JPH09283138A - Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery - Google Patents

Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery

Info

Publication number
JPH09283138A
JPH09283138A JP8086271A JP8627196A JPH09283138A JP H09283138 A JPH09283138 A JP H09283138A JP 8086271 A JP8086271 A JP 8086271A JP 8627196 A JP8627196 A JP 8627196A JP H09283138 A JPH09283138 A JP H09283138A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
carbon
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8086271A
Other languages
Japanese (ja)
Inventor
Teruyuki Morita
輝行 森田
Katsuhisa Tokumitsu
勝久 徳満
Akihiro Mabuchi
昭弘 馬淵
Hiroyuki Fujimoto
宏之 藤本
Takanori Kakazu
隆敬 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8086271A priority Critical patent/JPH09283138A/en
Publication of JPH09283138A publication Critical patent/JPH09283138A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the discharging capacity of a lithium secondary battery by performing vacuum drying to a carbon electrode for the negative electrode of the lithium secondary battery or a carbon material to be used for manufacturing the carbon electrode. SOLUTION: This carbon electrode for the negative electrode of a lithium secondary battery is formed by using carbon material, to which vacuum drying (desirably at 100Torr or less, 60 deg.C or more) is performed. This carbon electrode is dried in the vacuum (desirably at 100Torr or less and at 60 deg.C or more) so as to reform the carbon electrode for the negative electrode of the lithium secondary battery. In ordinary, vacuum drying is performed for 30 minutes-12 hours, desirably, for 1-6 hours. With this processing, since the amount of water absorption and the amount of surface oxygen of the carbon material working as an active material of the negative electrode are small, a lithium secondary battery, of which discharging capacity is improved, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
負極用炭素電極及びその改質方法並びにリチウム二次電
池に関し、詳しくはリチウム二次電池の放電容量及び充
放電効率を向上し、維持するためのリチウム二次電池負
極用炭素電極及びその改質方法並びにその炭素電極又は
改質方法を利用したリチウム二次電池に関する。
TECHNICAL FIELD The present invention relates to a carbon electrode for a negative electrode of a lithium secondary battery, a method for reforming the carbon electrode, and a lithium secondary battery. More specifically, the discharge capacity and charge / discharge efficiency of the lithium secondary battery are improved and maintained. The present invention relates to a carbon electrode for a lithium secondary battery negative electrode, a method for modifying the same, and a lithium secondary battery using the carbon electrode or the method for modifying.

【0002】[0002]

【従来の技術】電子機器の小型化・薄型化・軽量化が進
む中で、リチウム二次電池は高エネルギー密度及び高出
力密度電池として、その主電源として或いはバックアッ
プ用電源として注目を集めている。また、環境に与える
影響が少ないということから電気自動車用電源として、
或いはその安全性から分散型の電力貯蔵用電源としての
開発も盛んに行われている。従来、リチウム二次電池の
負極活物質に金属リチウムを用いたものは、いわゆる金
属リチウム型二次電池であり、高エネルギー密度型二次
電池の一種として注目され、盛んに研究が行われてき
た。
2. Description of the Related Art As electronic devices have become smaller, thinner and lighter, lithium secondary batteries have been attracting attention as high energy density and high output density batteries as their main power source or backup power source. . Also, because it has little impact on the environment, it can be used as a power source for electric vehicles.
Alternatively, due to its safety, it has been actively developed as a distributed power storage power source. BACKGROUND ART Conventionally, a lithium secondary battery using metallic lithium as a negative electrode active material is a so-called metallic lithium type secondary battery, which has attracted attention as a kind of high energy density secondary battery and has been actively researched. .

【0003】しかしながら、従来の金属リチウム型二次
電池では、負極活物質としての金属リチウムは箔状の如
き単体で用いられることが多く、充放電を繰り返すうち
に、樹枝状リチウムが析出して両極が短絡するため充放
電のサイクル寿命が短いという欠点を有しており、その
安全性の面からも最近では開発は活発化していない。
However, in conventional metallic lithium secondary batteries, metallic lithium as a negative electrode active material is often used as a simple substance such as a foil, and dendritic lithium is deposited during repeated charging / discharging, resulting in both electrodes. However, it has a short cycle life of charge and discharge due to short circuit, and its development has not been activated recently from the viewpoint of its safety.

【0004】また、アルミニウムや、鉛、カドミウム及
びインジウムを含む可融性合金を用い、充電時にリチウ
ムを合金として析出させ、放電時には合金からリチウム
を溶解させる方法が提案されている(米国特許第400
2492号(1977)参照)。しかし、このような方
法では、樹枝状リチウムの析出は抑止できるが、電極と
しての加工性が低下するという課題を有していた。
Further, a method has been proposed in which a fusible alloy containing aluminum, lead, cadmium and indium is used, lithium is deposited as an alloy during charging, and lithium is dissolved from the alloy during discharging (US Pat. No. 400).
2492 (1977)). However, although such a method can suppress the deposition of dendritic lithium, it has a problem that the workability as an electrode is deteriorated.

【0005】そこで、炭素材料をリチウム二次電池の負
極活物質に用い、リチウムを各種炭素材中に担持させよ
うという研究が盛んに行われている。このタイプのリチ
ウム二次電池はリチウムがある種のイオンで負極活物質
中に吸蔵・放出されることから、その安全性及びサイク
ル特性は飛躍的に向上している。
Therefore, research has been actively conducted to use a carbon material as a negative electrode active material of a lithium secondary battery so as to support lithium in various carbon materials. In this type of lithium secondary battery, lithium is occluded / desorbed in the negative electrode active material with certain ions, so that the safety and cycle characteristics are dramatically improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、炭素材
料は通常の状態で放置すると空気中の水分及び酸素の吸
着等により種々の物性が変化し、これはリチウム二次電
池の負極活物質として用いた場合も例外ではなく、その
放電容量及び充放電効率(充電量に対する放電容量の割
合)が著しく低下するという課題を有していた。放電容
量が低下すると電池としてのエネルギー密度が低下し、
充放電効率が低下するとリチウムの損失が大きくなる。
However, when the carbon material is left in a normal state, various physical properties change due to adsorption of moisture and oxygen in the air and the like, which is used as a negative electrode active material of a lithium secondary battery. This is not an exception, and there is a problem that the discharge capacity and charge / discharge efficiency (ratio of the discharge capacity to the charge amount) are significantly reduced. When the discharge capacity decreases, the energy density of the battery decreases,
If the charging / discharging efficiency decreases, the loss of lithium increases.

【0007】これを電池として回避する方法としては、
負極活物質量を多くすることにより放電容量を補う方法
と、正極活物質(通常ニッケル酸リチウム等)量を増大
し、電池内部のリチウム量を大きくする2通りの方法が
採られていたが、結果的には電池重量及び容積が増大
し、本質的な電池特性改善には寄与しておらず、また初
期充放電効率の課題はいぜん解決されていないのが現状
であった。これは、電極作成時においても同様の結果を
生じ、本来有している炭素材料の特性を十分に発揮させ
得ないのが現状であった。
As a method of avoiding this as a battery,
There have been adopted a method of supplementing the discharge capacity by increasing the amount of the negative electrode active material, and a method of increasing the amount of the positive electrode active material (usually lithium nickel oxide etc.) to increase the amount of lithium in the battery. As a result, the weight and volume of the battery increase, which does not contribute to the essential improvement of battery characteristics, and the problem of initial charge / discharge efficiency has not been solved yet. In the present situation, the same result occurs when the electrode is formed, and the characteristics of the carbon material originally possessed cannot be fully exhibited.

【0008】本発明は、かかる事情を鑑みてなされたも
のであり、リチウム二次電池用負極に用いる炭素材料の
本来の特性を回復させることにより、電池としての品質
安定性を向上させると共に、製品の歩留まりを向上させ
ることを目的とする。
The present invention has been made in view of the above circumstances, and improves the quality stability of a battery by recovering the original characteristics of the carbon material used for the negative electrode for a lithium secondary battery, and at the same time, the product. The objective is to improve the yield of.

【0009】[0009]

【課題を解決するための手段】かかる事情に鑑み、本発
明者らは鋭意研究を重ねた結果、真空乾燥処理した炭素
材料を用いた炭素電極がリチウム二次電池負極として優
れた特性を有すること、及び、炭素電極を真空乾燥処理
することにより、リチウム二次電池負極としての特性を
改善できること、並びに、その結果、意外にも前記のよ
うな課題を解決できることを見いだし、本発明を完成す
るに至った。
In view of the above circumstances, the inventors of the present invention have conducted extensive studies, and as a result, have found that a carbon electrode using a vacuum-dried carbon material has excellent characteristics as a negative electrode for a lithium secondary battery. , And, by vacuum-drying the carbon electrode, it was found that the characteristics as a negative electrode for a lithium secondary battery can be improved, and as a result, it was surprisingly found that the above problems can be solved, and the present invention is completed. I arrived.

【0010】即ち、本発明は(1)真空乾燥処理(好ま
しくは100torr以下、60℃以上)した炭素材料
を用いたリチウム二次電池負極用炭素電極、(2)炭素
電極を真空乾燥処理(好ましくは100torr以下、
60℃以上)することを特徴とするリチウム二次電池負
極用炭素電極の改質方法及び(3)前記(1)の炭素電
極又は前記(2)の改質方法により改質した炭素電極を
負極体とするリチウム二次電池に係る。
That is, according to the present invention, (1) a carbon electrode for a lithium secondary battery negative electrode using a carbon material subjected to vacuum drying treatment (preferably 100 torr or less, 60 ° C. or more), and (2) carbon electrode vacuum drying treatment (preferably Is less than 100 torr,
60 ° C. or more) and a method for reforming a carbon electrode for a negative electrode of a lithium secondary battery, and (3) the carbon electrode according to (1) or the carbon electrode reformed by the reforming method according to (2) as a negative electrode. It relates to a lithium secondary battery as a body.

【0011】炭素は一般に、二次元的な炭素網平面構造
が、三次元的に積層した構造を有する。リチウム二次電
池の負極活物質として炭素材料を用いる場合、リチウム
が、充電時にはある種のイオン状態で上述した炭素構造
中に取り込まれ、放電時には逆の経路を通って電解液中
に放出される。この様な異種元素の炭素層間への吸蔵反
応及び炭素層間からの放出反応を一般にインターカレー
ション反応及びデインターカレーション反応と呼ぶ。
Carbon generally has a structure in which a two-dimensional carbon net plane structure is three-dimensionally laminated. When a carbon material is used as the negative electrode active material of a lithium secondary battery, lithium is taken into the above-described carbon structure in a certain ionic state during charging and is released into the electrolytic solution through the reverse path during discharging. . Such a storage reaction and a release reaction from a carbon layer of a different element are generally called an intercalation reaction and a deintercalation reaction.

【0012】リチウム二次電池の負極として炭素電極を
用いる場合、まさにこの反応を利用しており、炭素電極
がリチウムを電解液より炭素中に取り込むことにより、
電池として電気エネルギーが貯蔵され、リチウムを電解
液中に放出することにより、系外に電気エネルギーを取
り出すことができる。
When a carbon electrode is used as the negative electrode of a lithium secondary battery, exactly this reaction is utilized, and the carbon electrode takes lithium from the electrolytic solution into carbon,
Electric energy is stored as a battery, and by discharging lithium into the electrolytic solution, the electric energy can be taken out of the system.

【0013】一般に、炭素材料(炭素電極)において
は、炭素の表面又は微細な穴(ポア)に水分及び酸素が
吸着していると考えられる。吸着している水分は充放電
の際にリチウムと反応して水酸化リチウムを生成するた
め、電池エネルギーとして活用されないものと考えられ
る。一方、吸着酸素は電解液と負極活物質である炭素と
の接触を妨げ、また、副反応(酸化反応)の原因になる
ものと考えられる。
In general, in a carbon material (carbon electrode), it is considered that water and oxygen are adsorbed on the surface of carbon or in fine holes (pores). The adsorbed moisture reacts with lithium during charging / discharging to produce lithium hydroxide, so it is considered that it is not used as battery energy. On the other hand, it is considered that the adsorbed oxygen hinders the contact between the electrolytic solution and carbon as the negative electrode active material, and also causes a side reaction (oxidation reaction).

【0014】本発明は、真空乾燥処理により、炭素材料
又は炭素電極中の水分及び吸着酸素を効率的に取り除く
技術であり、本発明に係る炭素電極によれば、真空乾燥
処理を行わないものに比べて、リチウム二次電池の放電
容量及び充放電効率が飛躍的に向上するという作用・効
果を奏する。
The present invention is a technique for efficiently removing water and adsorbed oxygen in a carbon material or a carbon electrode by vacuum drying treatment. According to the carbon electrode of the present invention, vacuum drying treatment is not performed. In comparison, the lithium secondary battery has the action and effect of dramatically improving the discharge capacity and charge / discharge efficiency.

【0015】[0015]

【発明の実施の形態】炭素電極 炭素電極は、活物質として炭素材料を用いる電極であ
る。炭素電極は、例えば、粉末状の炭素材料を樹脂等の
結合材と混合したペーストを、金属メッシュに圧着させ
ることにより製造できる。本発明の炭素電極では、真空
乾燥処理した炭素材料を用いる。好ましい実施の形態で
は、100torr以下、好ましくは50torr以下
の真空中で乾燥処理した炭素材料を用いる。他の好まし
い実施の形態では、60℃以上、好ましくは100〜2
50℃で真空乾燥処理した炭素材料を用いる。所定の真
空乾燥処理は、通常、30分間〜12時間、好ましくは
1〜6時間程度行う。炭素材料の真空乾燥処理には、真
空装置、例えば、排気ポンプを備えた公知の加熱炉を使
用できる。
BEST MODE FOR CARRYING OUT THE INVENTION Carbon Electrode A carbon electrode is an electrode that uses a carbon material as an active material. The carbon electrode can be manufactured, for example, by pressing a paste prepared by mixing a powdery carbon material with a binder such as a resin onto a metal mesh. In the carbon electrode of the present invention, a vacuum-dried carbon material is used. In a preferred embodiment, a carbon material dried in a vacuum of 100 torr or less, preferably 50 torr or less is used. In another preferred embodiment, 60 ° C or higher, preferably 100-2.
A carbon material vacuum-dried at 50 ° C. is used. The predetermined vacuum drying treatment is usually performed for 30 minutes to 12 hours, preferably about 1 to 6 hours. A vacuum device, for example, a known heating furnace equipped with an exhaust pump can be used for the vacuum drying treatment of the carbon material.

【0016】炭素電極の改質方法 好ましい実施の形態では、100torr以下、好まし
くは50torr以下の真空中で炭素電極を乾燥処理す
る。他の好ましい実施の形態では、60℃以上、好まし
くは100〜250℃で炭素電極を真空乾燥処理する。
所定の真空乾燥処理は、通常、30分間〜12時間、好
ましくは1〜6時間程度行う。炭素電極の真空乾燥に
は、真空装置、例えば、排気ポンプを備えた公知の加熱
炉を使用できる。
Method of Modifying Carbon Electrode In a preferred embodiment, the carbon electrode is dried in a vacuum of 100 torr or less, preferably 50 torr or less. In another preferred embodiment, the carbon electrode is vacuum dried at 60 ° C or higher, preferably 100-250 ° C.
The predetermined vacuum drying treatment is usually performed for 30 minutes to 12 hours, preferably about 1 to 6 hours. For the vacuum drying of the carbon electrode, a vacuum apparatus, for example, a known heating furnace equipped with an exhaust pump can be used.

【0017】リチウム二次電池 本発明の炭素電極及び本発明の改質方法により改質した
炭素電極は、リチウム二次電池の負極として優れた特性
を有する。本発明に係る炭素電極を負極体とし、任意の
電解液及び正極体と通常の方法により組み合わせること
により、リチウム二次電池を作成できる。
Lithium Secondary Battery The carbon electrode of the present invention and the carbon electrode modified by the modifying method of the present invention have excellent characteristics as a negative electrode of a lithium secondary battery. A lithium secondary battery can be prepared by using the carbon electrode according to the present invention as a negative electrode body and combining it with an arbitrary electrolytic solution and a positive electrode body by a usual method.

【0018】本発明のリチウム二次電池の作成には、不
活性の溶媒に電解物質を溶解した電解液を使用できる。
電解液の溶媒としては、非プロトン性溶媒、例えば、プ
ロピレンカーボネート、エチレンカーボネート、γ−ブ
チロラクトン、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、ジオキソラン、4−メチルジオキソラ
ン、スルホラン、1,2−ジメトキシエタン、ジメチル
スルホキシド、アセトニトリル、N,N−ジメチルホル
ムアミド、ジエチレングリコール、ジメチルエーテル等
又はこれらの2種類以上の混合溶媒を使用できる。好ま
しい実施の形態では、強い還元雰囲気でも安定なエーテ
ル系溶媒、例えば、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、ジオキソラン、4−メチルジオキソ
ランを溶媒とする電解液を用いる。電解液の電解物質と
しては、溶媒和しにくいアニオンを生成する塩、例え
ば、LiPF6、LiClO4、LiBF4、LiAs
6、LiSbF6、LiAlO4、LiAlCl4、Li
Cl、LiI等を使用できる。
An electrolytic solution prepared by dissolving an electrolytic substance in an inert solvent can be used for producing the lithium secondary battery of the present invention.
As the solvent of the electrolytic solution, an aprotic solvent, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, sulfolane, 1,2-dimethoxyethane, dimethylsulfoxide, Acetonitrile, N, N-dimethylformamide, diethylene glycol, dimethyl ether and the like, or a mixed solvent of two or more kinds of these can be used. In a preferred embodiment, an electrolyte solution that uses an ether solvent that is stable even in a strong reducing atmosphere, for example, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, or 4-methyldioxolane is used. As the electrolytic substance of the electrolytic solution, a salt that produces anions that are difficult to solvate, such as LiPF 6 , LiClO 4 , LiBF 4 , and LiAs.
F 6 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , Li
Cl, LiI, etc. can be used.

【0019】正極体としては、例えば、TiS2、Mo
3、NbSe3、FeS、VS2、VSe2等の層状構造
を有する金属カルコゲン化物、CoO2、Cr35、T
iO2、CuO、V36、Mo3O、V25(・P
25)、Mn2O(・Li2O)等の金属酸化物、ポリア
セチレン、ポリアニリン、ポリパラフェニレン、ポリチ
オフェン、ポリピロール等の導電性を有する共役系高分
子物質等を正極活物質とする電極を使用できる。好まし
い実施の形態では、V25、Mn2Oを正極活物質とす
る電極を正極体として用いる。
Examples of the positive electrode body include TiS 2 and Mo.
Metal chalcogenides having a layered structure such as S 3 , NbSe 3 , FeS, VS 2 and VSe 2 , CoO 2 , Cr 3 O 5 , T
iO 2 , CuO, V 3 O 6 , Mo 3 O, V 2 O 5 (.P
2 O 5 ), Mn 2 O (.Li 2 O) and other metal oxides, polyacetylene, polyaniline, polyparaphenylene, polythiophene, polypyrrole, and other electrically conductive conjugated polymer substances as positive electrode active materials Can be used. In a preferred embodiment, an electrode using V 2 O 5 or Mn 2 O as a positive electrode active material is used as a positive electrode body.

【0020】本発明の炭素電極(負極体)、電解液、正
極体の他、セパレータ、集電体、ガスケット、封口板、
ケース等の通常用いらる電池構成要素を使用し、常法に
よって組み立てることにより、円筒型、角型あるいはボ
タン型等の形態のリチウム二次電池を作成できる。セパ
レータとしては、通常使用される多孔質ポリプロピレン
製不織布をはじめとするポリオレフィン系の多孔質膜を
使用できる。
In addition to the carbon electrode (negative electrode body), electrolytic solution, and positive electrode body of the present invention, a separator, a current collector, a gasket, a sealing plate,
A lithium secondary battery in the form of a cylindrical type, a square type, a button type or the like can be produced by assembling by a conventional method using a battery component that is normally used such as a case. As the separator, a polyolefin-based porous membrane including a commonly used porous polypropylene nonwoven fabric can be used.

【0021】[0021]

【実施例】以下に実施例を挙げて本発明をさらに詳しく
説明する。
The present invention will be described in more detail with reference to the following examples.

【0022】実施例1(炭素電極真 空乾燥処理の効果) 〔炭素材料の調製〕ピレンとパラキシリレングリコール
(2,3−ジメチル−1,4−ジメタノール)を出発原
料として、酸触媒にパラトルエンスルホン酸を用い反応
温度155℃において合成ピッチ(GPCにおけるTH
F可溶分の数平均分子量1640)を調製した。通常の
熱処理炉により窒素気流中2℃/minで1100℃ま
で昇温し、2時間保持することにより炭素材料を得た。
[0022] Example 1 (carbon electrode Effect of vacuum drying process) Preparation of carbon material] pyrene and p-xylylene glycol (2,3-dimethyl-1,4-dimethanol) as a starting material, the acid catalyst Synthetic pitch using para-toluenesulfonic acid at a reaction temperature of 155 ° C (TH in GPC
The number average molecular weight of the F soluble component was 1640). A carbon material was obtained by raising the temperature to 1100 ° C. in a nitrogen stream at 2 ° C./min in an ordinary heat treatment furnace and holding it for 2 hours.

【0023】〔炭素電極(負極体)の作成及び改質〕熱
処理後の炭素材料99重量部にディスパージョンタイプ
のPTFE(ダイキン工業(株)製、D−1)を1重量
部混合し、液相で均一に攪拌した後、乾燥させ、ペース
ト状とした。こうして得られたペースト状の負極物質3
0mgをニッケルメッシュに圧着させることで炭素電極
を作成した。こうして得られた電極を温度25℃、湿度
60%の環境下で1週間放置後、真空度1torr以下
の真空中で200℃で2時間加熱処理して乾燥させた。
[Preparation and Modification of Carbon Electrode (Negative Electrode)] 99 parts by weight of the carbon material after heat treatment were mixed with 1 part by weight of dispersion type PTFE (D-1 manufactured by Daikin Industries, Ltd.) to prepare a liquid. The phases were stirred uniformly and then dried to a paste. The pasty negative electrode material 3 thus obtained
A carbon electrode was prepared by pressing 0 mg onto a nickel mesh. The electrode thus obtained was allowed to stand for 1 week in an environment of a temperature of 25 ° C. and a humidity of 60%, and then heat-treated at 200 ° C. for 2 hours in a vacuum having a vacuum degree of 1 torr or less to be dried.

【0024】〔リチウム二次電池の作成〕前記のように
して作成した炭素電極を負極体とし、正極体としてLi
CoO2を、電解液としてLiClO4を1モル/lの濃
度に溶解させたプロピレンカーボネートを、セパレータ
としてポリプロピレン不織布を用いてボタン型リチウム
二次電池を作成した。その断面図を図1に示す。図1
中、1は正極体、2はセパレータ、3は負極体、4はケ
ース、5は封口板、6は絶縁パッキングを示す。
[Preparation of Lithium Secondary Battery] The carbon electrode prepared as described above was used as a negative electrode body and Li as a positive electrode body.
A button type lithium secondary battery was prepared by using CoO 2 , propylene carbonate in which LiClO 4 was dissolved at a concentration of 1 mol / l as an electrolytic solution, and polypropylene nonwoven fabric as a separator. FIG. 1 shows a cross-sectional view thereof. FIG.
Inside, 1 is a positive electrode body, 2 is a separator, 3 is a negative electrode body, 4 is a case, 5 is a sealing plate, and 6 is an insulating packing.

【0025】〔電池特性の測定〕本実施例で得られたリ
チウム二次電池の放電特性を測定した。測定は、0.1
mA/cm2の定電流充放電下で行った。充電後、電池
電圧が2.0Vに低下するまでの放電量を放電容量とし
た。結果を表1に示す。
[Measurement of Battery Characteristics] The discharge characteristics of the lithium secondary battery obtained in this example were measured. The measurement is 0.1
It was carried out under constant current charging / discharging of mA / cm 2 . The amount of discharge until the battery voltage dropped to 2.0 V after charging was taken as the discharge capacity. The results are shown in Table 1.

【0026】比較例1(炭素電極真 空乾燥処理の効果の
比較) 炭素電極の真空乾燥処理を行わない以外は、実施例1と
同様にした。結果を表1に示す。
[0026] Comparative Example 1 (Effect of the carbon electrode vacuum drying
(Comparative) The procedure of Example 1 was repeated, except that the vacuum drying treatment of the carbon electrode was not performed. The results are shown in Table 1.

【0027】実施例2(炭素材料真 空乾燥処理の効果) 〔炭素電極(負極体)の作成〕実施例1と同様にして調
製した炭素材料を温度25℃、湿度60%の環境下で1
週間放置後、真空度1torr以下の真空中で200℃
で2時間加熱処理して乾燥させた。真空乾燥処理した後
の炭素材料99重量部にディスパージョンタイプのPT
FE(ダイキン工業(株)製、D−1)を1重量部混合
し、液相で均一に攪拌した後、乾燥させ、ペースト状と
した。こうして得られたペースト状の負極物質30mg
をニッケルメッシュに圧着させることで炭素電極を作成
した。
[0027] Example 2 1 in an environment [Creating a carbon electrode (negative electrode body)] Example 1 Temperature 25 ° C. The carbon material was prepared in the same manner as, humidity 60% (carbon material vacuum drying effect of)
After being left for a week, 200 ° C in a vacuum with a vacuum degree of 1 torr or less
It was heat-treated for 2 hours and dried. Dispersion type PT on 99 parts by weight of carbon material after vacuum drying
1 part by weight of FE (manufactured by Daikin Industries, Ltd., D-1) was mixed, uniformly stirred in the liquid phase, and then dried to obtain a paste. 30 mg of the pasty negative electrode material thus obtained
A carbon electrode was prepared by pressure bonding to a nickel mesh.

【0028】〔リチウム二次電池の作成、電池特性の測
定〕前記のようにして作成した炭素電極を用いて、実施
例1と同様にしてリチウム二次電池を作成し、放電特性
を測定した。結果を表1に示す。
[Preparation of Lithium Secondary Battery and Measurement of Battery Characteristics] Using the carbon electrode prepared as described above, a lithium secondary battery was prepared in the same manner as in Example 1 and the discharge characteristics were measured. The results are shown in Table 1.

【0029】比較例2(炭素材料真 空乾燥処理の効果の
比較) 炭素材料の真空乾燥処理を行わない以外は、実施例2と
同様にした。結果を表1に示す。
[0029] Comparative Example 2 (Effect of carbon material vacuum drying process
(Comparative) The same procedure was performed as in Example 2 except that the vacuum drying treatment of the carbon material was not performed. The results are shown in Table 1.

【0030】実施例3(真空度の効 果) 炭素材料の真空乾燥処理を真空度90torrの真空中
で行った以外は、実施例1と同様にした。結果を表1に
示す。
[0030] except that the vacuum drying process of the carbon material (effect of vacuum) Example 3 was carried out in a vacuum of a vacuum degree of 90 torr, and in the same manner as in Example 1. The results are shown in Table 1.

【0031】実施例4(真空度の効 果) 炭素材料の真空乾燥処理を真空度150torr以下の
真空中で行った以外は、実施例1及び3と同様にした。
結果を表1に示す。
[0031] except that the vacuum drying process of the carbon material (effect of vacuum) Example 4 was carried out in a vacuum of less vacuum 150 torr, and in the same manner as in Example 1 and 3.
The results are shown in Table 1.

【0032】実施例6(乾燥温度の 効果) 炭素材料の真空乾燥処理を70℃で行った以外は、実施
例1と同様にした。結果を表1に示す。
Example 6 ( Effect of Drying Temperature ) The procedure of Example 1 was repeated, except that the vacuum drying treatment of the carbon material was performed at 70 ° C. The results are shown in Table 1.

【0033】実施例7(乾燥温度の 効果) 炭素材料の真空乾燥処理を30℃で行った以外は、実施
例1及び実施例4と同様にした。結果を表1に示す。
Example 7 ( Effect of Drying Temperature ) The procedure of Example 1 and Example 4 was repeated, except that the vacuum drying treatment of the carbon material was performed at 30 ° C. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の炭素電極又はその改質方法によ
れば、負極活物質として作用する炭素材料の吸水量及び
表面酸素量が少ないので、放電容量が著しく向上したリ
チウム二次電池を提供できる。
EFFECTS OF THE INVENTION According to the carbon electrode of the present invention or the method for modifying the same, the carbon material acting as the negative electrode active material has a small amount of water absorption and surface oxygen, and thus a lithium secondary battery having a significantly improved discharge capacity is provided. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例で作成したボタン型リチウム二次電池
の断面図である。
FIG. 1 is a cross-sectional view of a button type lithium secondary battery created in an example.

【符号の説明】[Explanation of symbols]

1:正極、2:セパレータ、3:負極、4:ケース、
5:封口板、6:絶縁パッキング
1: positive electrode, 2: separator, 3: negative electrode, 4: case,
5: Sealing plate, 6: Insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 宏之 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 嘉数 隆敬 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Fujimoto 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd. (72) Inventor Takanori Kazaka 4 Chome 1-2 Osaka Gas Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 真空乾燥処理した炭素材料を用いたリチ
ウム二次電池負極用炭素電極。
1. A carbon electrode for a negative electrode of a lithium secondary battery, which uses a vacuum-dried carbon material.
【請求項2】 100torr以下の真空中で真空乾燥
処理した炭素材料を用いたリチウム二次電池負極用炭素
電極。
2. A carbon electrode for a negative electrode of a lithium secondary battery, which uses a carbon material vacuum-dried in a vacuum of 100 torr or less.
【請求項3】 60℃以上で真空乾燥処理した炭素材料
を用いた請求項1又は2に記載のリチウム二次電池負極
用炭素電極。
3. The carbon electrode for a lithium secondary battery negative electrode according to claim 1, which uses a carbon material vacuum-dried at 60 ° C. or higher.
【請求項4】 炭素電極を真空乾燥処理することを特徴
とするリチウム二次電池負極用炭素電極の改質方法。
4. A method for reforming a carbon electrode for a lithium secondary battery negative electrode, which comprises subjecting the carbon electrode to a vacuum drying treatment.
【請求項5】 炭素電極の真空乾燥処理を100tor
r以下の真空中で行う請求項4に記載のリチウム二次電
池負極用炭素電極の改質方法。
5. The vacuum drying treatment of the carbon electrode is 100 torr.
The method for reforming a carbon electrode for a negative electrode of a lithium secondary battery according to claim 4, which is performed in a vacuum of r or less.
【請求項6】 炭素電極の真空乾燥処理を60℃以上で
行う請求項4又は5に記載のリチウム二次電池負極用炭
素電極の改質方法。
6. The method for reforming a carbon electrode for a lithium secondary battery negative electrode according to claim 4, wherein the vacuum drying treatment of the carbon electrode is performed at 60 ° C. or higher.
【請求項7】 請求項1〜3のいずれかに記載の炭素電
極を負極体とするリチウム二次電池。
7. A lithium secondary battery comprising the carbon electrode according to claim 1 as a negative electrode body.
【請求項8】 請求項4〜6のいずれかの改質方法によ
り改質した炭素電極を負極体とするリチウム二次電池。
8. A lithium secondary battery comprising a carbon electrode modified by the modifying method according to claim 4 as a negative electrode body.
JP8086271A 1996-04-09 1996-04-09 Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery Pending JPH09283138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8086271A JPH09283138A (en) 1996-04-09 1996-04-09 Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8086271A JPH09283138A (en) 1996-04-09 1996-04-09 Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH09283138A true JPH09283138A (en) 1997-10-31

Family

ID=13882165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086271A Pending JPH09283138A (en) 1996-04-09 1996-04-09 Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH09283138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075893A1 (en) * 2010-12-10 2012-06-14 奇瑞汽车股份有限公司 Drying method and manufacturing method of electrode sheet of lithium-ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075893A1 (en) * 2010-12-10 2012-06-14 奇瑞汽车股份有限公司 Drying method and manufacturing method of electrode sheet of lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
JP6732300B2 (en) Sulfur-carbon composite, method for producing the same, and lithium-sulfur battery including the same
CA2184792C (en) Rechargeable lithium battery having an improved cathode and process for the production thereof
KR101365980B1 (en) Lithium air battery
KR101123057B1 (en) Cathode Active Material for Lithium Secondary Battery
KR101138637B1 (en) Cathode Active Material for Lithium Secondary Battery
US5851504A (en) Carbon based electrodes
KR101807348B1 (en) Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
KR20120034686A (en) Cathode active material for lithium secondary battery
JP3794553B2 (en) Lithium secondary battery electrode and lithium secondary battery
JP4201308B2 (en) Lithium secondary battery separator and lithium secondary battery using the same
KR101924035B1 (en) Silicon-carbon composite, preparation method thereof, and anode active material comprising the same
WO2005078849A1 (en) Electrochemical device
JP2020115485A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002117854A (en) Secondary battery and its manufacturing method
KR101582385B1 (en) Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
JP2003331838A (en) Lithium secondary battery
JP2000036325A (en) Secondary power supply
JP2020189778A (en) Method for producing non-graphitizable carbon material
KR20190060698A (en) Silicon based particle-polymer composite, and negative electrode active material comprising the same
JP7244626B2 (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP2004296305A (en) Lithium ion secondary battery
JPH09283138A (en) Carbon electrode for negative electrode of lithium secondary battery, and method for reforming this carbon electrode, and lithium secondary battery
JP2002117850A (en) Negative electrode active material for nonaqueous electrolytic solution secondary battery
WO2022039211A1 (en) Conductive carbon, method for producing same, method for producing conductive carbon mixture containing said conductive carbon, and method for producing electrode using said conductive carbon or conductive carbon mixture
JPH0973893A (en) Large-capacity electrode, and secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051116