JPH09302247A - Conductive resin composition - Google Patents

Conductive resin composition

Info

Publication number
JPH09302247A
JPH09302247A JP8123554A JP12355496A JPH09302247A JP H09302247 A JPH09302247 A JP H09302247A JP 8123554 A JP8123554 A JP 8123554A JP 12355496 A JP12355496 A JP 12355496A JP H09302247 A JPH09302247 A JP H09302247A
Authority
JP
Japan
Prior art keywords
resin
conductive filler
structural unit
antistatic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8123554A
Other languages
Japanese (ja)
Inventor
Hideyuki Sumi
英行 角
Takeshi Furukawa
豪 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP8123554A priority Critical patent/JPH09302247A/en
Publication of JPH09302247A publication Critical patent/JPH09302247A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a conductive resin compsn. which can offer a resin product having an excellent antistatic property by incorporating a cationic copolymer having a specific structural unit and a conductive filler into an org. polymer material. SOLUTION: An org. polymer material (A), pref. a thermoplastic resin, is mixed with a cationic copolymer (B), in an amt. of 1 to 10wt.% based on the resin compsn., having a wt. average mol.wt. of 1,000 to 50,000 and comprising 80 to 98mol% structural unit represented by formula I, 0 to 15mol% structural unit represented by formula II (wherein R<1> represents a methyl or ethyl group) and 2 to 20mol% structural unit represented by formula III (wherein R<2> represents an ethylene or propylene group; R<3> and R<4> represent each a methyl group; R<5> represents a lower straight-chain alkyl group or an arylalkyl group; X represents a halogen, CH3 OSO3 , or CH3 CH2 OSO3 ); and 10 to 40wt.% conductive filler (C) having a volume resistivity of 0.1 to 10<4> Ω.cm to obtain a resin compsn. A resin product obtd. from this compsn. has a surface resistivity controlled in the range of 10<10> to 10<18> Ω.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性樹脂組成物
(以下、「帯電防止性樹脂組成物」ともいう)に関し、
詳しくは、優れた帯電防止性を有する樹脂製品を得るこ
とができる導電性樹脂組成物に関する。
TECHNICAL FIELD The present invention relates to a conductive resin composition (hereinafter, also referred to as “antistatic resin composition”),
More specifically, the present invention relates to a conductive resin composition capable of obtaining a resin product having excellent antistatic properties.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】熱可塑性
樹脂等の有機高分子材料は、樹脂自身の本質的性質とし
て、一般的に電気絶縁性が極めて高く、また導電性に乏
しい。このため、静電気の発生が避けられず、一端発生
した静電気は逃げずに蓄積される傾向がある。
2. Description of the Related Art Organic polymer materials such as thermoplastic resins generally have extremely high electrical insulating properties and poor electrical conductivity as the essential properties of the resins themselves. For this reason, the generation of static electricity is unavoidable, and the static electricity generated once tends to accumulate without escape.

【0003】この静電気の蓄積により、熱可塑性樹脂よ
りなる部品が空気中の埃を吸引付着して故障の原因とな
ったり、当該部品の組立工程中にその生産能率を低下さ
せたりしていた。また、静電気が原因で電子部品を損傷
する問題も生じた。
Due to the accumulation of static electricity, a component made of a thermoplastic resin attracts and attaches dust in the air to cause a failure, or the production efficiency of the component is lowered during the assembly process of the component. In addition, the problem of damaging electronic components due to static electricity also occurred.

【0004】そこで、従来、有機高分子材料の帯電を防
止する方法として、次のような提案がなされた。
Therefore, conventionally, the following proposal has been made as a method for preventing the electrification of the organic polymer material.

【0005】帯電防止剤を樹脂成形品等の表面に塗布
する方法 有機高分子材料として熱可塑性樹脂を用いる場合にあ
っては、樹脂の可塑化温度以上で帯電防止剤を練り込む
方法。
Method of applying an antistatic agent to the surface of a resin molded article, etc. When a thermoplastic resin is used as the organic polymer material, a method of kneading the antistatic agent at the plasticizing temperature of the resin or higher.

【0006】しかしながら、上記、には次のような
問題点があった。
However, the above problems have the following problems.

【0007】でいう塗布型の帯電防止剤は、その殆ど
が界面活性剤である。界面活性剤には、アニオン系活性
剤、カチオン系活性剤、非イオン系活性剤、両性活性剤
があり、これらを水またはアルコール等で希釈し塗布す
る。この方法は簡便ではあるが、帯電防止効果の持続性
及び湿度依存性という点で問題があった。
Most of the coating type antistatic agents referred to above are surfactants. Surfactants include anionic activators, cationic activators, nonionic activators, and amphoteric activators, which are diluted with water or alcohol before coating. Although this method is simple, it has a problem in terms of durability of the antistatic effect and humidity dependency.

【0008】の練り込み型帯電防止剤としては、前述
の界面活性剤の他に高分子系帯電防止剤も使用されてい
る。また、高分子系帯電防止剤としては、ポリエーテル
系、ポリエーテルエステル系、ポリアクリル酸系、ポリ
スチレンスルホン酸系が実用化されている。この帯電防
止剤は、帯電防止効果が湿度の影響を受けにくい等の利
点があるが、効果を得るためには添加量を多くする必要
があった。このため、熱可塑性樹脂の物性に影響を与
え、必要とした物性を得ることが難しいという問題があ
った。
As the kneading type antistatic agent, a polymeric antistatic agent is also used in addition to the above-mentioned surfactant. As the polymer antistatic agent, polyether type, polyether ester type, polyacrylic acid type, and polystyrene sulfonic acid type have been put into practical use. This antistatic agent has an advantage that the antistatic effect is not easily affected by humidity, but it is necessary to increase the addition amount in order to obtain the effect. Therefore, there is a problem that the physical properties of the thermoplastic resin are affected and it is difficult to obtain the required physical properties.

【0009】この問題に鑑み、本発明者等は先に、特開
平5−320526号公報、特開平6−271780号
公報等に示されるカチオン性共重合体を用い、比較的少
ない添加量で高い帯電防止性能を示す樹脂組成物を提案
している。
In view of this problem, the inventors of the present invention previously used the cationic copolymers disclosed in JP-A-5-320526 and JP-A-6-27178, and used a comparatively small amount of the cationic copolymer. A resin composition showing antistatic performance is proposed.

【0010】しかしながら、上記技術を以てしても、得
られる樹脂組成物の表面固有抵抗はせいぜい1012〜1
9 Ωであり、109 Ω程度あるいはそれ以下の表面固
有抵抗値を得ようとする場合には、やはり添加量を多く
する必要が生じた。
However, even with the above technique, the surface resistivity of the resulting resin composition is at most 10 12 -1.
In order to obtain a surface specific resistance value of 0 9 Ω and about 10 9 Ω or less, it is necessary to increase the addition amount.

【0011】前述したように、従来の帯電防止性材料を
用いた場合、得られる樹脂製品の表面固有抵抗率は10
11Ω前後である。このレベルは、通常の埃付着防止等を
目的とするという点では充分満足できるレベルである。
As described above, when the conventional antistatic material is used, the surface resistivity of the obtained resin product is 10
It is around 11 Ω. This level is a level that is sufficiently satisfactory in terms of ordinary dust adhesion prevention and the like.

【0012】しかしながら、近年の帯電防止に対する要
求の高度化(例えば、電子部品の組立、搬送、包装材料
等の使用に対する要求の高度化)により、表面固有抵抗
値が1010〜108 Ωに正確にコントロールされた帯電
防止性材料が求められてきている。
However, due to the recent sophistication of antistatic requirements (for example, sophistication of requirements for assembling electronic components, transportation, and use of packaging materials, etc.), the surface specific resistance value is accurate to 10 10 to 10 8 Ω. There is a demand for antistatic materials that are controlled by the above.

【0013】導電性をさらに向上させる方法として、 カーボンブラック、金属粉などの導電性物質を、有機
高分子材料に配合して導電性を付与する方法が行なわれ
てきた。すなわち、カーボンブラック、カーボンファイ
バー、金属微粉末、金属酸化物、非導電性フィラーに金
属または金属酸化物を被覆した材料などの導電性材料
を、有機高分子材料に配合して導電性を付与する方法が
行なわれてきた。
As a method for further improving the conductivity, a method has been used in which a conductive substance such as carbon black or metal powder is blended with an organic polymer material to impart conductivity. That is, a conductive material such as carbon black, carbon fiber, fine metal powder, metal oxide, or a material obtained by coating a metal or a metal oxide on a non-conductive filler is added to an organic polymer material to impart conductivity. The method has been done.

【0014】上記の方法は、前述の帯電防止剤を用い
る方法(、)に比べて帯電防止効果は永続的であ
り、導電性材料の耐熱性も良好である。
In the above method, the antistatic effect is more permanent and the heat resistance of the conductive material is better than that of the method (,) using the antistatic agent.

【0015】しかしながら、導電性フィラーとして体積
抵抗率が10-1Ω・cm程度のカーボン系導電性フィラ
ーを用いた場合、製品の表面固有抵抗値を108 〜10
10Ωの範囲に精度良く制御することが極めて困難となっ
た。つまり、導電性フィラーの添加量に対する帯電防止
性樹脂組成物の表面固有抵抗値の変化が急激となり、僅
かな添加量の変動に対しても表面固有抵抗率は1012Ω
以上〜104 Ω程度まで変化した。
However, when a carbon-based conductive filler having a volume resistivity of about 10 −1 Ω · cm is used as the conductive filler, the surface specific resistance value of the product is 10 8 to 10
It became extremely difficult to control it within the range of 10 Ω with high precision. In other words, the surface resistivity of the antistatic resin composition changes rapidly with respect to the amount of the conductive filler added, and the surface resistivity is 10 12 Ω even with a slight change in the amount added.
Above, it changed to about 10 4 Ω.

【0016】このため、成形部品等では、混練条件、成
形条件等による抵抗値のロット間の変動、また同一部品
内の局所的な抵抗値の変動が大きな問題となった。その
結果、成形部品等の抵抗値が高い場合には、静電気によ
る各種の障害が生じた。また逆に成形部品等の抵抗値が
低い場合には、例えば電気部品等に使用した場合、漏電
等の原因になった。
For this reason, in molded parts and the like, there has been a big problem that the resistance value varies from lot to lot due to kneading conditions, molding conditions and the like, and the local resistance value varies within the same component. As a result, when the resistance value of the molded part or the like is high, various failures due to static electricity occur. On the contrary, when the resistance value of the molded part or the like is low, for example, when it is used for an electric part or the like, it causes a leakage current.

【0017】また、導電性フィラーとして体積抵抗率が
0.5〜104 Ω・cmの非カーボン系導電性フィラー
を用いた場合には、カーボン系導電性フィラーを使用し
たときよりも、添加量に対する表面固有抵抗率の変化は
多少緩やかではある。しかしながら、それでも、樹脂に
添加する際の混練条件の僅かな不均一性が原因で表面固
有抵抗値が1012Ω以上〜105 Ω程度まで大きく変化
する場合があった。
Further, when a non-carbon conductive filler having a volume resistivity of 0.5 to 10 4 Ω · cm is used as the conductive filler, the addition amount is larger than that when the carbon conductive filler is used. The change in the specific surface resistivity with respect to is slightly gradual. However, even then, there was a case where the surface specific resistance value was significantly changed to 10 12 Ω or more and 10 5 Ω or less due to a slight non-uniformity of the kneading conditions when adding to the resin.

【0018】すなわち、導電剤としてこれらの導電性フ
ィラーを用いた場合、樹脂中に導電性フィラーによる電
荷の漏洩回路が形成されて初めて表面固有抵抗値が低下
し、その表面固有抵抗値は導電性フィラーの体積固有抵
抗値の値に大きく依存することから、このような急激な
表面固有抵抗値の変化は避けて通れず、これにより表面
固有抵抗値を108 〜1010Ωの範囲に精度良く制御す
ることが極めて困難であった。
That is, when these conductive fillers are used as the conductive agent, the surface specific resistance value is lowered only after a charge leakage circuit is formed by the conductive filler in the resin, and the surface specific resistance value is conductive. Since it largely depends on the value of the volume resistivity of the filler, such a sudden change in the surface resistivity cannot be avoided, and thus the surface resistivity can be accurately controlled within the range of 10 8 to 10 10 Ω. It was extremely difficult to control.

【0019】さらには、カーボン系導電性フィラーに比
べて非カーボン系導電性フィラーは多量に添加する必要
があり、これにより帯電防止樹脂組成物の物性が変化す
る問題が生じ、また高価な導電性フィラーを多量に使用
するためコスト高を招くという問題もあった。
Further, it is necessary to add a large amount of the non-carbon type conductive filler as compared with the carbon type conductive filler, which causes a problem that the physical properties of the antistatic resin composition are changed, and the expensive conductivity is high. There is also a problem that the cost is increased because a large amount of filler is used.

【0020】[発明の目的]本発明は上記の実情に鑑み
てなされたものであり、その目的は、帯電防止性に優
れ、かつ有機高分子材料本来の特性である絶縁性および
その他の物性は維持され得る、表面固有抵抗率が108
〜1010Ωの範囲に精度良く制御された樹脂製品を安価
に得ることのできる導電性樹脂組成物を提供するところ
にある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its object is to provide excellent insulating properties and other physical properties that are excellent in antistatic properties and are inherent properties of organic polymer materials. Surface resistivity that can be maintained is 10 8
An object of the present invention is to provide a conductive resin composition which can inexpensively obtain a resin product accurately controlled in the range of 10 10 Ω.

【0021】[0021]

【課題を解決するための手段】本発明の導電性樹脂組成
物は、(A)有機高分子材料、(B)下記一般式[化
2]で示される構造単位(I)〜(III)を含有する
カチオン性共重合体、(C)体積抵抗率が0.1〜10
4 Ω・cmの導電性フィラーが配合されてなるものであ
る。
A conductive resin composition of the present invention comprises (A) an organic polymer material, (B) structural units (I) to (III) represented by the following general formula [Chemical formula 2]. Cationic copolymer contained, (C) volume resistivity of 0.1 to 10
It is made by blending a conductive filler of 4 Ω · cm.

【0022】[0022]

【化2】 Embedded image .

【0023】なお、従来、本発明者らが先に、例えば特
開平7−126446号公報、特開平7−90026号
公報、特願平8−19994号等で述べた、樹脂の機械
的物性の改良技術や、着色を目的とした充填剤の併用技
術を以てしても、本発明の効果は全く得られない。
Conventionally, the present inventors have previously described, for example, Japanese Patent Application Laid-Open No. 7-126446, No. 7-90026, Japanese Patent Application No. 8-19994, etc. The effect of the present invention cannot be obtained at all even with the improved technique and the technique of using a filler for the purpose of coloring.

【0024】[0024]

【発明の実施の形態】(A)成分 本発明で用いる有機高分子材料(A)の例を挙げると、
熱可塑性樹脂としては、ポリオレフィン樹脂(ポリエチ
レン、ポリプロピレン、エチレン−プロピレン共重合
体、エチレン−αオレフィン共重合体等)、ポリ塩化ビ
ニル、スチレン系樹脂(スチレンモノマーの単独重合体
(ポリスチレン)スチレンと他の共重合可能なモノマー
との共重合体(ABS樹脂等)、ポリスチレンまたは前
記共重合体と他の熱可塑性樹脂とのポリマーアロイ
等)、(メタ)アクリル樹脂、ポリアミド樹脂(ナイロ
ン6,6、ナイロン6等)、ポリエステル樹脂(ポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
ポリカーボネート等)、変性ポリフェニレンエーテル等
が例示され、これら各種熱可塑性樹脂を単独もしくはポ
リマーアロイの如く併用して使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION (A) Component Examples of the organic polymer material (A) used in the present invention include:
As the thermoplastic resin, polyolefin resin (polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-α-olefin copolymer, etc.), polyvinyl chloride, styrene resin (styrene monomer homopolymer (polystyrene), styrene and others A copolymer with a copolymerizable monomer (ABS resin or the like), polystyrene or a polymer alloy of the above copolymer and another thermoplastic resin), a (meth) acrylic resin, a polyamide resin (nylon 6,6, Nylon 6 etc.), polyester resin (polyethylene terephthalate, polybutylene terephthalate,
Examples thereof include polycarbonate) and modified polyphenylene ether, and these various thermoplastic resins can be used alone or in combination as polymer alloys.

【0025】熱硬化性樹脂ではフェノール樹脂、不飽和
ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート
樹脂、ポリウレタン樹脂、シリコーン等が挙げられる。
Examples of the thermosetting resin include phenol resin, unsaturated polyester resin, epoxy resin, diallyl phthalate resin, polyurethane resin and silicone.

【0026】(B)成分 本発明に使用されるカチオン性共重合体(B)は、上記
[化1]の構造単位(I)〜(III)を有するもので
ある。以下に詳しく説明する。
Component (B) The cationic copolymer (B) used in the present invention has the structural units (I) to (III) of the above [Chemical Formula 1]. This will be described in detail below.

【0027】本発明に用いるカチオン性共重合体(B)
において、エチレン構造単位(I)の割合は、分子内に
80〜98モル%である。この含有割合が80モル%未
満であればマトリックス樹脂への相溶性が極端に悪化
し、押出機を用いての樹脂組成物の製造が困難になるば
かりでなく、得られた樹脂組成物を用いて成形した成形
体の耐水性と機械的物性が著しく低下する。また、含有
割合が98モル%を超える場合には本発明の目的とする
表面固有抵抗値を安定的に発現できない。相溶性、物性
と帯電防止能の安定性との観点から、エチレン構造単位
(I)の含有割合は、85.0〜97.5モル%が好ま
しい。
Cationic copolymer (B) used in the present invention
In, the proportion of the ethylene structural unit (I) is 80 to 98 mol% in the molecule. If this content ratio is less than 80 mol%, the compatibility with the matrix resin is extremely deteriorated, making it difficult to manufacture the resin composition using an extruder, and using the obtained resin composition. The water resistance and mechanical properties of the molded article molded by the above method are significantly reduced. On the other hand, if the content exceeds 98 mol%, the surface resistivity of the present invention cannot be stably exhibited. From the viewpoints of compatibility, physical properties, and stability of antistatic ability, the content ratio of the ethylene structural unit (I) is preferably 85.0 to 97.5 mol%.

【0028】また、(B)成分において、アクリレート
構造単位(II)は、分子内に0〜15モル%含有され
ている。アクリレート構造単位(II)が含有されてい
ることにより、カチオン性共重合体とマトリックス樹脂
との相溶性が向上する。アクリレート構造単位(II)
の含有割合が15モル%を超える場合には樹脂組成物の
物性が悪化する。なお、相溶性の観点からアクリレート
構造単位(II)の含有割合は3〜13モル%程度が好
ましい。アクリレート構造単位において、Rはメチル
基又はエチル基を表し、Rは構造単位毎に同一であっ
ても異なってもよい(すなわち、メチル基とエチル基が
1分子中に混在してもよい)。
In the component (B), the acrylate structural unit (II) is contained in the molecule in an amount of 0 to 15 mol%. When the acrylate structural unit (II) is contained, the compatibility between the cationic copolymer and the matrix resin is improved. Acrylate structural unit (II)
When the content ratio of is more than 15 mol%, the physical properties of the resin composition are deteriorated. From the viewpoint of compatibility, the content of the acrylate structural unit (II) is preferably about 3 to 13 mol%. In the acrylate structural unit, R 1 represents a methyl group or an ethyl group, and R 1 may be the same or different for each structural unit (that is, a methyl group and an ethyl group may be mixed in one molecule). ).

【0029】カチオン性共重合体におけるアクリルアミ
ド構造単位(III)は、4級アンモニウム塩の形にし
たカチオン性のアクリルアミド構造単位であり、その割
合は分子内に2〜20モル%含有されている。この含有
割合が2モル%未満の場合には樹脂組成物が安定的に1
8 〜1010Ωの表面固有抵抗値を示さない。また、含
有割合が20モル%を超える場合にはカチオン性共重合
体のマトリックス樹脂への相溶性が悪化し、押出機を用
いての樹脂組成物の製造が困難であるばかりか、該樹脂
組成物を用いて成形した成形体の耐水性と機械的物性が
低下する。帯電防止能の安定性と相溶性、物性との観点
から、アクリルアミド構造単位(III)の含有割合は
2.5〜15モル%が好ましい。
The acrylamide structural unit (III) in the cationic copolymer is a cationic acrylamide structural unit in the form of a quaternary ammonium salt, the proportion of which is 2 to 20 mol% in the molecule. When this content ratio is less than 2 mol%, the resin composition is stably 1
It does not show a surface specific resistance value of 0 8 to 10 10 Ω. On the other hand, if the content exceeds 20 mol%, the compatibility of the cationic copolymer with the matrix resin deteriorates, making it difficult to produce a resin composition using an extruder, The water resistance and mechanical properties of the molded product molded from the product are reduced. From the viewpoint of stability of antistatic ability, compatibility, and physical properties, the content ratio of the acrylamide structural unit (III) is preferably 2.5 to 15 mol%.

【0030】なお、アクリルアミド構造単位の一般式R
は、エチレン基又はプロピレン基を表しこれらは1分
子中に混在してもよく、R及びRは、メチル基を表
し、Rは製造の容易さや良好な帯電防止能が得られる
といった観点から、メチル基、エチル基等の低級直鎖状
アルキル基又はベンジル基等のアリールアルキル基を表
す。さらに、XはCl、Br、I等のハロゲン化物イオ
ン、CHOSO、CHCHOSOを表す。
The general formula R of the acrylamide structural unit
2 represents an ethylene group or a propylene group, and these may be mixed in one molecule, R 3 and R 4 represent a methyl group, and R 5 provides easy production and good antistatic ability. From the viewpoint, it represents a lower linear alkyl group such as a methyl group or an ethyl group, or an arylalkyl group such as a benzyl group. Further, X represents a halide ion such as Cl, Br, I, CH 3 OSO 3 , CH 3 CH 2 OSO 3 .

【0031】上述したカチオン性共重合体(B)の重量
平均分子量の測定はゲルパーミュエーションクロマトグ
ラフィーで行い、ポリスチレン換算の重量平均分子量で
超高温GPC法(絹川、「高分子論文集第44巻2
号」、139〜141頁、1987)に準じて測定でき
るが、その重量平均分子量の範囲は1,000〜50,
000である。重量平均分子量が1,000未満の場合
には、カチオン性共重合体がワックス状となり、ハンド
リング性が悪化し、さらには過度のブリードアウトによ
り樹脂表面の粘着性が増すという問題を生じ、重量平均
分子量が50,000を超える場合には、マトリックス
樹脂への相溶性が悪化するという問題を生じる。なお、
カチオン性共重合体の好ましい重量平均分子量は3,0
00〜30,000である。
The above-mentioned weight average molecular weight of the cationic copolymer (B) was measured by gel permeation chromatography, and the weight average molecular weight in terms of polystyrene was used for the ultra-high temperature GPC method (Kinukawa, "Polymer Thesis Collection 44"). Volume 2
No. ”, pp. 139-141, 1987), but the range of the weight average molecular weight is 1,000-50,
000. If the weight average molecular weight is less than 1,000, the cationic copolymer becomes a waxy form, the handling property deteriorates, and further there is a problem that the adhesiveness of the resin surface increases due to excessive bleed-out, and the weight average molecular weight increases. If the molecular weight exceeds 50,000, the compatibility with the matrix resin deteriorates. In addition,
The preferred weight average molecular weight of the cationic copolymer is 3,0.
00 to 30,000.

【0032】本発明の樹脂組成物において用いるカチオ
ン性共重合体の製造方法としては、例えば、エチレンと
アクリル酸エステルとを高圧重合法により共重合させて
得られるエチレン−アクリル酸エステル共重合体を、特
開昭60−79008号公報に記載の方法により加水分
解と同時に熟減成して所望の分子量とし、さらに、得ら
れたエチレン−アクリル酸エステル−アクリル酸共重合
体をN,N−ジアルキルアミノアルキルアミンでアミド
化した後公知の4級化剤でカチオン変性し単離して上記
カチオン性共重合体を得るというものである。
The method for producing the cationic copolymer used in the resin composition of the present invention is, for example, an ethylene-acrylic acid ester copolymer obtained by copolymerizing ethylene and an acrylic acid ester by a high pressure polymerization method. And hydrolysis and aging to obtain a desired molecular weight by the method described in JP-A-60-79008, and the ethylene-acrylic acid ester-acrylic acid copolymer obtained is further treated with N, N-dialkyl. The above-mentioned cationic copolymer is obtained by amidation with an aminoalkylamine, followed by cation modification with a known quaternizing agent and isolation.

【0033】本発明の樹脂組成物において、前述したカ
チオン性共重合体の配合量は実用的には樹脂組成物中に
1〜10重量%である。この配合量が1重量%未満の場
合には安定的に1010〜108 Ωの表面固有抵抗値を得
にくくなり、逆に配合量が10重量%を超える場合には
樹脂の機械的物性、特に衝撃強度が低下する。樹脂にお
ける帯電防止性と機械的物性とのバランスから、カチオ
ン性共重合体の配合量は5〜8重量%が特に好ましい。
In the resin composition of the present invention, the compounding amount of the above-mentioned cationic copolymer is practically 1 to 10% by weight in the resin composition. When the blending amount is less than 1% by weight, it becomes difficult to stably obtain a surface specific resistance value of 10 10 to 10 8 Ω. On the contrary, when the blending amount exceeds 10% by weight, the mechanical properties of the resin, Especially, the impact strength is lowered. From the balance between the antistatic property and the mechanical properties of the resin, the amount of the cationic copolymer is particularly preferably 5 to 8% by weight.

【0034】(C)成分 本発明で使用される導電性フィラー(C)は、アセチレ
ンブラック、チャネルブラックなどのカーボンブラック
類に代表されるカーボン系導電性フィラー、アンチモン
をドープした酸化スズ導電層を、酸化チタンあるいはチ
タン酸カリウムの表面に処理した導電性フィラー、Al
3+をドープした導電性酸化亜鉛などが使用可能である。
Component (C) The conductive filler (C) used in the present invention is a carbon-based conductive filler typified by carbon blacks such as acetylene black and channel black, and a tin oxide conductive layer doped with antimony. Conductive filler treated on the surface of titanium oxide or potassium titanate, Al
Conductive zinc oxide doped with 3+ can be used.

【0035】本発明において、(C)成分の体積抵抗率
は0.1〜104 Ω・cmに限定される。その好ましい
範囲は、0.1〜500Ω・cmであり、さらに好まし
い範囲は、0.1〜300Ω・cmである。
In the present invention, the volume resistivity of the component (C) is limited to 0.1 to 10 4 Ω · cm. The preferable range is 0.1 to 500 Ω · cm, and the more preferable range is 0.1 to 300 Ω · cm.

【0036】また、本発明の導電性樹脂組成物中におけ
る導電性フィラー(C)の含有割合は、導電性フィラー
の持つ体積抵抗率やフィラーの粒子形状によって異なる
が、概ね10〜40重量%であることが好適である。
Although the content ratio of the conductive filler (C) in the conductive resin composition of the present invention varies depending on the volume resistivity of the conductive filler and the particle shape of the filler, it is generally 10 to 40% by weight. Preferably.

【0037】その他 本発明の樹脂組成物は、前述のカチオン性共重合体
(B)と導電性フィラー(C)以外に、他の添加物、例
えば着色、機械的物性の改善等を目的として炭酸カルシ
ウム、タルク、ガラス繊維の無機充填剤、テトラキス
(2,4−ジtertブチルフェニル)−4,4′ビフ
ェニレンジホスホナイト等の熱安定剤、テトラキス[メ
チレン−3(3−5ジtertブチル−4−ヒドロオキ
シ−フェニル)プロピオネート]メタン等のヒンダード
フェノール系、メルカプトプロピオン酸エステル等のチ
オ系酸化防止剤、ヘキサブロモシクロドデカン、テトラ
ブロモビスフェノールAやその誘導体さらにはジフェニ
ルエーテルの臭素化物等の含臭素系難燃剤や含リン化合
物難燃剤及びSb等の難燃助剤、非イオン系もし
くはカチオン系界面活性剤、ポリオキシエチレン鎖を持
つポリマー、例えばポリオキシエチレンやポリエチレン
グリコールをエステル結合、アミド結合あるいはイミド
結合で重縮合させた高分子量体もしくはウレタン結合、
エポキシエステル結合、エポキシエーテル結合で重付加
させた高分子量体である帯電防止剤を同時に添加しても
差しつかえない。
Others In addition to the above-mentioned cationic copolymer (B) and conductive filler (C), the resin composition of the present invention comprises other additives such as carbonic acid for the purpose of coloring and improving mechanical properties. Inorganic fillers of calcium, talc, glass fiber, thermal stabilizers such as tetrakis (2,4-ditertbutylphenyl) -4,4'biphenylenediphosphonite, tetrakis [methylene-3 (3-5ditertbutyl-). 4-Hydroxy-phenyl) propionate] Methane and other hindered phenols, mercaptopropionate and other thio antioxidants, hexabromocyclododecane, tetrabromobisphenol A and its derivatives, and bromine compounds such as diphenyl ether bromides. system flame retardants and phosphorus-containing compounds flame retardants and Sb 2 O 3 or the like of the flame retardant aid, nonionic also lay Cationic surfactants, polymers having a polyoxyethylene chain, such as polyoxyethylene or polyethylene glycol ester bond, an amide bond or polycondensation was high molecular weight material or a urethane bond in an imide bond,
It is safe to add an antistatic agent, which is a high molecular weight polymer polyadded with an epoxy ester bond or an epoxy ether bond, at the same time.

【0038】本発明により得られた帯電防止樹脂組成物
はカレンダー加工並びに射出、押し出し、ブロー、圧縮
成形等の法任意の加工方法並びに成形方法によってシー
トまたは成形体として使用することができる。
The antistatic resin composition obtained by the present invention can be used as a sheet or a molded body by any processing method and molding method such as calendering, injection, extrusion, blow, compression molding and the like.

【0039】本発明は前述の導電性フィラーとカチオン
性共重合体の適量を有機高分子材料に混合分散すること
で帯電防止性を付与することを特徴とする帯電防止方法
である。混合分散方法は任意の方法、例えば混練ロー
ル、バンバリーミキサー、押出機等により行う。混合分
散は導電性フィラーが有機高分子材料中に均一に分散す
るまで充分に行う必要がある。導電性フィラーの分散が
不十分な場合は良好な帯電防止性能が得られない。また
混合分散工程での強い剪断力等による導電性フィラーの
破壊を避ける必要がある。導電性フィラーが破壊された
場合、本来の導電性能が損なわれる。従って、用いる材
料並びに混合分散方法により最適な混合分散条件を適宜
選択する必要がある。また所定濃度以上の導電性フィラ
ーを練り込んだ高濃度組成物を調製し、これを希釈用の
樹脂と混練してもよい。
The present invention is an antistatic method characterized by imparting antistatic property by mixing and dispersing an appropriate amount of the above-mentioned conductive filler and cationic copolymer in an organic polymer material. The mixing and dispersing method is performed by any method, for example, a kneading roll, a Banbury mixer, an extruder or the like. The mixing and dispersion must be sufficiently performed until the conductive filler is uniformly dispersed in the organic polymer material. If the dispersion of the conductive filler is insufficient, good antistatic performance cannot be obtained. Further, it is necessary to avoid destruction of the conductive filler due to strong shearing force in the mixing and dispersing process. When the conductive filler is broken, the original conductive performance is impaired. Therefore, it is necessary to appropriately select the optimum mixing and dispersing conditions depending on the materials used and the mixing and dispersing method. Alternatively, a high-concentration composition in which a conductive filler having a predetermined concentration or more is kneaded may be prepared and kneaded with a diluting resin.

【0040】本発明の用途例としては、電子材料包装材
料(ICトレイ、マガジンレール、キャリアテープ、導
電性発泡プラスチック)等が挙げられる。
Examples of applications of the present invention include electronic material packaging materials (IC trays, magazine rails, carrier tapes, conductive foam plastics) and the like.

【0041】[0041]

【実施例】以下、本発明を実施例に従って説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0042】カチオン性共重合体の合成例(合成例A) 温度例、撹拌機、滴下ロート及びディーン・スターク分
水器を備えた1リットルの4つ口フラスコに、キシレン
400ml、エチレン・アクリル酸エチル・アクリル酸
共重合体(エチレン/エチルアクリレート/アクリル酸
=93/3/4)150g及びパラトルエンスルホン酸
1.0gを仕込んだ。次に、N,N−ジメチルアミノプ
ロピルアミン21.1gを仕込み、オイルバスを用いて
140℃に加熱して生成した水をキシレンとの共沸によ
り連続的に除去し、さらに、140℃で17時間反応
し、生成する水の共沸が認められなくなるまでアミド化
反応を継続した。
Synthesis Example of Cationic Copolymer (Synthesis Example A) 400 ml of xylene and ethylene acrylic acid were placed in a 1 liter four-necked flask equipped with a temperature example, a stirrer, a dropping funnel and a Dean-Stark water diverter. 150 g of an ethyl-acrylic acid copolymer (ethylene / ethyl acrylate / acrylic acid = 93/3/4) and 1.0 g of paratoluenesulfonic acid were charged. Next, 21.1 g of N, N-dimethylaminopropylamine was charged, and water produced by heating to 140 ° C. using an oil bath was continuously removed by azeotropic distillation with xylene. The reaction was continued for an hour, and the amidation reaction was continued until no azeotropic formation of water was observed.

【0043】得られた反応物458gを80℃まで冷却
し、そこへ滴下ロートよりジエチル硫酸31.1gを1
時間かけて徐々に滴下した。この間、発熱が認められた
が、冷却することにより反応温度を90℃に維持し、滴
下終了後は100℃で4時間熟成反応を行った。
458 g of the obtained reaction product was cooled to 80 ° C., and 31.1 g of diethylsulfate was added to the reaction mixture through a dropping funnel.
It was dripped gradually over time. During this period, heat generation was observed, but the reaction temperature was maintained at 90 ° C. by cooling, and after completion of dropping, aging reaction was performed at 100 ° C. for 4 hours.

【0044】ここで得られた反応物を多量のメタノール
中へ投入し、生成した沈殿物を回収、乾燥してカチオン
性共重合体Aを得た。共重合体Aの重量平均分子量を測
定したところ5,300であった。
The reaction product obtained here was poured into a large amount of methanol, and the produced precipitate was recovered and dried to obtain a cationic copolymer A. The weight average molecular weight of the copolymer A was measured and found to be 5,300.

【0045】カチオン性共重合体の合成例(合成例B〜
C) 合成例Aと同様の方法でカチオン性共重合体を合成し
た。使用した原料と得られたカチオン性共重合体の構
造、分子量を合成例Aとともに[表1]に示す。
Synthesis Example of Cationic Copolymer (Synthesis Example B to
C) A cationic copolymer was synthesized in the same manner as in Synthesis Example A. The structures and molecular weights of the used starting materials and the obtained cationic copolymer are shown in [Table 1] together with Synthesis Example A.

【0046】[0046]

【表1】 [Table 1] .

【0047】実施例1〜2、及び比較例1〜3 下記[表2]に示す成分を、同表に示す割合で混合し、
2軸押出機を使用しシリンダー温度220℃に混練して
ペレットを得た。
Examples 1 and 2 and Comparative Examples 1 to 3 The components shown in the following [Table 2] were mixed in the proportions shown in the same table,
Using a twin screw extruder, the mixture was kneaded at a cylinder temperature of 220 ° C. to obtain pellets.

【0048】さらに射出成形機によりシリンダー温度2
20℃、金型温度30℃で一辺60mm、厚さ3mmの
平板状の試験片を50枚成形した。この50枚の成形品
の中から無造作に5枚を選び、20℃、相対湿度65%
の条件下で24時間調湿した後、表面固有抵抗を測定し
た。測定結果を[表3]に示す。
Cylinder temperature of 2 by injection molding machine
At 20 ° C. and a mold temperature of 30 ° C., 50 flat test pieces having a side of 60 mm and a thickness of 3 mm were formed. Five pieces were randomly selected from these 50 pieces, and the temperature was 20 ° C and the relative humidity was 65%.
After conditioning for 24 hours under the above conditions, the surface resistivity was measured. The measurement results are shown in [Table 3].

【0049】[0049]

【表2】 [Table 2]

【表3】 [Table 3] .

【0050】本発明における各試験片間の抵抗値に変動
が少なく、表面固有抵抗値が108〜1010Ωに精度良
く制御されている。
In the present invention, there is little variation in the resistance value between the test pieces, and the surface specific resistance value is accurately controlled to 10 8 to 10 10 Ω.

【0051】比較例における各試験片間の抵抗値は、そ
の変動が大きく、導電性フィラーの添加量が少ない試験
片の抵抗値は1014Ω以上となっており帯電防止効果が
発現していない。また、導電性フィラーの添加量が多い
場合108 Ω以下となる試験片も見られた。
The resistance value between the test pieces in the comparative example varied greatly, and the resistance value of the test piece containing a small amount of the conductive filler was 10 14 Ω or more, and the antistatic effect was not exhibited. . In addition, there were test pieces having a resistance of 10 8 Ω or less when the amount of the conductive filler added was large.

【0052】実施例3〜5、及び比較例4〜7 下記[表4]に示す成分を、同表に示す割合で混合し、
2軸押出機を使用しシリンダー温度210℃にて混練し
てペレットを得た。
Examples 3 to 5 and Comparative Examples 4 to 7 The components shown in the following [Table 4] were mixed in the proportions shown in the same table,
The mixture was kneaded at a cylinder temperature of 210 ° C. using a twin screw extruder to obtain pellets.

【0053】さらに射出成形機によりシリンダー温度2
20℃、金型温度30℃で一辺60mm、厚さ3mmの
平板を50枚成形した。この50枚の成形品の中から無
造作に5枚を選び、20℃、相対湿度65%の条件下で
24時間調湿した後、表面固有抵抗を測定した。測定結
果を[表5]に示す。
Cylinder temperature of 2 by injection molding machine
Fifty flat plates having a side of 60 mm and a thickness of 3 mm were formed at 20 ° C. and a mold temperature of 30 ° C. Five sheets were randomly selected from the 50 molded articles, conditioned at 20 ° C. and a relative humidity of 65% for 24 hours, and then the surface resistivity was measured. The measurement results are shown in [Table 5].

【0054】[0054]

【表4】 [Table 4]

【表5】 [Table 5] .

【0055】本発明における各試験片間の抵抗値に変動
が少なく、表面固有抵抗値が108〜1010Ωに精度良
く制御されている。
In the present invention, there is little variation in the resistance value between the respective test pieces, and the surface specific resistance value is accurately controlled to 10 8 to 10 10 Ω.

【0056】比較例における各試験片間の抵抗値は、そ
の変動が大きく、導電性フィラーの添加量が少ない試験
片の抵抗値は1014Ω以上となっており帯電防止効果が
発現していない。また、導電性フィラーの添加量が多い
場合108 Ω以下となる試験片も見られた。
The resistance value between the test pieces in the comparative example has a large variation, and the resistance value of the test piece with a small amount of the conductive filler added is 10 14 Ω or more, and the antistatic effect is not exhibited. . In addition, there were test pieces having a resistance of 10 8 Ω or less when the amount of the conductive filler added was large.

【0057】実施例6〜8、及び比較例8〜11 下記[表6]に示す成分を、同表に示す割合で混合し、
2軸押出機を使用しシリンダー温度240℃で混練して
ペレットを得た。
Examples 6 to 8 and Comparative Examples 8 to 11 The components shown in the following [Table 6] were mixed in the proportions shown in the same table,
The mixture was kneaded at a cylinder temperature of 240 ° C. using a twin-screw extruder to obtain pellets.

【0058】さらに射出成形機によりシリンダー温度2
40℃、金型温度40℃で一辺60mm、厚さ3mmの
平板を50枚成形した。この50枚の成形品の中から無
造作に5枚を選び、20℃、相対湿度65%の条件下で
24時間調湿した後、表面固有抵抗を測定した。測定結
果を[表7]に示す。
Cylinder temperature of 2 by injection molding machine
Fifty flat plates having a side of 60 mm and a thickness of 3 mm were formed at 40 ° C. and a mold temperature of 40 ° C. Five sheets were randomly selected from the 50 molded articles, conditioned at 20 ° C. and a relative humidity of 65% for 24 hours, and then the surface resistivity was measured. The measurement results are shown in [Table 7].

【0059】[0059]

【表6】 [Table 6]

【表7】 [Table 7] .

【0060】本発明における各試験片間の抵抗値に変動
が少なく、表面固有抵抗値が108〜1010Ωに精度良
く制御されている。
In the present invention, there is little variation in the resistance value between the test pieces, and the surface specific resistance value is accurately controlled to 10 8 to 10 10 Ω.

【0061】比較例における各試験片間の抵抗値は、そ
の変動が大きく、導電性フィラーの添加量が少ない試験
片の抵抗値は1014Ω以上となっており帯電防止効果が
発現していない。また、導電性フィラーの添加量が多い
場合108 Ω以下となる試験片も見られた。
The resistance value between the test pieces in the comparative example varied greatly, and the resistance value of the test piece containing a small amount of the conductive filler was 10 14 Ω or more, and the antistatic effect was not exhibited. . In addition, there were test pieces having a resistance of 10 8 Ω or less when the amount of the conductive filler added was large.

【0062】実施例9〜10、及び比較例12〜14 下記[表8]に示す成分を、同表に示す割合で混合し、
2軸押出機を使用しシリンダー温度210℃で混練して
ペレットを得た。
Examples 9 to 10 and Comparative Examples 12 to 14 The components shown in the following [Table 8] were mixed in the proportions shown in the same table,
The mixture was kneaded at a cylinder temperature of 210 ° C. using a twin-screw extruder to obtain pellets.

【0063】さらに射出成形機によりシリンダー温度2
10℃、金型温度30℃で一辺60mm、厚さ3mmの
平板を50枚成形した。この50枚の成形品の中から無
造作に5枚を選び、20℃、相対湿度65%の条件下で
24時間調湿した後、表面固有抵抗を測定した。測定結
果を[表9]に示す。
Cylinder temperature of 2 by injection molding machine
Fifty flat plates having a side of 60 mm and a thickness of 3 mm were formed at 10 ° C. and a mold temperature of 30 ° C. Five sheets were randomly selected from the 50 molded articles, conditioned at 20 ° C. and a relative humidity of 65% for 24 hours, and then the surface resistivity was measured. The measurement results are shown in [Table 9].

【0064】[0064]

【表8】 [Table 8]

【表9】 [Table 9] .

【0065】本発明における各試験片間の抵抗値に変動
が少なく、表面固有抵抗値が108〜1010Ωに精度良
く制御されている。
In the present invention, there is little variation in the resistance value between the test pieces, and the surface specific resistance value is accurately controlled to 10 8 to 10 10 Ω.

【0066】比較例における各試験片間の抵抗値は、そ
の変動が大きく、導電性フィラーの添加量が少ない試験
片の抵抗値は1014Ω以上となっており帯電防止効果が
発現していない。また、導電性フィラーの添加量が多い
場合108 Ω以下となる試験片も見られた。
The resistance value between the test pieces in the comparative example has a large variation, and the resistance value of the test piece with a small amount of the conductive filler added is 10 14 Ω or more, and the antistatic effect is not exhibited. . In addition, there were test pieces having a resistance of 10 8 Ω or less when the amount of the conductive filler added was large.

【0067】[0067]

【発明の効果】本発明の帯電防止性(導電性)樹脂組成
物によって得られる樹脂製品は、表面固有抵抗が1010
〜108 Ωに精度良く制御されており、そのため、優れ
た帯電防止性を示すとともに、樹脂本来の持つ絶縁性は
維持される。しかも、前記した帯電防止性は永続的であ
る。
The resin product obtained from the antistatic (conductive) resin composition of the present invention has a surface resistivity of 10 10
It is precisely controlled to 810 8 Ω, so that it exhibits excellent antistatic properties and maintains the inherent insulation properties of the resin. Moreover, the above-described antistatic property is permanent.

【0068】本発明の帯電防止性樹脂組成物は帯電防止
性材料として、電子材料包装材料として好適に使用でき
るものである。
The antistatic resin composition of the present invention can be suitably used as an antistatic material and as a packaging material for electronic materials.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(A)有機高分子材料、 (B)下記一般式[化1]で示される構造単位(I)〜
(III)を含有するカチオン性共重合体、 (C)体積抵抗率が0.1〜104 Ω・cmの導電性フ
ィラーが配合されてなる導電性樹脂組成物。 【化1】
1. An organic polymer material (A), (B) structural units (I) to
A cationic copolymer containing (III), (C) a conductive resin composition containing a conductive filler having a volume resistivity of 0.1 to 10 4 Ω · cm. Embedded image
【請求項2】前記(A)成分が熱可塑性樹脂である請求
項1記載の組成物。
2. The composition according to claim 1, wherein the component (A) is a thermoplastic resin.
【請求項3】前記(B)成分を1〜10重量%含有する
請求項1又は2記載の組成物。
3. The composition according to claim 1, which contains 1 to 10% by weight of the component (B).
JP8123554A 1996-05-17 1996-05-17 Conductive resin composition Pending JPH09302247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8123554A JPH09302247A (en) 1996-05-17 1996-05-17 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8123554A JPH09302247A (en) 1996-05-17 1996-05-17 Conductive resin composition

Publications (1)

Publication Number Publication Date
JPH09302247A true JPH09302247A (en) 1997-11-25

Family

ID=14863481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8123554A Pending JPH09302247A (en) 1996-05-17 1996-05-17 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPH09302247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060981A1 (en) * 2001-02-01 2002-08-08 Mitsumi Electric Co., Ltd. Glass epoxy board and magnetic head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002060981A1 (en) * 2001-02-01 2002-08-08 Mitsumi Electric Co., Ltd. Glass epoxy board and magnetic head device

Similar Documents

Publication Publication Date Title
US20090105385A1 (en) Elastomer gum polymer systems
US5428100A (en) Liquid crystal polyester resin composition and molded article
KR20010052267A (en) Resin composition and jig for use in transportation
JP4166943B2 (en) Antistatic polymer composition and molded article thereof
CN102575106A (en) Flame-retardant resin composition, and insulated electric wire, flat cable, and molded article, which are made using same
JP2002500237A6 (en) Antistatic polymer composition and molded article thereof
JP2010090372A (en) Antistatic thermoplastic resin composition and molded article
JPH09302247A (en) Conductive resin composition
JPH07286103A (en) Masterbatch pellet of electrically conductive resin and product of electrically conductive thermoplastic resin
JPH03296565A (en) Antistatic resin composition
JPH1067943A (en) Electroconductive resin composition
CN116034026A (en) Resin composition, molded article, composite body, and use thereof
JP2012224719A (en) Highly thermoconductive thermoplastic resin composition
JP2002173599A (en) Electroconductive thermoplastic elastomer composition and developing roller using the same and development apparatus using the roller
JPH06256654A (en) Polyarylene sulfide resin composition
JP5066310B2 (en) Conductive resin composition
JP3582501B2 (en) Molded member
JP3601906B2 (en) Semiconductive fluororesin composition and semiconductive fluororesin film
JP3124563B2 (en) Flame retardant polypropylene resin composition and sheet
JP2002241601A (en) Sheet made of flame retardant resin composition
JP3526094B2 (en) Semiconductive fluororesin composition
JPH0665487A (en) Flame-retardant sheet and thermoformed article
JP3313458B2 (en) Conductive polyolefin masterbatch
JPH11349756A (en) Resin composition
JP3313459B2 (en) Conductive polyolefin masterbatch