is a suitable example.

【0011】前記したように本発明においては、PVA
(A)が海成分でPVAに非相溶なポリマー(B)が島
成分となっている。PVAが海成分、すなわち連続相と
なっていることにより、分子鎖が配向結晶化し易く、高
強度フィブリルが得られ易い。(A)と(B)の組成比
(A)/(B)としては、PVA(A)を海成分とする
ために、80/20〜50/50が好ましく、PVA
(A)が50重量%より少ない場合あるいは80重量%
より多い場合には、固化浴へのPVA(A)およびPV
Aに非相溶なポリマー(B)の溶出が大きくなり、繊維
間膠着を生じやすく、また明確な相分離状態が得られず
フィブリル化が困難な場合もある。強度、ヤング率、得
られた繊維のフィブリル化、得られたフィブリルの分散
性の点より、(A)/(B)の重量比が70/30〜5
2/48である場合が特に好ましく、60/40〜55
/45がさらに好ましい。
As described above, in the present invention, PVA
The polymer (B), which is incompatible with PVA, is the island component, while (A) is the sea component. Since PVA is a sea component, that is, a continuous phase, molecular chains are easily oriented and crystallized, and high-strength fibrils are easily obtained. The composition ratio (A) / (B) of (A) and (B) is preferably 80/20 to 50/50 in order to use PVA (A) as a sea component,
If (A) is less than 50% by weight or 80% by weight
If more, PVA (A) and PV to solidification bath
In some cases, the polymer (B) incompatible with A is more likely to be eluted, intergrowth between fibers is likely to occur, and a clear phase separation state cannot be obtained, making it difficult to fibrillate. From the viewpoints of strength, Young's modulus, fibrillation of the obtained fiber, and dispersibility of the obtained fibril, the weight ratio of (A) / (B) is 70/30 to 5
The case of 2/48 is particularly preferable, and 60/40 to 55
/ 45 is more preferable.

【0012】また、本発明方法を用いると、強度が7g
/d以上で、ヤング率が100g/d以上の繊維が得ら
れる。本発明でいう強度及びヤング率はそれぞれJIS
−L1015に準じて測定した引張り強度及び初期引張
り抵抗度をいう。強度が7g/d未満あるいはヤング率
が100g/d未満であると、セメントやゴム、樹脂に
対する補強性が不十分となる。本発明において強度9g
/d以上が特に好ましく、さらに10g/d以上が一層
好ましい。また、ヤング率としては130g/d以上が
特に好ましく、さらに150g/d以上が一層好まし
い。
When the method of the present invention is used, the strength is 7 g.
/ D or more, fibers having a Young's modulus of 100 g / d or more can be obtained. The strength and Young's modulus referred to in the present invention are JIS
-Tensile strength and initial tensile resistance measured according to L1015. If the strength is less than 7 g / d or the Young's modulus is less than 100 g / d, the reinforcing property for cement, rubber or resin becomes insufficient. 9g strength in the present invention
/ D or more is particularly preferable, and further 10 g / d or more is more preferable. The Young's modulus is particularly preferably 130 g / d or more, and further preferably 150 g / d or more.

【0013】更に本発明繊維の叩解性は15分以下であ
る。本発明で言う叩解性とは、20℃で65%RH雰囲
気で放置した繊維サンプル4gを2mmにカットし、こ
れに水400ccを加えて、松下電器産業製ミキサー
(ナショナルMX−X40)に投入し、11000rp
mで攪拌叩解する。所定時間攪拌叩解後に水分散叩解液
をサンプリングし、次に述べる方法で濾水時間を測定
し、濾水時間が60秒となる攪拌叩解時間をいう。本発
明でいう濾水時間とは、径が63mmのプラスチック製
メスシリンダーの底をくり抜き、そこに350メッシュ
の金網を取り付け、フィブリル0.5gを含む水分散叩
解液750ccを濾過するに要する時間をいう。また5
分叩解後の濾水時間とは、前記した叩解性の測定条件と
同一の条件で5分間叩解を行い、前記金網を底に取り付
けたメスシリンダーを用いてフィブリル0.5gを含む
水分散液750ccを濾過させた場合に要する時間を意
味している。
Further, the beating property of the fiber of the present invention is 15 minutes or less. The beating property referred to in the present invention means that 4 g of a fiber sample left in a 65% RH atmosphere at 20 ° C. is cut into 2 mm, 400 cc of water is added thereto, and the mixture is put into a mixer (National MX-X40) manufactured by Matsushita Electric Industrial. 11,000 rp
Stir and beat with m. The water-dispersed beating solution is sampled after stirring and beating for a predetermined time, and the drainage time is measured by the method described below. The drainage time as referred to in the present invention is the time required for hollowing out the bottom of a plastic graduated cylinder having a diameter of 63 mm, attaching a wire mesh of 350 mesh to it, and filtering 750 cc of a water-dispersed beating liquid containing 0.5 g of fibrils. Say. Also 5
The drainage time after beating for minutes means beating for 5 minutes under the same conditions as the above-mentioned beating property measurement conditions, and using a graduated cylinder having the wire net at the bottom, an aqueous dispersion 750 cc containing fibrils 0.5 g. Means the time required when the is filtered.

【0014】上記で規定する「叩解性」の時間が長くな
ると、叩解性が不十分で、実際に使用する際にフィブリ
ル化しないことがある。また、叩解時間が長いと得られ
たフィブリルの分散性が悪く、ファイバーボールを形成
する傾向にある。なぜ叩解時間が長いとフィブリルの分
散性が悪化するかは不明であるが、フィブリルが細くな
って絡み易くなったためと推測される。なお、ファイバ
ーボールの形成の有無は、叩解液40ccを300cc
ビーカーに採り、粘剤(0.1%ポリエチレンオキサイ
ド水溶液)2gと水を加えて200ccとしたのち、ガ
ラス棒で十分に攪拌分散させたときに、この分散液にお
いてフィブリル同士あるいはファイバーとフィブリルが
絡み合い形成され、ガラス棒による攪拌操作だけでは解
離することができない径3mm以上のファイバーボール
の有無を観察することにより判別できる。本発明の繊維
は、ファイバーボールが形成されにくいという特徴を有
している。その原因が固化、抽出浴として有機溶媒を用
いていることにある。より好ましくは、5分叩解後の濾
水時間が75秒以上の繊維である。5分叩解後の濾水時
間が長いほど、フィブリル化が進み、極めて細いフィブ
リルが得られていることを意味する。
When the time for the "beating property" defined above becomes long, the beating property may be insufficient and fibrillation may not occur during actual use. Further, when the beating time is long, the dispersibility of the obtained fibrils is poor and the fiber balls tend to be formed. It is unclear why the beating time is so long that the dispersibility of the fibrils deteriorates, but it is presumed that the fibrils became thin and entangled easily. In addition, regarding the presence or absence of the formation of fiber balls, the beating liquid 40 cc is 300 cc.
Take in a beaker, add 2 g of a viscous agent (0.1% polyethylene oxide aqueous solution) and water to make 200 cc, and when sufficiently agitate and disperse with a glass rod, fibrils or fibers and fibrils are entangled in this dispersion. It can be determined by observing the presence or absence of a fiber ball having a diameter of 3 mm or more, which is formed and cannot be dissociated only by a stirring operation with a glass rod. The fiber of the present invention is characterized in that it is difficult to form a fiber ball. The cause is that the organic solvent is used for the solidification and extraction baths. More preferably, the fiber has a drainage time of 75 seconds or more after beating for 5 minutes. It means that the longer the drainage time after beating for 5 minutes, the more fibrillation progresses and that extremely fine fibrils are obtained.

【0015】次に本発明繊維の製造方法について説明す
る。まずPVA(A)とPVAに非相溶なポリマー
(B)を共通溶媒に溶解し紡糸原液とする。共通の有機
溶媒としては、ジメチルスルホキシド(DMSO)、ジ
メチルアセトアミド、ジメチルホルムアミドなどの極性
溶媒が挙げられる。特に低温溶解性、ポリマー低分解性
などの点よりDMSOが好ましい。原液中のポリマー濃
度としては、10〜30重量%の範囲が好ましい。ま
た、原液温度としては、50〜140℃の範囲が好まし
い。
Next, a method for producing the fiber of the present invention will be described. First, PVA (A) and a polymer (B) incompatible with PVA are dissolved in a common solvent to prepare a spinning dope. Examples of the common organic solvent include polar solvents such as dimethyl sulfoxide (DMSO), dimethylacetamide, and dimethylformamide. Particularly, DMSO is preferred from the viewpoint of low-temperature solubility, low polymer decomposability and the like. The polymer concentration in the stock solution is preferably in the range of 10 to 30% by weight. The stock solution temperature is preferably in the range of 50 to 140 ° C.

【0016】得られた紡糸原液は、1〜20μmの粒子
径を有している相構造で、PVAが海成分、PVAに非
相溶なポリマー(B)が島成分である。本発明で言う紡
糸原液の相構造とは、紡糸原液をスライドガラス上に約
100μmの厚さに塗布し、室温のメタノールにより凝
固させ、得られたフィルムを500倍の光学顕微鏡で観
察した場合に識別される構造であり、本発明において
は、PVA(A)が海成分、PVAに非相溶なポリマー
(B)が島成分となり、相分離して存在しており、PV
A(A)が分散媒(海)成分、PVAに非相溶なポリマ
ー(B)が分散成分(島成分)となっているのが、前記
したように強度やヤング率の点で、更にフィブリル化し
やすい点で重要である。本発明でいう粒子径とは、上記
したような方法で得られたフィルムを500倍の光学顕
微鏡で観察した場合に、判別できる大多数がその範囲の
径を有していることを意味している。粒子径の大多数が
20μmを越える場合には、原液安定性および紡糸安定
性の点で好ましくない。また、大多数が1μm未満で1
μmを越える粒子がほとんど存在しない場合には相構造
が小さく、得られた繊維の叩解性が悪くなり好ましくな
い。より好ましくは2〜10μmの粒子径を有している
相構造の場合である。原液での相構造が固化時の核とな
り、フィブリル化し易い繊維を形成するための重要なポ
イントである。
The obtained spinning dope has a phase structure having a particle size of 1 to 20 μm, PVA is a sea component, and PVA incompatible polymer (B) is an island component. The phase structure of the spinning dope as referred to in the present invention means that the spinning dope is applied on a slide glass to a thickness of about 100 μm, coagulated with methanol at room temperature, and the obtained film is observed with a 500 × optical microscope. In the present invention, the PVA (A) is a sea component, and the polymer (B) incompatible with PVA is an island component, and the PVA (A) is present as a phase-separated structure.
A (A) is a dispersion medium (sea) component, and PVA incompatible polymer (B) is a dispersion component (island component). As described above, in terms of strength and Young's modulus, fibrils are further added. It is important because it is easy to make. The particle size as referred to in the present invention means that, when the film obtained by the method as described above is observed with an optical microscope at a magnification of 500, the majority that can be discriminated has a diameter in that range. There is. When the majority of the particle diameters exceeds 20 μm, it is not preferable in terms of stability of the stock solution and spinning stability. Also, the majority is less than 1 μm and 1
When there are almost no particles exceeding μm, the phase structure is small and the beating property of the obtained fiber is deteriorated, which is not preferable. More preferably, it is a phase structure having a particle diameter of 2 to 10 μm. The phase structure in the undiluted solution becomes a core during solidification, and is an important point for forming a fiber that is easily fibrillated.

【0017】紡糸原液の相構造を決定する因子として
は、両ポリマーの相溶性、両ポリマーの組成比、原液中
のポリマー濃度、溶媒の種類、原液の温度などがある。
両ポリマーの相溶性に関しては、相溶性が悪くなるに従
って粒子径が大きくなり、組成比に関しては、両ポリマ
ーの混合重量比が島成分ポリマーリッチになるに従って
粒子径が大きくなる傾向にある。また、ポリマー濃度に
関しては、濃度が高くなるに従って粒子経は小さくなる
傾向にあり、原液溶媒に関しては、両ポリマーに対して
相溶性の高い溶媒ほど粒子径は小さくなる。更に原液温
度に関しては、前記したように通常50〜120℃の範
囲が用いられるが、温度が高くなるほど粒子径は大きく
なる傾向にある。従って粒子径を所望の大きさにするた
めには、まず適当な条件で紡糸原液を作製して、その時
の粒子径を測定し、その結果を元に、上記の因子の少な
くとも一つを変更することにより、粒子径を所望の大き
さに変更できる。
Factors that determine the phase structure of the spinning dope include the compatibility of both polymers, the composition ratio of both polymers, the polymer concentration in the stock, the type of solvent, and the temperature of the stock.
Regarding the compatibility of both polymers, the particle size tends to increase as the compatibility deteriorates, and regarding the composition ratio, the particle size tends to increase as the mixed weight ratio of both polymers becomes rich in the island component polymer. Regarding the polymer concentration, the particle diameter tends to decrease as the concentration increases, and regarding the stock solution solvent, the solvent having higher compatibility with both polymers has a smaller particle size. Further, as for the stock solution temperature, the range of 50 to 120 ° C. is usually used as described above, but the particle diameter tends to increase as the temperature increases. Therefore, in order to obtain a desired particle size, a spinning solution is first prepared under appropriate conditions, the particle size at that time is measured, and at least one of the above factors is changed based on the result. Thus, the particle size can be changed to a desired size.

【0018】このように粒子径を上記したような1〜2
0μmの範囲とした紡糸原液の粘度としては、湿式紡糸
する場合には10〜400ポイズ、乾湿式紡糸する場合
には50〜2000ポイズの範囲が好ましく、これら粘
度は溶融紡糸の時の粘度よりかなり低い。
As described above, the particle diameter is set to 1 to 2 as described above.
The viscosity of the stock solution for spinning in the range of 0 μm is preferably 10 to 400 poises in the case of wet spinning and 50 to 2000 poises in the case of dry-wet spinning, and these viscosities are considerably higher than those during melt spinning. Low.

【0019】このようにして得られた紡糸原液を紡糸ノ
ズルを通して固化浴中に湿式紡糸あるいは乾湿式紡糸す
る。固化浴を紡糸ノズルに直接接触させる湿式紡糸方法
は、ノズル孔ピッチを狭くしても繊維同士が膠着せずに
紡糸できるため、多孔ノズルを用いた紡糸に適してお
り、一方固化浴と紡糸ノズルの間に1〜50mmのエア
ギャップを設ける乾湿式紡糸の場合は、エアギャップ部
での伸びが大きいことより、高速紡糸に適している。本
発明においては、湿式紡糸方法を用いるか乾湿式紡糸方
法を用いるかは目的や用途に応じて適宜選択することが
できる。
The spinning dope thus obtained is wet-spun or dry-wet spun in a solidifying bath through a spinning nozzle. The wet spinning method in which the solidifying bath is brought into direct contact with the spinning nozzle is suitable for spinning using a multi-hole nozzle because fibers can be spun without sticking even when the nozzle hole pitch is narrowed, while the solidifying bath and the spinning nozzle are used. In the case of dry-wet spinning in which an air gap of 1 to 50 mm is provided between the two, it is suitable for high-speed spinning because the elongation at the air gap portion is large. In the present invention, whether to use the wet spinning method or the dry-wet spinning method can be appropriately selected according to the purpose and application.

【0020】本発明において固化浴として、固化溶媒と
原液溶媒からなる混合液を用い、そして固化溶媒として
有機溶媒を用い、かつ固化浴中での固化溶媒/原液溶媒
の組成比は25/75〜85/15である。固化溶媒と
しては、メタノール、エタノールなどのアルコール類、
アセトン、メチルエチルケトンなどのケトン類などのP
VA(A)及びPVAに非相溶なポリマー(B)のいず
れに対しても凝固能を有する有機溶媒を用いることが本
発明繊維を得る上で極めて重要である。従来公知のPV
A/PAN系のフィブリル繊維の場合には、ほとんどP
ANが主成分となっており、工業的な固化浴としてはP
ANに対して強力な凝固能を有する水を用いているが、
水はPVAに対して凝固能がなく、両ポリマーに対する
凝固能が著しく異なっており、バランスを欠いているの
に対して、有機溶媒系はいずれのポリマーに対しても凝
固能を有しており、しかも原液溶媒を混合することによ
りバランスよく固化させることができ、このことが易フ
ィブリル化繊維の性能に影響を与える一つの要因であ
る。
In the present invention, a mixture of a solidifying solvent and a stock solution solvent is used as the solidifying bath, an organic solvent is used as the solidifying solvent, and the composition ratio of the solidifying solvent / the stock solution solvent in the solidifying bath is 25/75 to It is 85/15. As the solidifying solvent, alcohols such as methanol and ethanol,
P such as ketones such as acetone and methyl ethyl ketone
In order to obtain the fiber of the present invention, it is extremely important to use an organic solvent having coagulation ability for both the VA (A) and the polymer (B) which is incompatible with PVA. Conventionally known PV
In the case of A / PAN fibril fiber, almost P
AN is the main component, and P is used as an industrial solidification bath.
It uses water that has a strong coagulation ability for AN.
Water has no coagulation ability for PVA, and the coagulation ability for both polymers is remarkably different, which is unbalanced, whereas the organic solvent system has coagulation ability for any polymer. Moreover, it is possible to solidify in a well-balanced manner by mixing the undiluted solution solvent, which is one of the factors that affect the performance of the easily fibrillated fiber.

【0021】本発明において、固化レベルを適正に維持
するために、固化浴中の有機溶媒系固化溶媒と原液溶媒
の組成比は重要であり、本発明では重量比で25/75
〜85/15の範囲が採用される。固化浴中での原液溶
媒濃度が15重量%より少ないと凝固能が高すぎ、ノズ
ル切れとなり紡糸調子が不良となり、更に得られる繊維
の強度・ヤング率等の性能が低下する傾向にある。一
方、固化浴中での原液溶媒濃度が75重量%より多いと
十分な凝固ができず、これまた紡糸工程通過性が悪く、
強度などの点で満足できる性能の繊維を得ることができ
ない。より好ましい固化浴中の原液溶媒の濃度は20〜
70重量%であり、25〜65重量%が最も好ましい。
なお本発明においては、固化浴は上記したように、有機
溶媒系固化溶媒と原液溶媒との混合液が用いられるが、
もちろん少量ならばこれら以外の液体や固体が溶解され
て存在してもよい。本発明において、固化溶媒と原液溶
媒の最も好ましい組み合わせはメタノールとDMSOの
組み合わせである。
In the present invention, the composition ratio of the organic solvent-based solidifying solvent and the stock solution solvent in the solidifying bath is important in order to maintain the solidification level appropriately. In the present invention, the weight ratio is 25/75.
The range of ~ 85/15 is adopted. If the concentration of the undiluted solution solvent in the solidifying bath is less than 15% by weight, the coagulability is too high, the nozzle is cut off, the spinning condition becomes poor, and the performance of the obtained fiber such as strength and Young's modulus tends to be deteriorated. On the other hand, if the concentration of the stock solution solvent in the solidification bath is more than 75% by weight, sufficient coagulation cannot be achieved, and the spinning process passability is poor.
It is not possible to obtain fibers with satisfactory performance in terms of strength and the like. More preferable concentration of the stock solution solvent in the solidification bath is 20 to
70% by weight, most preferably 25-65% by weight.
In the present invention, the solidifying bath is a mixed solution of an organic solvent solidifying solvent and a stock solution solvent as described above,
Of course, liquids and solids other than these may be present in a dissolved state as long as the amount is small. In the present invention, the most preferable combination of the solidifying solvent and the stock solution solvent is the combination of methanol and DMSO.

【0022】固化浴で形成された糸条は、湿延伸、原液
溶媒の抽出、置換、油剤付与、乾燥と経て行くが、この
置換工程が重要である。すなわち最終の置換浴の組成が
アルコール類とケトン類と水からなり、アルコール類と
ケトン類の重量比が9/1〜1/9かつ水が全体の重量
に対して1〜30%であることにより易フィブリル化が
大きく促進される。本発明でいう置換浴に用いられるア
ルコール類としては、メタノール、エタノール、プロパ
ノール、ブタノール等が挙げられる。またケトン類とし
ては、メチルイソプロピルケトン、メチル−n−ブチル
ケトン、メチルイソブチルケトン等が挙げられ、特に水
の沸点より高い沸点を有するケトン、例えばメチル−n
−ブチルケトン、メチルイソブチルケトン等が特に好ま
しい。置換浴として2浴以上の複数浴を用いる場合に
は、少なくとも最終置換浴が、上記3成分からなる浴で
ある必要がある。
The yarn formed in the solidifying bath is subjected to wet drawing, extraction of the undiluted solvent, substitution, application of an oil agent, and drying, and this substitution step is important. That is, the composition of the final displacement bath is composed of alcohols, ketones, and water, the weight ratio of alcohols and ketones is 9/1 to 1/9, and water is 1 to 30% of the total weight. This greatly promotes easy fibrillation. Examples of alcohols used in the displacement bath in the present invention include methanol, ethanol, propanol, butanol and the like. Further, examples of the ketones include methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, and the like. Particularly, a ketone having a boiling point higher than that of water, for example, methyl-n
-Butyl ketone, methyl isobutyl ketone and the like are particularly preferable. When two or more baths are used as the replacement bath, at least the final replacement bath needs to be a bath composed of the above three components.

【0023】本発明方法において、易フィブリル化を適
正に維持するために、置換浴のアルコール類、ケトン
類、水の組成比が重要であり、アルコール類とケトン類
の重量比が9/1〜1/9でかつ水が最終置換浴全重量
に対して比1〜30%の範囲が採用される。アルコール
類が、アルコール類とケトン類の合計量に対して90重
量%より多かったり、10重量%より少なかったりする
と所望の叩解性を得られない。また水が30重量%より
多いと原糸に膠着が発生し、得られる繊維の強度・ヤン
グ率等の性能が低下する傾向にあり、1重量%より少な
いと所望の叩解性が得られない。より好ましい置換浴の
組成はアルコール類/ケトン類=7/3〜3/7でかつ
水が全体の5〜20重量%であり、最も好ましいのは、
アルコール類/ケトン類=7/3〜6/4でかつ水が全
体の5〜15重量%である。
In the method of the present invention, the composition ratio of alcohols, ketones, and water in the displacement bath is important in order to appropriately maintain the fibrillation easily, and the weight ratio of alcohols to ketones is 9/1 to. A range of 1/9 and 1 to 30% of water relative to the total weight of the final displacement bath is adopted. If the amount of alcohols is more than 90% by weight or less than 10% by weight based on the total amount of alcohols and ketones, the desired beating property cannot be obtained. On the other hand, if the amount of water is more than 30% by weight, the raw yarn tends to stick and the performances such as strength and Young's modulus of the obtained fiber tend to be deteriorated. A more preferable composition of the displacement bath is alcohols / ketones = 7/3 to 3/7 and water is 5 to 20% by weight of the whole, and the most preferable is
Alcohols / ketones = 7/3 to 6/4 and 5 to 15% by weight of water.

【0024】なお本発明において、置換浴は上記したよ
うにアルコール類、ケトン類及び水との混合液が用いら
れるが、もちろん少量ならばこれ以外の液体や固体が溶
解されて存在していても良い。本発明において、アルコ
ール類、ケトン類、水の最も好ましい組み合わせは、メ
タノールとメチルイソブチルケトンと水の組み合わせで
ある。このような置換浴を用いることにより、前記した
叩解性15分以下あるいは5分叩解後の濾水時間75秒
以上という条件を満足することができる。
In the present invention, as the displacement bath, a mixed liquid of alcohols, ketones and water is used as described above. Of course, if a small amount, other liquids or solids may be dissolved and present. good. In the present invention, the most preferable combination of alcohols, ketones and water is a combination of methanol, methyl isobutyl ketone and water. By using such a substitution bath, the condition that the beating property is 15 minutes or less or the drainage time after beating for 5 minutes is 75 seconds or more can be satisfied.

【0025】本発明方法において、置換浴から取り出し
た糸条は、通常、油剤付与、乾燥工程を経たのち、乾熱
延伸工程に送られる。本発明方法においてはこの乾熱延
伸工程もまた重要であり、すなわち全延伸倍率が8倍以
上となるように乾熱延伸を行うのが好ましい。本発明で
いう全延伸倍率とは、湿延伸倍率と乾熱延伸倍率との積
で表される倍率であり、全延伸倍率が8倍未満の場合に
は強度・ヤング率の優れた繊維を得ることができないと
ともに易フィブリル化する繊維が得られない。
In the method of the present invention, the yarn taken out from the displacement bath is usually fed to an oil agent and dried, and then sent to a dry heat drawing process. In the method of the present invention, this dry heat drawing step is also important, that is, it is preferable to perform the dry heat drawing so that the total draw ratio is 8 times or more. The total draw ratio referred to in the present invention is a ratio represented by a product of a wet draw ratio and a dry heat draw ratio. When the total draw ratio is less than 8, a fiber having excellent strength and Young's modulus is obtained. In addition, fibers that can be easily fibrillated cannot be obtained.

【0026】全延伸倍率を8倍以上とするための因子と
しては、両ポリマー(A)と(B)の組成比、固化浴組
成比や固化浴温度などの固化浴条件、及び湿延伸倍率な
どの湿延伸倍率条件、置換浴組成比などの置換浴条件、
乾熱延伸温度や乾熱延伸雰囲気での滞留時間(延伸速
度)等の乾熱延伸条件が挙げられる。(A)/(B)の
組成比に関しては、(A)の重量比を高めると全延伸倍
率を高くすることができ、固化浴中の原液溶媒の割合が
増加するに従って全延伸倍率が低くなり、固化浴の温度
が高くなると全延伸倍率が高くなる。なお、本発明にお
いて固化浴温度としては、0〜30℃の範囲が好まし
い。また、湿熱延伸倍率を高くすると全延伸倍率が高く
なる傾向にあり、乾熱延伸温度を高くすると全延伸倍率
が高くなり、さらに滞留時間を長くすると全延伸倍率が
高くなる。なお、本発明の方法において湿延伸倍率とし
ては、1.5〜4.5倍の範囲、また乾熱延伸温度とし
ては210〜250℃の範囲、更に滞留時間としては5
〜90秒の範囲が好ましい。従って全延伸倍率を所望の
値にするためには、まず適当な条件で紡糸・延伸を行
い、その時の全延伸倍率を元に、上記の因子の少なくと
も一つを変更することにより、全延伸倍率を所望の値に
容易に変更できる。本発明方法において、全延伸倍率は
12倍以上であるとより好ましく、更に好ましくは15
倍以上である。
Factors for increasing the total draw ratio to 8 times or more include composition ratios of both polymers (A) and (B), solidifying bath conditions such as solidifying bath composition ratio and solidifying bath temperature, and wet stretching ratio. Wet stretching ratio conditions, replacement bath conditions such as replacement bath composition ratio,
Dry heat stretching conditions such as a dry heat stretching temperature and a residence time (stretching speed) in a dry heat stretching atmosphere can be mentioned. Regarding the composition ratio of (A) / (B), the total draw ratio can be increased by increasing the weight ratio of (A), and the total draw ratio decreases as the ratio of the stock solution solvent in the solidification bath increases. The higher the temperature of the solidifying bath, the higher the total draw ratio. In the present invention, the solidifying bath temperature is preferably in the range of 0 to 30 ° C. Further, when the wet heat draw ratio is increased, the total draw ratio tends to be increased, when the dry heat draw temperature is increased, the total draw ratio is increased, and when the residence time is further increased, the total draw ratio is increased. In the method of the present invention, the wet draw ratio is in the range of 1.5 to 4.5 times, the dry heat draw temperature is in the range of 210 to 250 ° C., and the residence time is 5 in the range.
A range of up to 90 seconds is preferred. Therefore, in order to bring the total draw ratio to a desired value, first, spinning / drawing is performed under appropriate conditions, and based on the total draw ratio at that time, at least one of the above factors is changed to change the total draw ratio. Can be easily changed to a desired value. In the method of the present invention, the total draw ratio is more preferably 12 times or more, further preferably 15 times.
More than double.

【0027】乾熱延伸後の繊維に、必要に応じて乾熱処
理や、更に耐熱水性改善のためアセタール化処理や長鎖
アルキルリン酸等による架橋処理等を施しても良い。な
お、本発明繊維には、PVAとPVAに非相溶なポリマ
ー以外にも本発明の目的を逸脱しない範囲内において、
無機顔料、有機顔料、耐熱老化防止剤、pH調整剤、架
橋剤、油剤、各種安定剤などを含有していてもよく、こ
れらは目的に応じて原液工程、固化工程、抽出工程、置
換工程、乾燥直前、乾熱延伸前、乾熱延伸後、後反応後
などの各製造プロセス段階で付与することができる。
The fiber after dry heat drawing may be subjected to dry heat treatment, if necessary, and further subjected to acetalization treatment or cross-linking treatment with a long-chain alkylphosphoric acid or the like to improve hot water resistance. In addition to the PVA and the polymer incompatible with PVA, the fiber of the present invention can be used within a range not departing from the object of the present invention.
Inorganic pigments, organic pigments, heat anti-aging agents, pH adjusters, cross-linking agents, oil agents, may contain various stabilizers, etc., these are stock solution step, solidification step, extraction step, substitution step, depending on the purpose, It can be applied at each manufacturing process stage such as immediately before drying, before dry heat drawing, after dry heat drawing, and after post-reaction.

【0028】このようにして得た繊維から、化学的膨潤
力と機械的応力の各々単独あるいは両者の併用により、
太さ0.5〜3μmのフィブリルが得られる。フィブリ
ルの太さは、走査型或いは透過型電子顕微鏡でフィブリ
ルの断面を拡大し、その断面積を実測し、その断面積と
同じ面積を有する円の直径に換算した値であり、任意に
選んだn=20以上の相加平均を求めることにより得ら
れる。フィブリル化方法に関しては、代表的な方法とし
て、繊維をフィブリル化後シート状に形成する方法と、
シート状に形成後にフィブリル化する方法とがある。ま
ず前者は、本発明繊維を1〜30mmに短く切断し、水
中に浸漬、分散し、ビーター、リファイナー、ミキサー
などにより機械的応力を加え、フィブリル化させ、得ら
れたフィブリルを紙材料として抄紙する方法である。こ
の方法の場合には、得られるシートはフィブリル化によ
り細い繊維となっているため高緊度の薄くて強い紙が得
られる。また、フィブリルを無機微粒子や熱硬化性樹脂
微粒子などと攪拌混合すると微粒子がフィブリルに捕捉
され、微粒子を抄造することが可能となり、ブレーキシ
ュやクラッチ板に適した摩擦材を得ることができる。
From the fibers thus obtained, the chemical swelling force and the mechanical stress can be used individually or in combination with each other.
Fibrils with a thickness of 0.5-3 μm are obtained. The thickness of the fibril is a value obtained by enlarging the cross section of the fibril with a scanning or transmission electron microscope, measuring the cross-sectional area, and converting it to the diameter of a circle having the same area as the cross-sectional area. It is obtained by calculating the arithmetic mean of n = 20 or more. Regarding the fibrillation method, as a typical method, a method of forming fibers into a sheet after fibrillation,
There is a method of forming into a sheet and then fibrillating. First, in the former, the fiber of the present invention is cut into 1 to 30 mm, immersed in water, dispersed, mechanically stressed by a beater, refiner, mixer or the like to be fibrillated, and the obtained fibrils are used as a paper material for papermaking. Is the way. In the case of this method, since the obtained sheet is made into fine fibers by fibrillation, thin and strong paper with high tenacity can be obtained. When the fibrils are stirred and mixed with inorganic fine particles, thermosetting resin fine particles, etc., the fine particles are captured by the fibrils, and the fine particles can be made into a paper. Thus, a friction material suitable for a brake shoe or a clutch plate can be obtained.

【0029】後者の方法の場合には、本発明繊維を捲縮
・切断し、ステープルとしたのち、カード機を通して形
成したウェッブに、または本発明繊維を1〜30mmに
切断したものを紙材料として水中に分散させ、湿式抄造
した原紙に、20kg/cm2以上、好ましくは40k
g/cm2以上の高圧水流をあて、高圧水流による衝撃
あるいはせん断により本発明繊維をフィブリル化させ
る。この方法の場合には、ウェッブ形成後高圧水流によ
りフィブリル化するので、フィブリルによる分散不良や
フィブリルによる高緊度化が回避できるメリットがあ
り、極細繊維で構成されていながらポーラスな二次元シ
ートが得られ、ワイパーやフィルターとして有用であ
る。
In the case of the latter method, the fibers of the present invention are crimped and cut to form staples, and then a web formed through a card machine or the fibers of the present invention cut into 1 to 30 mm is used as a paper material. 20 kg / cm 2 or more, preferably 40 k, on wet-processed base paper dispersed in water
A fiber of the present invention is fibrillated by applying a high-pressure water flow of g / cm 2 or more and impacting or shearing with the high-pressure water flow. In the case of this method, since fibrillation is caused by high-pressure water flow after web formation, there is an advantage that it is possible to avoid poor dispersion due to fibrils and high tenacity due to fibrils, and a porous two-dimensional sheet is obtained even though it is composed of ultrafine fibers. It is useful as a wiper and filter.

【0030】従来、PVA以外の繊維素材で2種の非相
溶性のポリマーからなる複合繊維の場合には、高圧水流
で分割フィブリル化することは行われているが、高圧水
流処理までの工程通過性と高圧水流処理時の分割性が逆
相関の関係にあり、良好な工程通過性と良好な分割性と
の両立が困難であった。すなわち従来の高圧水流処理で
分割化され易い繊維は、紡糸工程、延伸工程、捲縮工
程、カード工程でも分割され易く、これら工程でトラブ
ルとなり易い。逆にウェッブ形成工程までの分割性が小
さくトラブルなく通過する複合繊維の場合には、高圧水
流処理でも分割化し難く、分割された極細繊維よりなる
不織布が得難い傾向となる。しかしながら本発明の繊維
では、前述したように、高圧水流処理までのドライの状
態では分割フィブリル化性が小さく、高圧水流によるウ
エットとなると繊維を構成するPVAの膨潤により、一
気に内部歪みが大きくなり高圧水流により分割フィブリ
ル化が発現し易いという特徴を有する。
Conventionally, in the case of a composite fiber composed of two incompatible polymers made of a fiber material other than PVA, split fibrillation has been carried out with a high-pressure water stream, but the steps before the high-pressure water stream treatment are passed. And the splittability during high-pressure water flow treatment have an inverse correlation, and it was difficult to achieve both good process passability and good splittability. That is, the fibers that are easily divided by the conventional high-pressure water stream treatment are easily divided in the spinning process, the drawing process, the crimping process, and the card process, and troubles are likely to occur in these processes. Conversely, in the case of a conjugate fiber having a small division property up to the web forming step and passing through without any trouble, it is difficult to divide even the high-pressure water flow treatment, and it is difficult to obtain a nonwoven fabric composed of the divided ultrafine fibers. However, in the fiber of the present invention, as described above, the split fibrillation property is small in the dry state up to the high-pressure water stream treatment, and when wetted by the high-pressure water stream, the PVA constituting the fiber swells and the internal strain suddenly increases, resulting in a high pressure. It has a feature that split fibrillation is easily caused by water flow.

【0031】また、本発明の繊維は強力な機械的せん断
力のみでも分割されるため、フィブリル化の方法とし
て、ニードルパンチ法やゴム素練り成分にも用いること
ができる。ただし前述したように、本発明の繊維は水流
絡合のように、膨潤歪みのある状態での機械的せん断力
を受けた場合に、より一層分割フィブリル化されるた
め、ニードルパンチ法の場合は条件を厳しくする必要が
ある。すなわちフィブリル化条件としては、刺針密度2
50本/cm2以上が好ましく、より好ましくは刺針密
度400本/cm2以上である。乾式水絡方法、ニード
ルパンチ法ともに、カーディング方法としては、ローラ
ーカード、セミランダムカード、ランダムカード等が用
いられ、またウェッブの形成方法についても、タンデム
ウェッブ、クロスウェッブ、クリスクロスウェッブ等の
一般に知られているいずれの方法でも良い。また湿式水
絡方法に用いられる原紙については、一般に知られた円
網、短網、長網等の抄紙機によって得られる原紙でよ
く、また水流処理の支持体に導くことができるものであ
れば、原紙は乾燥された状態でも乾燥前のものでもよ
い。
Further, since the fiber of the present invention is split only by a strong mechanical shearing force, it can be used also in the needle punching method and the rubber mastication component as a method of fibrillation. However, as described above, when the fiber of the present invention is subjected to mechanical shearing force in a state of swelling strain such as hydroentanglement, the fiber is further divided into fibrils, and thus in the case of the needle punch method, Conditions need to be strict. That is, as the fibrillation condition, the needle density is 2
The density is preferably 50 needles / cm 2 or more, and more preferably 400 needles / cm 2 or more. Both the dry water-flooding method and the needle punching method, as a carding method, a roller card, a semi-random card, a random card or the like is used.Also, regarding a method for forming a web, a tandem web, a cross web, a criss cross web or the like is generally used. Any known method may be used. Further, the base paper used in the wet flooding method may be a base paper obtained by a generally known paper machine such as a cylinder, a short-net, and a Fourdrinier, as long as it can be introduced to a support for water stream treatment. The base paper may be in a dried state or before being dried.

【0032】本発明の繊維とともに、ウェッブに混綿ま
たは原紙に混抄される原綿については、天然パルプ、合
成パルプ、綿、麻、レーヨン、溶剤紡糸セルロース繊
維、ポリノジックレーヨン、アセテート繊維、ポリエス
テル繊維、アクリル繊維、ナイロン繊維、ポリプロピレ
ン繊維、ビニロン等の一般に知られているものを用いる
ことができる。ウェッブ同士の積層や、本発明繊維を含
まないウェッブとの積層でも良い。すなわち本発明の繊
維がフィブリル化された状態で一部含まれていればよ
く、均一に存在しておらずに偏在していてもよい。ま
た、得られた乾式不織布、湿式不織布、ニードルパンチ
乾式不織布に、スプレー法、プリント法、泡末法等のエ
マルジョンバインダー法や粉末法により、酢酸ビニル
系、アクリル系、塩化ビニル系、ウレタン系、ポリエス
テル系、エポキシ系、ゴム系等の一般に知られている樹
脂バインダーを添加することもできる。
The raw cotton mixed with the fiber of the present invention in the web or the raw paper is made of natural pulp, synthetic pulp, cotton, hemp, rayon, solvent-spun cellulose fiber, polynosic rayon, acetate fiber, polyester fiber, acrylic fiber. Commonly known materials such as nylon fiber, polypropylene fiber and vinylon can be used. It may be a stack of webs or a stack of webs containing no fiber of the present invention. That is, the fibers of the present invention may be partially contained in the fibrillated state, and may not be uniformly present but may be unevenly distributed. In addition, the obtained dry non-woven fabric, wet non-woven fabric, needle punch dry non-woven fabric, vinyl acetate-based, acrylic-based, vinyl chloride-based, urethane-based, polyester by the emulsion binder method or powder method such as spraying, printing, foaming It is also possible to add a generally known resin binder such as a resin type, an epoxy type or a rubber type.

【0033】[0033]

【実施例】以下本発明を実施例によりさらに具体的に説
明するが、本発明はこれら実施例に何ら制約を受けるも
のではない。 実施例1 重合度1750、ケン化度99.8モル%のPVAと、
酢酸ビニル5モル%共重合したPANをDMSOに溶解
し、100℃で10時間窒素気流下200rpmで攪拌
溶解し、PVA/PANの重量比が50/50でポリマ
ー濃度が20重量%の混合紡糸原液を得た。この原液
は、肉眼で観察すると不透明であり、また前記した方法
で相構造を観察すると3〜10μmの粒子径を有する相
構造であり、熱水処理によりPVA成分が分散媒成分
(海成分)でPAN成分が分散成分(島成分)となって
いることを確認した。この紡糸原液を8時間静置脱泡し
たが、2層に分離する気配は全くなく極めて安定した相
構造を有していることを確認した。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 PVA having a polymerization degree of 1750 and a saponification degree of 99.8 mol%;
5 mol% vinyl acetate copolymerized PAN was dissolved in DMSO and dissolved by stirring at 100 ° C. for 10 hours under a nitrogen stream at 200 rpm, and a mixed spinning stock solution having a PVA / PAN weight ratio of 50/50 and a polymer concentration of 20% by weight. Got This stock solution is opaque when observed with the naked eye, and has a phase structure having a particle size of 3 to 10 μm when the phase structure is observed by the above-described method. It was confirmed that the PAN component was a dispersed component (island component). This spinning stock solution was allowed to stand for 8 hours for defoaming, but it was confirmed that there was no sign of separation into two layers and that it had an extremely stable phase structure.

【0034】この100℃の紡糸原液を、孔数1000
ホール、孔径0.08mmの紡糸口金を通して、DMS
O/メタノールの重量比が30/70、温度が5℃の固
化浴中に湿式紡糸し、3倍の湿延伸を施し、糸中のDM
SOをメタノールで抽出し、最後の抽出洗浄を重量比が
メタノール/メチルイソブチルケトン(MIBKと略
す)/水=55.8/38.2/6の置換浴を通過さ
せ、油剤付与したのち、80℃の熱風で乾燥して紡糸原
糸を得た。その後、得られた紡糸原糸を230℃で全延
伸倍率16倍の乾熱延伸を行い(乾熱延伸機中での滞留
時間30秒)、2000dr/1000fのPVA/P
ANブレンド繊維を得た。この繊維の強度は10.1g
/d、ヤング率は190g/dであり、PVAが海成
分、PANが島成分となっていることが確認できた。
This spinning dope at 100 ° C. was treated with 1000 holes.
DMS through hole, spinneret with hole diameter 0.08mm
Wet spinning in a solidifying bath with an O / methanol weight ratio of 30/70 and a temperature of 5 ° C., wet drawing 3 times, and DM in the yarn.
SO was extracted with methanol, and the final extraction washing was passed through a displacement bath having a weight ratio of methanol / methyl isobutyl ketone (abbreviated as MIBK) /water=55.8/38.2/6 to give an oil agent, and then 80 The raw yarn was spun by drying with hot air at ℃. Thereafter, the obtained spun raw yarn was subjected to dry heat drawing at a total draw ratio of 16 times at 230 ° C. (residence time in the dry heat drawing machine 30 seconds), and PVA / P of 2000 dr / 1000f.
An AN blend fiber was obtained. The strength of this fiber is 10.1g
/ D, Young's modulus was 190 g / d, and it was confirmed that PVA was a sea component and PAN was an island component.

【0035】この繊維を2mmに切断して水分散し、前
述したミキサーで5分間叩解し、叩解液を光学顕微鏡で
観察したところ、大部分の繊維が1μm程度の太さのフ
ィブリルに分かれていた。また、この叩解液の濾水時間
を測定したところ、250秒であった。この繊維の本発
明で規定する叩解性は2分以内であった。この叩解液の
分散性は良好で、フィブリル同士が絡まりあったファイ
バーボールは全く見られなかった。本実施例で得た繊維
を3mmにカットし、リファイナーで叩解し抄紙して得
た紙は高緊度で高強力であった。また、この実施例で得
られた繊維に捲縮を与え、51mmにカットして得たス
テープルをカードにかけ、カードウェッブとし、80k
g/cm2の高圧水流処理を施した。得られた不織布の
表面を走査型電子顕微鏡で観察すると、ほとんどの繊維
は1μm程度の太さのフィブリルに分割されていること
がわかった。この不織布で眼鏡や自動車のフロントガラ
スの汚れを拭くと極めて綺麗に拭き取ることができた。
また水洗しても問題なく、ワイパーとして繰り返し使用
することが可能であった。
This fiber was cut into 2 mm, dispersed in water, beaten with the above-mentioned mixer for 5 minutes, and the beaten liquid was observed with an optical microscope. As a result, most of the fibers were divided into fibrils having a thickness of about 1 μm. . The drainage time of this beating liquid was measured and found to be 250 seconds. The beating property of this fiber defined in the present invention was within 2 minutes. The dispersibility of this beating solution was good, and no fiber balls in which fibrils were entangled with each other were seen. The fiber obtained in this example was cut into 3 mm, beaten with a refiner and made into paper, and the obtained paper had high tenacity and high strength. Further, the fiber obtained in this example was crimped, and the staple obtained by cutting the fiber into 51 mm was applied to a card to form a card web.
A high-pressure water stream treatment of g / cm 2 was applied. When the surface of the obtained nonwoven fabric was observed with a scanning electron microscope, it was found that most of the fibers were divided into fibrils having a thickness of about 1 μm. When this non-woven fabric was used to wipe the dirt on the glasses and the windshield of the automobile, it could be wiped off very cleanly.
There was no problem even after washing with water, and it was possible to use it repeatedly as a wiper.

【0036】比較例1,2 実施例1と置換浴組成をメタノールのみ(比較例1)及
びMIBKのみ(比較例2)にした以外は同一条件で繊
維を製造することを試みた。得られた繊維強度・ヤング
率は実施例1とほぼ同じで9.8g/d、180g/d
(比較例1)、9.7g/d、175g/d(比較例
2)であった。しかし比較例1、2ともに叩解性が悪
く、15分間攪拌叩解して幾分かフィブリル化する程度
であり、叩解性は15分以内という条件を到底満足でき
るものではなく、5分叩解後の濾水性も5秒というフィ
ブリル化の程度の低いものであった。
Comparative Examples 1 and 2 Attempts were made to produce fibers under the same conditions as in Example 1, except that the displacement bath composition was methanol only (Comparative Example 1) and MIBK only (Comparative Example 2). The obtained fiber strength and Young's modulus were almost the same as in Example 1 and were 9.8 g / d and 180 g / d.
(Comparative Example 1), 9.7 g / d, 175 g / d (Comparative Example 2). However, in each of Comparative Examples 1 and 2, the beating property was poor, and the beating property was only about 15 minutes with stirring and beating, and the beating property could not satisfy the condition of less than 15 minutes at all. The aqueous solution was also as low as 5 seconds with a low degree of fibrillation.

【0037】実施例2 PVA/PANの重量比を60/40に変更する以外は
実施例1と同様にして紡糸原液を得た。この原液は、肉
眼で観察すると不透明であり、また前記した方法で相構
造を観察すると2〜8μmの粒子径を有しており、PV
Aが分散媒成分(海成分)でPAN成分が分散成分(島
成分)となっていることを熱水処理により確認した。こ
の紡糸原液を8時間静置脱泡したが、2層に分離する気
配は全くなく極めて安定した相構造を有していることを
確認した。この紡糸原液を100℃に保ち、孔数100
0ホール、孔径0.08mmの紡糸口金を通して、DM
SO/メタノールの重量比が30/70、温度5℃の固
化浴中に湿式紡糸し、3倍の湿延伸を施し、糸中のDM
SOをメタノールで抽出し、さらに重量比がメタノール
/MIBK/水=65.8/28.2/6の置換浴を通
過し、油剤付与、80℃の熱風で乾燥し紡糸原糸を得
た。その後、得られた紡糸原糸を230℃で全延伸倍率
16倍の乾熱延伸を行い(乾熱延伸機中での滞留時間3
0秒)、2000dr/1000fのPVA/PANブ
レンド繊維を得た。この繊維の強度は11.0g/d、
ヤング率210g/dであった。この繊維の、5分叩解
後の濾水時間は160秒、叩解性は3分であり、ファイ
バーボールの生成が見られなかった。得られるフィブリ
ルの太さも約1μmであった。
Example 2 A spinning dope was obtained in the same manner as in Example 1 except that the weight ratio of PVA / PAN was changed to 60/40. This undiluted solution is opaque when observed with the naked eye, and has a particle size of 2 to 8 μm when the phase structure is observed by the above-mentioned method.
It was confirmed by hot water treatment that A was a dispersion medium component (sea component) and the PAN component was a dispersion component (island component). This spinning stock solution was allowed to stand for 8 hours for defoaming, but it was confirmed that there was no sign of separation into two layers and that it had an extremely stable phase structure. Keep this spinning dope at 100 ° C with 100 holes
DM through a spinneret with 0 holes and a hole diameter of 0.08 mm
Wet spinning in a solidification bath at a SO / methanol weight ratio of 30/70 and a temperature of 5 ° C., wet stretching 3 times, and DM in the yarn.
SO was extracted with methanol, further passed through a displacement bath with a weight ratio of methanol / MIBK / water = 65.8 / 28.2 / 6, oiled, and dried with hot air at 80 ° C. to obtain a spun yarn. Thereafter, the obtained spun raw yarn was subjected to dry heat drawing at a total draw ratio of 16 times at 230 ° C. (retention time 3 in the dry heat drawing machine).
0 second), and 2000 dr / 1000f PVA / PAN blend fiber was obtained. The strength of this fiber is 11.0 g / d,
The Young's modulus was 210 g / d. This fiber had a drainage time of 160 seconds after beating for 5 minutes and a beating property of 3 minutes, and formation of fiber balls was not observed. The thickness of the obtained fibril was also about 1 μm.

【0038】比較例3,4 実施例2と置換浴組成をメタノールのみ(比較例3)及
びMIBKのみ(比較例4)にした以外は同一条件で繊
維を製造することを試みた。得られた繊維強度・ヤング
率は実施例2とほぼ同じで10.6g/d、210g/
d(比較例3)、10.3g/d、205g/d(比較
例4)であった。しかし比較例3、4ともに叩解性が悪
く、15分間攪拌叩解して幾分フィブリル化する程度で
あり、5分叩解後の濾水時間は5秒であった。
Comparative Examples 3 and 4 Attempts were made to produce fibers under the same conditions as in Example 2, except that the displacement bath composition was methanol only (Comparative Example 3) and MIBK only (Comparative Example 4). The obtained fiber strength and Young's modulus were almost the same as in Example 2 and were 10.6 g / d and 210 g / d.
d (Comparative Example 3), 10.3 g / d, 205 g / d (Comparative Example 4). However, in each of Comparative Examples 3 and 4, the beating property was poor, and it was about a degree of fibrillation by stirring and beating for 15 minutes, and the drainage time after 5 minutes of beating was 5 seconds.

【0039】実施例3 実施例1の原液ポリマー組成をPVA/セルロースアセ
テート=6/4にした以外は実施例1と同一条件で繊維
を製造することを試みた。得られた繊維強度・ヤング率
は10.3g/d、200g/dであった。この繊維の
5分叩解後の濾水時間は120秒、叩解性は約200秒
であり、ファイバーボールの生成が見られなかった。得
られるフィブリルの太さも約1μであった。
Example 3 An attempt was made to produce fibers under the same conditions as in Example 1 except that the stock solution polymer composition of Example 1 was PVA / cellulose acetate = 6/4. The fiber strength and Young's modulus obtained were 10.3 g / d and 200 g / d. The drainage time of this fiber after beating for 5 minutes was 120 seconds, and the beating property was about 200 seconds, and formation of fiber balls was not observed. The thickness of the obtained fibril was also about 1 μm.

【0040】比較例5,6 実施例1において、固化浴のDMSO濃度を10重量%
にしたところ(比較例5)、ノズル部分での糸切れが多
発した。またDMSO濃度を80重量%に変更したとこ
ろ(比較例6)、固化不良となり、紡糸調子が不良とな
りまともな紡糸原糸を得ることができなかった。
Comparative Examples 5 and 6 In Example 1, the DMSO concentration in the solidifying bath was 10% by weight.
(Comparative Example 5), yarn breakage frequently occurred at the nozzle portion. Further, when the DMSO concentration was changed to 80% by weight (Comparative Example 6), the solidification was poor and the spinning tone was poor, so that a proper spinning raw yarn could not be obtained.

【0041】比較例7 PVAグラフトPAN(アクリロニトリルをPVAの存
在下でラジカル重合したものでグラフト率75%)とP
VAをグラフトPAN/PVAの重量比40/60にし
て実施例2と同様に紡糸・延伸した。紡糸・延伸調子は
良好であった。得られた繊維は、強度10.7g/d、
ヤング率200g/dと実施例2のものと遜色なかった
ものの、叩解性は50分以上と叩解し難いものであっ
た。PVAグラフトPANはPVAとの相溶性が良好
で、紡糸原液段階で相構造を形成せず、繊維内でPAN
があまり均一に分子分散に近い状態で微分散したため、
フィブリル化し難くなったものと判断される。
Comparative Example 7 PVA-grafted PAN (Acrylonitrile was radical-polymerized in the presence of PVA and the graft ratio was 75%) and P
VA was grafted and stretched in the same manner as in Example 2 with a graft PAN / PVA weight ratio of 40/60. The spinning and drawing conditions were good. The obtained fiber has a strength of 10.7 g / d,
The Young's modulus was 200 g / d, which was comparable to that of Example 2, but the beating property was 50 minutes or more, which was difficult to be beat. PVA-grafted PAN has good compatibility with PVA, does not form a phase structure at the spinning dope stage,
Is very evenly dispersed in a state close to the molecular dispersion,
It is judged that it became difficult to fibrillate.

【0042】[0042]

【発明の効果】本発明は、ビニロン繊維の原料として大
量に使用されているPVAと、PAN、セルロースアセ
テート等のPVAに非相溶な汎用性ポリマーをブレンド
使用し、これから約1μm(デニール換算約0.01d
r)の細さの極細フィブリルに容易に分割可能な繊維を
工業的に安定かつ安価に製造することができる技術に関
するものである。本発明の易フィブリル化繊維は、上記
したように、硬質の無機微粒子と分散攪拌すると容易に
フィブリル化し、微粒子捕捉性と補強性に優れ、しかも
耐熱溶融性に優れた混合物を得ることができるため、ブ
レーキやクラッチ板等の摩擦材として有用である。また
このフィブリルをセメントに混合分散させると、セメン
ト粒子の捕捉性に優れ、しかも補強性にも優れているた
め、高強度スレート板に用いることもできる。更にゴム
素練り前に本発明繊維を添加し、素練りなどの機械的せ
ん断力を加えると、ゴム中で繊維がフィブリル化し、ポ
リマー自体のゴムに対する高接着性とフィブリル化によ
る比表面積が極端に大きいことにより、RFL処理しな
くてもゴムに対する十分な補強効果を得ることができ
る。更に本発明の繊維は、当然のこととして、それ以外
のゴム、セメント、樹脂等の補強用繊維としても用いる
ことができる。
INDUSTRIAL APPLICABILITY The present invention uses a large amount of PVA used as a raw material of vinylon fiber and a versatile polymer that is incompatible with PVA such as PAN and cellulose acetate. 0.01d
The present invention relates to a technology capable of industrially producing inexpensive and stable fibers that can be easily divided into ultrafine fibrils of r). The easily fibrillated fiber of the present invention, as described above, easily fibrillates when dispersed and stirred with hard inorganic fine particles, and thus it is possible to obtain a mixture excellent in fine particle capturing property and reinforcing property, and also excellent in heat melting resistance. It is useful as a friction material for brakes, clutch plates, etc. Further, when the fibrils are mixed and dispersed in cement, they are excellent in the ability to capture cement particles and also excellent in the reinforcing property, so that they can be used in a high-strength slate plate. Furthermore, when the fiber of the present invention is added before rubber mastication and mechanical shearing force such as mastication is applied, the fiber is fibrillated in the rubber, and the high adhesion of the polymer itself to rubber and the specific surface area due to fibrillation are extremely high. By having a large size, a sufficient reinforcing effect on rubber can be obtained without RFL treatment. Further, the fiber of the present invention can naturally be used as a reinforcing fiber for other rubber, cement, resin, etc.

【0043】また、本発明の繊維を用いて得たフィブリ
ル化シートは、緻密性、遮蔽性、不透明性、拭き取り
性、吸水性、吸油性、透湿性、保温性、高接着性、耐候
性、高強度、高引裂力、耐摩耗性、制電性、ドレープ
性、染色性、安全性等に極めて優れているため、エアー
フィルター、バグフィルター、液体フィルター、掃除機
用フィルター、水切りフィルター、菌遮蔽性フィルター
等の各種フィルター用シート、電池セパレーター、コン
デンサー用セパレーター紙、フロッピーディスク包装材
等の各種電気器材用シート、FRRサーフェーサー、粘
着テープ基布、吸油材、製紙フェルト等の各種工業用シ
ート、家庭、業務、医療用ワイパー、印刷ロール用ワイ
パー、複写機クリーニング用ワイパー、光学機器用ワイ
パー等の各種ワイパー用シート、手術衣、ガウン、覆
布、キュップ、マスク、シート、タオル、ガーゼ、バッ
プ剤基布、おむつ、おむつライナー、おむつカバー、絆
創膏基布、おしぼり、ティッシュ等の各種医療・衛材用
シート、芯地、パット、ジャンパーライナー、ディスポ
下着等の各種衣料用シート、人工・合成皮革基布、テー
ブルトップ、壁紙、障子紙、ブラインド、カレンダー、
ラッピング、カイロ・乾燥剤袋、防虫剤袋、芳香剤袋、
買い物袋、風呂敷、スーツカバー、枕カバー等の各種生
活資材用シート、寒冷紗、内張カーテン、べたがげシー
ト、遮光・防草シート、農薬包装材、育苗ポット、育苗
ポット下敷き紙等の各種農業用シート、防煙・防塵マス
ク、実験着、防塵服等の各種防護用シート、ハウスラッ
プ、ドレン材、濾過材、分離材、オーバーレイ、ルーフ
ィング、タフトカーペット基布、結露防止シート、壁装
材、防音・防振シート、木質ボード、養生シート等の各
種土木建築用シート、フロアー・トラックマット、天井
成型材、ヘッドレスト、内張布等の各種車両内装材用シ
ート等の用途に用いることができる。
Further, the fibrillated sheet obtained by using the fiber of the present invention is dense, shielding, opaque, wipeable, water absorbing, oil absorbing, moisture permeable, heat retaining, highly adhesive, weather resistant, High strength, high tear strength, abrasion resistance, antistatic property, drape property, dyeing property, safety, etc. are extremely excellent, so air filters, bag filters, liquid filters, vacuum cleaner filters, drain filters, fungus shielding Sheets for various filters such as water resistance filters, battery separators, separator paper for capacitors, sheets for electrical equipment such as floppy disk packaging materials, FRR surfacers, adhesive tape base cloth, oil absorbing materials, various industrial sheets such as paper felt, household , Business, medical wiper, printing roll wiper, copier cleaning wiper, optical device wiper, etc. Sheets, surgical gowns, gowns, wraps, cups, masks, sheets, towels, gauze, base cloths for diapers, diapers, diaper liners, diaper covers, adhesive base cloths, hand towels, tissues, and other sheets for various medical and protective materials, Interlining, pad, jumper liner, various clothing sheets such as disposable underwear, artificial / synthetic leather base cloth, table top, wallpaper, shoji paper, blinds, calendar,
Wrapping, Cairo / desiccant bag, insect repellent bag, air freshener bag,
Agricultural products such as shopping bags, furoshiki, suit covers, pillow covers, and other daily-use materials sheets, cheesecloth, lining curtains, sticky sheets, light-shielding / weed-proof sheets, pesticide packaging materials, seedling pots, seedling pots, underlay paper, etc. Sheets, smoke / dust masks, laboratory clothes, various protective sheets such as dust clothes, house wraps, drain materials, filter materials, separation materials, overlays, roofing, tuft carpet base cloth, dew condensation prevention sheets, wall covering materials, It can be used for various kinds of civil engineering and construction sheets such as soundproofing / vibration-proofing sheets, wooden boards, curing sheets, etc., sheets for various vehicle interior materials such as floor / track mats, ceiling molding materials, headrests, lining cloths, etc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ビニルアルコール系ポリマー(A)と
(A)に非相溶なポリマー(B)からなり、(A)が海
成分で(B)が島成分となっており、叩解性が15分以
下であることを特徴とする易フィブリル化繊維。
1. A vinyl alcohol-based polymer (A) and a polymer (B) incompatible with (A), wherein (A) is a sea component and (B) is an island component, and the beating property is 15 An easily fibrillated fiber characterized by being less than or equal to a minute.
【請求項2】濾水時間が75秒以上である請求項1に記
載の易フィブリル化繊維。
2. The easily fibrillated fiber according to claim 1, wherein the drainage time is 75 seconds or more.
【請求項3】請求項1記載の繊維から得られた平均径
0.5〜3μmのフィブリル。
3. Fibrils having an average diameter of 0.5 to 3 μm obtained from the fibers according to claim 1.
【請求項4】ビニルアルコール系ポリマー(A)と
(A)に非相溶なポリマー(B)を共通の有機溶媒に溶
解し、得られた紡糸原液を、上記両ポリマーに対して固
化能を有する固化溶媒と原液有機溶媒と同一の溶媒から
なる固化浴に湿式または乾湿式紡糸し、形成された糸条
を置換浴に導き糸条中に含まれている紡糸原液溶媒を除
去したのち乾燥し、さらに延伸して繊維を製造するに際
して、以下の条件(1)〜(4) (1)原液が、(A)が海成分で(B)が1〜20μm
の粒子径を有している島成分となっている海島相分離構
造であること、(2)固化溶媒が有機溶媒で、かつ固化
浴には15〜75重量%の原液溶媒が含まれているこ
と、(3)最終置換浴が、アルコール類、ケトン類及び
水の3成分系からなり、該アルコール類とケトン類の重
量比が9/1〜1/9でかつ水が全体の重量の1〜30
%であること、(4)全延伸倍率が8倍以上であるこ
と、を満足することを特徴とする易フィブリル化繊維の
製造方法。
4. A vinyl alcohol-based polymer (A) and a polymer (B) which is incompatible with (A) are dissolved in a common organic solvent, and the obtained spinning stock solution has a solidifying ability for both polymers. Wet or dry-wet spinning in a solidification bath consisting of the same solvent as the solidifying solvent and the stock solution organic solvent, introduce the formed yarn into a displacement bath, remove the spinning stock solution solvent contained in the yarn, and then dry. The following conditions (1) to (4) (1) in the undiluted solution, (A) is a sea component, and (B) is 1 to 20 μm when the fiber is further drawn.
Sea-island phase separation structure that is an island component having a particle size of (2), the solidifying solvent is an organic solvent, and the solidifying bath contains 15 to 75% by weight of the stock solution solvent. (3) The final displacement bath comprises a three-component system of alcohols, ketones and water, the weight ratio of the alcohols and ketones is 9/1 to 1/9, and water is 1% of the total weight. ~ 30
%, And (4) the total draw ratio is 8 times or more, the method for producing easily fibrillated fibers.
JP8119922A 1995-10-18 1996-05-15 Readily fibrillating fiber and its production Pending JPH09302525A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8119922A JPH09302525A (en) 1996-05-15 1996-05-15 Readily fibrillating fiber and its production
US08/726,930 US5861213A (en) 1995-10-18 1996-10-07 Fibrillatable fiber of a sea-islands structure
TW085112699A TW339371B (en) 1996-05-15 1996-10-17 Fabrillatable fiber of a sea-islands structure, preparatioan thereof, method of preparing non-woven fabric and method of preparing fiber-reinforced molded article
KR1019960046618A KR100225318B1 (en) 1995-10-18 1996-10-18 Fibrillatable fiber of a sea- islands structure
CN96121085A CN1068074C (en) 1995-10-18 1996-10-18 Fibrillatable fiber of sea-islands structure
EP96116798A EP0769579B1 (en) 1995-10-18 1996-10-18 Fibrillatable fiber of a sea-islands structure
DE69606007T DE69606007T2 (en) 1995-10-18 1996-10-18 Fibrillatable fiber with 'island lake' structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8119922A JPH09302525A (en) 1996-05-15 1996-05-15 Readily fibrillating fiber and its production

Publications (1)

Publication Number Publication Date
JPH09302525A true JPH09302525A (en) 1997-11-25

Family

ID=14773506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8119922A Pending JPH09302525A (en) 1995-10-18 1996-05-15 Readily fibrillating fiber and its production

Country Status (1)

Country Link
JP (1) JPH09302525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248057A (en) * 1999-06-07 2001-09-14 Kuraray Co Ltd Porous sheet
JP2002159532A (en) * 2000-11-28 2002-06-04 Kuraray Co Ltd Absorptive article
WO2006100783A1 (en) * 2005-03-24 2006-09-28 Kuraray Co., Ltd. Extrafine carbon fiber and process for producing the same
JP2015052196A (en) * 2013-08-05 2015-03-19 三菱レイヨン株式会社 Splittable bicomponent fiber and production method thereof, and nonwoven fabric and production method thereof
JP2018164753A (en) * 2018-07-03 2018-10-25 株式会社ダイセル Method of manufacturing absorber and device for manufacturing absorber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248057A (en) * 1999-06-07 2001-09-14 Kuraray Co Ltd Porous sheet
JP2002159532A (en) * 2000-11-28 2002-06-04 Kuraray Co Ltd Absorptive article
WO2006100783A1 (en) * 2005-03-24 2006-09-28 Kuraray Co., Ltd. Extrafine carbon fiber and process for producing the same
JP2015052196A (en) * 2013-08-05 2015-03-19 三菱レイヨン株式会社 Splittable bicomponent fiber and production method thereof, and nonwoven fabric and production method thereof
JP2018164753A (en) * 2018-07-03 2018-10-25 株式会社ダイセル Method of manufacturing absorber and device for manufacturing absorber

Similar Documents

Publication Publication Date Title
US7892992B2 (en) Polyvinyl alcohol fibers, and nonwoven fabric comprising them
KR100225318B1 (en) Fibrillatable fiber of a sea- islands structure
JP5082192B2 (en) Method for producing nanofiber synthetic paper
MX2008002259A (en) Hydroxyl polymer fiber fibrous structures and processes for making same.
US5972501A (en) Easily fibrillatable fiber
US6124058A (en) Separator for a battery comprising a fibrillatable fiber
US6048641A (en) Readily fibrillatable fiber
WO2006124426A1 (en) Highly resilient, dimensionally recoverable nonwoven material
JPH09302525A (en) Readily fibrillating fiber and its production
JP4282857B2 (en) Composite fiber
JPH08284021A (en) Readily fibrillated fiber comprising polyvinyl alcohol and cellulosic polymer
JP5283823B2 (en) A fiber in which an acrylonitrile-based polymer and a cellulose-based polymer are uniformly mixed, a nonwoven fabric containing the same, and a method for producing a fiber in which an acrylonitrile-based polymer and a cellulose-based polymer are uniformly mixed.
JPH09170115A (en) Easily fibrillating fiber and its production
JPH10102322A (en) Readily fibrillatable fiber
JP3828550B2 (en) Polyvinyl alcohol fiber and non-woven fabric using the same
JP3537601B2 (en) Non-woven
JPH08296121A (en) Production of fibril comprising polyvinyl alcohol and starch
JP3345191B2 (en) Water-soluble and thermocompressible polyvinyl alcohol-based binder fiber
EP0861929A1 (en) Easily fibrillable fiber
JPH11100718A (en) Readily fibrillating fiber and its production
JP5362805B2 (en) A nonwoven fabric containing fibers in which an acrylonitrile polymer and a cellulose polymer are uniformly mixed.
JPH10237718A (en) Polyvinyl alcohol fibril with excellent water resistance and its production
JPH11256423A (en) Splittable acrylic fiber, and acrylic fiber sheet and nonwoven fabric using the same
JP3556510B2 (en) Acrylic binder fiber
JP3961724B2 (en) Polyolefin-based split composite fiber and non-woven fabric using the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120