JP2002117850A - Negative electrode active material for nonaqueous electrolytic solution secondary battery - Google Patents

Negative electrode active material for nonaqueous electrolytic solution secondary battery

Info

Publication number
JP2002117850A
JP2002117850A JP2000311349A JP2000311349A JP2002117850A JP 2002117850 A JP2002117850 A JP 2002117850A JP 2000311349 A JP2000311349 A JP 2000311349A JP 2000311349 A JP2000311349 A JP 2000311349A JP 2002117850 A JP2002117850 A JP 2002117850A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrode active
secondary battery
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000311349A
Other languages
Japanese (ja)
Inventor
Naoto Takahashi
直人 高橋
Chisui Okano
知水 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2000311349A priority Critical patent/JP2002117850A/en
Publication of JP2002117850A publication Critical patent/JP2002117850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for a nonaqueous electrolytic solution secondary battery which has a high capacity, in which there is no cycle deterioration, and which is superior in a volume stability and appropriately used as the negative electrode active material for the nonaqueous electrolytic solution secondary battery using a laminated film for a sheath material. SOLUTION: A complex material is used as the negative electrode active material for a nonaqueous electrolytic solution secondary battery wherein a material which can reversibly occlude/discharge lithium ion of tin oxide or the like from a carrier consisting of a porous electroconductive substance of carbon or the like wherein a mode in a pore size distribution measured by a mercury porosimetry is 1 nm or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な非水電解液
二次電池用負極活物質、及び該負極活物質を用いた非水
電解液二次電池に関する。
The present invention relates to a novel negative electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery using the negative electrode active material.

【0002】[0002]

【従来の技術】携帯電話の電源としてエネルギー密度が
高い非水電解液二次電池が広く用いられている。従来、
携帯電話用の非水電解液二次電池としては、外装材とし
て主に角型のアルミニウム缶が用いられてきたが、電池
の更なる軽量化あるいは薄型化を目的として、ラミネー
トフィルムを外装材とする非水電解液二次電池への移行
が進んでいる。
2. Description of the Related Art A non-aqueous electrolyte secondary battery having a high energy density is widely used as a power source of a portable telephone. Conventionally,
As non-aqueous electrolyte secondary batteries for mobile phones, mainly rectangular aluminum cans have been used as exterior materials, but for the purpose of further reducing the weight or thickness of the battery, a laminate film was used as the exterior material. The transition to non-aqueous electrolyte secondary batteries is progressing.

【0003】一方で、携帯電話は従来の音声通話機能に
加え、電子メールや動画・音楽などのデータ通信機能の
重要性が増しており、取り扱うデータ量の増大に伴っ
て、次世代の携帯電話では消費電力が更に増大すると見
られている。そのため、携帯電話用の非水電解液二次電
池の高容量化はますます重要な課題となっている。
On the other hand, in mobile phones, in addition to the conventional voice communication function, the importance of data communication functions for e-mail, moving images, music, and the like has been increasing. It is expected that power consumption will further increase. Therefore, increasing the capacity of non-aqueous electrolyte secondary batteries for mobile phones has become an increasingly important issue.

【0004】非水電解液二次電池では、充電反応時、リ
チウムイオンは正極活物質から脱離し、非水電解液を介
して負極に移動し負極活物質に吸蔵される。一方、放電
時にはリチウムイオンは負極活物質より脱離して正極活
物質に吸蔵される。この時、負極活物質から脱離するリ
チウムイオンの全電荷に相当する電子が外部回路に電流
として取り出され、電子機器を駆動する。従って、非水
電解液二次電池の高容量化を図るためには、負極活物質
においては、可逆的に吸蔵、脱離させることができるリ
チウムイオンの量を増大させることが本質的に重要であ
る。以下、負極活物質におけるリチウムイオンの吸蔵、
放出量は、負極活物質に付いてリチウム金属を対極とし
て作製される非水電解液二次電池の放電容量で表すもの
とし、単に、負極活物質の容量と表記する。
In a non-aqueous electrolyte secondary battery, during a charging reaction, lithium ions are desorbed from the positive electrode active material, move to the negative electrode via the non-aqueous electrolyte, and are absorbed by the negative electrode active material. On the other hand, during discharge, lithium ions are desorbed from the negative electrode active material and occluded in the positive electrode active material. At this time, electrons corresponding to all charges of lithium ions desorbed from the negative electrode active material are taken out as a current to an external circuit to drive an electronic device. Therefore, in order to increase the capacity of the nonaqueous electrolyte secondary battery, it is essentially important to increase the amount of lithium ions that can be reversibly inserted and removed in the negative electrode active material. is there. Hereinafter, occlusion of lithium ions in the negative electrode active material,
The release amount is represented by the discharge capacity of a nonaqueous electrolyte secondary battery prepared using lithium metal as a counter electrode with respect to the negative electrode active material, and is simply expressed as the capacity of the negative electrode active material.

【0005】ラミネートフィルムを外装材とする非水電
解液二次電池においては、放電容量の高容量化と同時に
充放電時の活物質の体積安定性が重要である。前述の通
り、非水電解液二次電池の充放電においては正極活物質
および負極活物質に対してリチウムイオンが吸蔵、放出
されるので、正極活物質および負極活物質においては充
放電時にそれぞれの一定の体積変化が生じる。非水電解
液二次電池がラミネートフィルムを外装材とする場合に
は、従来のアルミニウム缶の場合と異なって正極活物質
および負極活物質の体積変化が直接非水電解液二次電池
の体積変化を引き起こしてしまう。これは、ラミネート
フィルムを外装材とする非水電解液二次電池を電子機器
に装填する上で障害となるのみならず、外装材の破損な
ど安全性に対して重大な障害につながる可能性が有る。
In a non-aqueous electrolyte secondary battery using a laminate film as an exterior material, it is important to increase the discharge capacity and at the same time to stabilize the volume of the active material during charging and discharging. As described above, in charging / discharging of the nonaqueous electrolyte secondary battery, lithium ions are occluded and released from the positive electrode active material and the negative electrode active material. A constant volume change occurs. When the non-aqueous electrolyte secondary battery uses a laminate film as the exterior material, the volume change of the positive electrode active material and the negative electrode active material is directly different from the volume change of the non-aqueous electrolyte secondary battery unlike the conventional aluminum can. Cause. This may not only be an obstacle in loading a non-aqueous electrolyte secondary battery using a laminate film as an exterior material in electronic equipment, but also may lead to a serious obstacle to safety such as damage to the exterior material. Yes.

【0006】この様な理由から、携帯電話に用いられる
ラミネートフィルムを外装材とする非水電解液二次電池
の負極活物質においては、負極活物質の容量が高く、し
かも充放電に伴う体積変化が小さい負極活物質が特に望
まれている。
For these reasons, the negative electrode active material of a non-aqueous electrolyte secondary battery using a laminate film for a mobile phone as an exterior material has a high capacity of the negative electrode active material and a change in volume due to charge and discharge. A negative electrode active material having a small value is particularly desired.

【0007】今日実用化されている非水電解液二次電池
の負極活物質には、黒鉛、ハードカーボンあるいはソフ
トカーボン等の炭素系材料(以下、単にカーボン類とも
言う)が用いられている。カーボン類は、リチウム金属
やリチウム合金等の他の負極活物質と比較し、充放電を
繰り返した時の充放電容量の低下(サイクル劣化)が小
さく、また充電に伴う体積膨張が約8%と体積安定性に
も優れた材料である。しかし、カーボン類は、その比重
が小さいため体積当たりの容量では充放電容量が十分で
はなく、より高い充放電容量を達成するために、負極活
物質の高容量化が検討されている。
As a negative electrode active material of a nonaqueous electrolyte secondary battery which is put into practical use today, a carbon-based material (hereinafter, also simply referred to as carbon) such as graphite, hard carbon or soft carbon is used. Compared with other negative electrode active materials such as lithium metal and lithium alloy, carbons have a small decrease in charge / discharge capacity (cycle deterioration) when charging / discharging is repeated and a volume expansion due to charging of about 8%. It is a material with excellent volume stability. However, since the specific gravity of carbons is small, the charge / discharge capacity is not sufficient with the capacity per volume, and to achieve higher charge / discharge capacity, an increase in the capacity of the negative electrode active material is being studied.

【0008】SnあるいはSnを含む合金(以下Sn類
ともいう)は、非水電解液二次電池の負極活物質とし
て、カーボン類よりも高い容量を有することが知られて
いる{J.Wangほか、Journal of The
Electrochemical Society 13
3巻、 185(1986).}。例えばカーボン類の中
でも代表的な黒鉛の容量は、理論値で372mAh/g
(843mAh/ml)であるのに対し、Snの容量の
理論値は994mAh/g(7234mAh/ml)で
ある。
[0008] It is known that Sn or an alloy containing Sn (hereinafter also referred to as Sns) has a higher capacity than carbons as a negative electrode active material of a nonaqueous electrolyte secondary battery {J. Wang et al. , Journal of The
Electrochemical Society 13
3, 185 (1986). }. For example, a typical graphite capacity among carbons is 372 mAh / g in theoretical value.
(843 mAh / ml), whereas the theoretical value of the Sn capacity is 994 mAh / g (7234 mAh / ml).

【0009】このように、Sn類は、炭素類に比べ著し
く高い容量を有する材料ではあるが、これらの材料はリ
チウムイオンが吸蔵される際、Snでは約2.8倍にも
及ぶ体積膨張を伴い、この体積膨張により負極活物質が
機械的に破壊される。この負極活物質の破壊により、充
放電反応に不可欠な電子の伝導パスが破壊されてゆき、
充放電の繰り返しに伴い充放電に関与することができる
負極活物質が減少するため、充放電容量が次第に減少す
る所謂サイクル劣化が生じる。Sn類を負極活物質とし
て用いた場合には特にこのサイクル劣化が顕著であり、
数回の充放電の繰り返しにより充放電容量はほとんど消
失してしまい、二次電池としての機能を果たすことがで
きない。
As described above, Sn is a material having a remarkably higher capacity than carbon, but when these materials occlude lithium ions, Sn has a volume expansion of about 2.8 times. Accordingly, the negative electrode active material is mechanically broken by the volume expansion. This destruction of the negative electrode active material destroys the electron conduction path essential for the charge / discharge reaction,
Since the amount of the negative electrode active material that can participate in charge / discharge decreases with repetition of charge / discharge, so-called cycle deterioration occurs in which the charge / discharge capacity gradually decreases. This cycle deterioration is particularly remarkable when Sns are used as the negative electrode active material,
The charge / discharge capacity almost disappears by repeating charge / discharge several times, and the function as a secondary battery cannot be achieved.

【0010】Sn類のサイクル劣化を解決するために、
これまで種々の方法が検討されてきた。例えば、Sn類
の酸化物を負極活物質として用いる方法(特許第288
7632号)、Sn類の酸化物を異種元素の酸化物マト
リックス中に分散させる方法(特許第3010226
号)、Sn類を炭素材料のマトリックスに分散させる方
法(特開平10−308207号公報)、Sn類を金属
系マトリックスに分散させる方法{O.Maoほか、E
lectrochemical and Solid−S
tate Letters 2巻、 1号 3−5 (19
99).}等が検討されている。これらの方法では、何れ
もSn類をマトリックス中に微分散させてSn類の膨張
により発生する応力を提言させ機械的な破壊を抑制した
り、仮にSn類が機械的に破壊しても導電性のマトリッ
クスにより電子伝導パスを確保することにより、サイク
ル劣化を防止することを意図している(以下、これらの
方法による負極活物質を、複合負極活物質ともいう)。
複合負極活物質においてはSn類を希釈して用いること
になるので、容量自体はSn類単独の場合に比べて低下
するが、方法により優劣は有るものの、サイクル劣化を
ある程度防止することを可能としている。
In order to solve the cycle deterioration of Sns,
Various methods have been studied so far. For example, a method using Sn oxides as a negative electrode active material (Japanese Patent No. 288)
7632), a method of dispersing an oxide of Sns in an oxide matrix of a different element (Japanese Patent No. 3010226)
), A method of dispersing Sns in a carbon material matrix (Japanese Patent Laid-Open No. 10-308207), and a method of dispersing Sns in a metal matrix {O. Mao et al., E
Electrochemical and Solid-S
state Letters Vol. 2, No. 1 3-5 (19
99). } Are being considered. In any of these methods, Sn is finely dispersed in a matrix to propose a stress generated by expansion of Sn and suppress mechanical destruction. It is intended to prevent cycle deterioration by securing an electron conduction path by the matrix (hereinafter, the negative electrode active material by these methods is also referred to as a composite negative electrode active material).
In the composite negative electrode active material, since Sns are used after being diluted, the capacity itself is reduced as compared with the case of using Sns alone. I have.

【0011】しかしながら、複合負極活物質においては
何れの方法でも巨視的に緻密なマトリックス中にSn類
が分散しているので、複合負極活物質はSn類の体積分
率に依存して充放電よる体積変化を生じる。即ち、複合
負極活物質の容量を高めるために、複合負極活物質中に
おけるSn類の体積分率を増大させると充電時の体積膨
張も増大してしまう。従って、これらの方法では、容量
が高く、体積膨張を抑制することが可能な非水電解液二
次電池用負極活物質を提供することは原理的に困難であ
り、また、実際に炭素類と同程度の容量を有するように
Sn類を加えた複合負極活物質でも、その体積膨張は1
5%に及ぶ場合が少なくない。
However, in any of the composite anode active materials, Sn is dispersed in a macroscopically dense matrix, so that the composite anode active material is charged and discharged depending on the volume fraction of Sn. Causes a volume change. That is, when the volume fraction of Sn in the composite negative electrode active material is increased in order to increase the capacity of the composite negative electrode active material, the volume expansion during charging also increases. Therefore, in these methods, it is in principle difficult to provide a negative electrode active material for a non-aqueous electrolyte secondary battery which has a high capacity and can suppress volume expansion, and it is actually difficult to provide carbon-based materials. Even with a composite negative electrode active material to which Sns are added so as to have the same capacity, the volume expansion is 1%.
In many cases, it reaches 5%.

【0012】[0012]

【発明が解決しようとする課題】このように、外装材に
ラミネートフィルムを用いた非水電解液二次電池にも適
用できるような、体積安定性が良好で、しかも既存のカ
ーボン類よりも高容量で、サイクル劣化がない非水電解
液二次電池用負極活物質は知られておらず、このような
負極活物質が求められている。
As described above, the present invention has good volume stability and is higher than existing carbons, and can be applied to a non-aqueous electrolyte secondary battery using a laminate film as an exterior material. A negative electrode active material for a non-aqueous electrolyte secondary battery having no capacity and no cycle deterioration is not known, and such a negative electrode active material is required.

【0013】[0013]

【課題を解決するための手段】本発明者等は、上記課題
を複合負極活物質の微細構造の改良により解決しようと
して種々の方法で複合化を検討し、その特性の評価を行
った。その結果、特定の微細構造を有する導電性物質か
らなる担体にリチウムイオンを可逆的に吸蔵・放出し得
る物質を担持した新規な複合体は、非水電解液二次電池
用負極活物質として優れた特性を有することを見出し本
発明を完成するに至った。
In order to solve the above-mentioned problems by improving the fine structure of the composite negative electrode active material, the present inventors have studied composites by various methods and evaluated the characteristics. As a result, a novel composite in which a carrier made of a conductive material having a specific microstructure has a substance capable of reversibly occluding and releasing lithium ions is excellent as a negative electrode active material for a non-aqueous electrolyte secondary battery. It has been found that the present invention has such characteristics, and the present invention has been completed.

【0014】即ち、本発明は、水銀ポロシメータで測定
される細孔径分布におけるモードが1nm以上である多
孔性導電性物質からなる担体にリチウムイオンを可逆的
に吸蔵・放出し得る物質を担持させた複合体からなるこ
とを特徴とする非水電解液二次電池用負極活物質であ
る。
That is, in the present invention, a carrier capable of reversibly occluding and releasing lithium ions is supported on a carrier made of a porous conductive material having a mode of pore diameter distribution measured by a mercury porosimeter of 1 nm or more. A negative electrode active material for a non-aqueous electrolyte secondary battery, comprising a composite.

【0015】上記本発明の非水電解液二次電池用負極活
物質の中でも上述の複合体におけるリチウムイオンを可
逆的に吸蔵・放出し得る物質の担持率が2〜15mmo
l/mlであり、且つ該複合体の気孔率が10〜60v
ol.%であるものは、容量が高く体積安定性も良好で
あるという特徴を有する。とりわけ、リチウムイオンを
可逆的に吸蔵・放出し得る物質として、Sn、Al、S
i、Zn、Ga、Cd、In、Sb、Pb、又はBi元
素の担体、又は上記Sn乃至Biからなる群より選ばれ
る少なくとも1種の元素を含む合金又は酸化物を用いた
ものは容量が特に高い。
Among the above-mentioned negative electrode active materials for a non-aqueous electrolyte secondary battery of the present invention, the loading rate of a substance capable of reversibly occluding and releasing lithium ions in the above-mentioned composite is 2 to 15 mmol.
1 / ml and the porosity of the complex is 10-60 v
ol. % Is characterized by high capacity and good volume stability. In particular, substances that can reversibly occlude and release lithium ions include Sn, Al, and S.
A carrier using an i, Zn, Ga, Cd, In, Sb, Pb, or Bi element carrier, or an alloy or oxide containing at least one element selected from the group consisting of Sn to Bi has a particularly high capacity. high.

【0016】また、第二の本発明は、水銀ポロシメータ
で測定される細孔径分布におけるモードが1nm以上で
ある多孔性導電性物質からなる担体に、リチウムイオン
を可逆的に吸蔵・放出し得る物質又はその前駆体を含む
溶液又は懸濁液を含浸させ、前記担体にリチウムイオン
を可逆的に吸蔵・放出し得る物質を担持することを特徴
とする前記本発明の非水電解液二次電池用負極活物質の
製造方法である。
Further, the present invention provides a substance capable of reversibly occluding and releasing lithium ions in a carrier made of a porous conductive substance having a mode of pore diameter distribution measured by a mercury porosimeter of 1 nm or more. Or impregnated with a solution or suspension containing a precursor thereof, and for supporting the carrier with a substance capable of reversibly occluding and releasing lithium ions, for the nonaqueous electrolyte secondary battery of the present invention. This is a method for producing a negative electrode active material.

【0017】また、第三の本発明は、水銀ポロシメータ
で測定される細孔径分布におけるモードが1nm以上で
ある多孔性導電性物質からなる担体に、リチウムイオン
を可逆的に吸蔵・放出し得る物質又はその前駆体の溶融
物を含浸させ、前記担体にリチウムイオンを可逆的に吸
蔵・放出し得る物質を担持することを特徴とする前記本
発明の非水電解液二次電池用負極活物質の製造方法であ
る。
Further, the present invention relates to a substance capable of reversibly occluding and releasing lithium ions in a carrier made of a porous conductive substance having a mode of pore diameter distribution measured by a mercury porosimeter of 1 nm or more. Or impregnated with a melt of the precursor thereof, the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention, characterized in that the carrier carries a substance capable of reversibly occluding and releasing lithium ions. It is a manufacturing method.

【0018】更に、第四の本発明は、前記本発明の負極
活物質を用いたことを特徴とする非水電解液二次電池で
ある。
Further, a fourth aspect of the present invention is a non-aqueous electrolyte secondary battery using the negative electrode active material of the present invention.

【0019】本発明は、理論に拘束されるものではない
が、本発明の非水電解液二次電池用負極活物質(以下、
単に負極活物質ともいう)は、次のような機構によりサ
イクル劣化が少なくしかも形態安定性に優れたものとな
る考えられる。即ち、本発明の負極活物質は導電性を有
する多孔性物質の気孔中にリチウムイオンを可逆的に吸
蔵・放出し得る物質(以下、単に活物質とも言う)が担
持された構造を有するため、活物質の形態安定性が劣っ
ていても前述の複合負極活物質と同様な効果でサイクル
の劣化が抑制されるものと考えられる。また、本発明の
負極活物質において活物質は担体の自由空間中に密に充
填されること無く存在しているので、活物質の形態安定
性が劣っていて充放電に伴い活物質が体積変化を示して
も、複合体全体としては体積変化が起こらず、更に該担
体は充放電を繰り返しても構造を維持するに十分な強度
を有するので、形態安定性が向上するものと思われる。
Although the present invention is not limited by theory, the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention (hereinafter, referred to as “negative electrode active material”)
It is considered that the negative electrode active material) has little cycle deterioration and excellent morphological stability by the following mechanism. That is, the negative electrode active material of the present invention has a structure in which a substance capable of reversibly occluding and releasing lithium ions (hereinafter, also simply referred to as an active material) is supported in pores of a conductive porous substance. It is considered that even if the morphological stability of the active material is inferior, deterioration of the cycle is suppressed by the same effect as that of the composite negative electrode active material described above. Also, in the negative electrode active material of the present invention, the active material exists in the free space of the carrier without being densely packed, so that the shape stability of the active material is inferior and the volume of the active material changes with charge and discharge. However, it is considered that the composite does not change in volume as a whole, and that the carrier has sufficient strength to maintain the structure even after repeated charge and discharge, so that the form stability is improved.

【0020】[0020]

【発明の実施の形態】本発明の非水電解液二次電池用負
極活物質は、水銀ポロシメータで測定される細孔径分布
におけるモードが1nm以上である多孔性導電性物質か
らなる担体にリチウムイオンを可逆的に吸蔵・放出し得
る物質を担持させた複合体からなる。ここで、モードと
は、細孔径分布における密度分布が最大となるときの細
孔径を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a lithium-ion carrier formed of a porous conductive material having a mode of 1 nm or more in pore size distribution measured by a mercury porosimeter. Composed of a substance carrying a substance capable of reversibly occluding / releasing s. Here, the mode means the pore diameter when the density distribution in the pore diameter distribution is maximized.

【0021】本発明で使用する担体は、水銀ポロシメー
タで測定される細孔径分布におけるモード(単にモード
孔径ともいう)が1nm以上である多孔性導電性物質か
らなるものであれば特に限定されない。担体のモード孔
径が小さすぎると活物質を均一に分散担持させることが
困難となるばかりでなく、活物質の担持率(担持率につ
いては後で詳述する。)を高くした場合には活物質の凝
集体が形成されてしまい、体積安定性が得られない。ま
た、担体が導電性を有しない場合には、担体に担持され
る活物質に対して電子を有効に供給することができず、
所期の効果を得ることができない。
The carrier used in the present invention is not particularly limited as long as it is made of a porous conductive material having a mode (hereinafter, simply referred to as a mode pore size) of 1 nm or more in a pore size distribution measured by a mercury porosimeter. If the mode pore diameter of the carrier is too small, not only is it difficult to uniformly disperse and support the active material, but also if the loading rate of the active material (the loading rate will be described in detail later) is increased, the active material is increased. Aggregates are formed, and volume stability cannot be obtained. Further, when the carrier does not have conductivity, it is not possible to effectively supply electrons to the active material carried on the carrier,
The desired effect cannot be obtained.

【0022】担体のモード孔径は1nm以上であればよ
いが、該モード孔径が著しく大きいと担体の強度が低下
し、サイクル劣化の原因となる場合が有るので、好まし
いモード孔径は1〜1000nm、特に10〜500n
mの範囲である。また、本発明で使用する担体の気孔率
は特に限定されないが、後述するように体積安定性の特
に優れた“気孔率10〜60vol.%、特に20〜5
0vol.%の複合体”を得るためには、30〜90v
ol.%、特に40〜80vol.%の気孔率であるこ
とが好ましい。尚、これらの気孔率は、細孔径が6.6
nm以上の細孔の気孔率であり、水銀ポロシメータによ
り測定することができる。
The mode pore size of the carrier may be 1 nm or more. However, if the mode pore size is extremely large, the strength of the carrier may be reduced and cycle deterioration may be caused. 10-500n
m. The porosity of the carrier used in the present invention is not particularly limited. However, as described later, “porosity of 10 to 60 vol.%, Particularly 20 to 5
0 vol. % Complex "to obtain 30-90 v
ol. %, Especially 40 to 80 vol. % Porosity is preferred. In addition, these porosity has a pore diameter of 6.6.
The porosity of pores of nm or more, which can be measured by a mercury porosimeter.

【0023】本発明で使用する担体においては、担体に
担持される活物質に対して電子を供給する伝導パスとし
ての機能を果たすため、電子伝導性を有する電導性物
質、即ち、固体物質の電子電導性を金属、半導体、絶縁
体と分類したときの金属又は半導体からなることが必要
である。電子供給効率の観点からは、担体は比抵抗で1
6Ω・cm以下の物質で構成されるのが好適である。
特に、ハイレートでの充放電特性が良好であるという観
点から、比抵抗が104Ω・cm以下の物質で構成され
るのが更に好適であり、担体が活物質である場合には負
極活物質の容量が更に増大する場合が有るので、カーボ
ン類からなるのが特に好適である。
The carrier used in the present invention functions as a conduction path for supplying electrons to the active material carried on the carrier, and is therefore a conductive material having electron conductivity, that is, a solid material. It is necessary to be made of a metal or a semiconductor when the conductivity is classified as a metal, a semiconductor, or an insulator. From the viewpoint of electron supply efficiency, the carrier has a specific resistance of 1
0 is suitably composed by 6 Omega · cm following materials.
In particular, from the viewpoint of good charge / discharge characteristics at a high rate, it is more preferable that the specific resistance is constituted by a substance having a resistivity of 10 4 Ω · cm or less. It is particularly preferable to use carbon.

【0024】このような担体としては公知のものが使用
できるが、特に好適な担体として、例えば次のような方
法で製造したカーボン類からなる多孔性の担体を挙げる
ことができる。
As such a carrier, known ones can be used. Particularly preferred carriers include, for example, porous carriers made of carbons produced by the following method.

【0025】即ち、先ずレゾルシノーアルデヒド樹脂等
の樹脂の多孔質ゲルをアルゴン等の不活性ガスや還元性
ガス雰囲気下で加熱処理することにより、樹脂を炭素に
転化させたものが担体として好適に使用できる。
That is, a resin obtained by subjecting a porous gel of a resin such as a resorcinolaldehyde resin to heat treatment in an atmosphere of an inert gas such as argon or a reducing gas to convert the resin into carbon is preferred as a carrier. Can be used for

【0026】本発明の負極活物質である複合体において
は、リチウムイオンを可逆的に吸蔵・放出し得る物質
(活物質)が上記担体に担持される。該活物質は、上記
性質を有するものでであれば特に制限されないが、容量
が高い負極活物質を得るためには、活物質の容量が高い
ことが好ましい。容量が高く好適に使用できる活物質を
具体的に例示すれば、Sn、Al、Si、Zn、Ga、
Cd、In、Sb、Pb、Biなど元素からなる単体、
これらの合金、あるいはこれら元素を含む化合物(一般
的には酸化物)を例示することができ、特に好適に使用
できる活物質しては、Si、SiO、Sn、SnOおよ
びSnO2を挙げることができる。
In the composite as the negative electrode active material of the present invention, a material (active material) capable of reversibly occluding and releasing lithium ions is supported on the carrier. The active material is not particularly limited as long as it has the above properties. However, in order to obtain a negative electrode active material having a high capacity, the active material preferably has a high capacity. Specific examples of the active material having a high capacity and which can be preferably used include Sn, Al, Si, Zn, Ga,
A simple substance composed of elements such as Cd, In, Sb, Pb, Bi,
These alloys or compounds containing these elements (generally, oxides) can be exemplified, and particularly preferably used active materials include Si, SiO, Sn, SnO, and SnO 2. it can.

【0027】本発明の負極活物質である複合体におけ
る、活物質の担持率は特に限定されないが、担持率が著
しく低いと複合体からなる負極活物質の容量が低くな
り、その結果、高容量の非水電解液二次電池が得られな
い場合があり、また、担持率が著しく高い場合には、充
電時の活物質の膨張が複合体で吸収可能な膨張を上回
り、負極活物質として膨張が発生する場合がある。この
ような理由から、活物質の担持率は複合体の体積に対す
る活物質のモル数で表して2〜15mmol/mlの範
囲にあることが好ましい。なお、複合体の体積は、水銀
ポロシメータにより細孔径分布を測定する際の水銀圧入
前における試料体積を意味する。該担持率は、上記試料
体積より求められる複合体の嵩密度と、担体と活物質の
組み合わせにより適当な元素分析法により求められる複
合体中の活物質の含有量を用いて算出することができ
る。
The loading rate of the active material in the composite as the negative electrode active material of the present invention is not particularly limited. However, if the loading rate is extremely low, the capacity of the negative electrode active material made of the composite becomes low. In some cases, the non-aqueous electrolyte secondary battery cannot be obtained, and when the loading ratio is extremely high, the expansion of the active material during charging exceeds the expansion that can be absorbed by the composite, and expands as a negative electrode active material. May occur. For these reasons, the loading ratio of the active material is preferably in the range of 2 to 15 mmol / ml, expressed as the number of moles of the active material with respect to the volume of the composite. The volume of the composite means the volume of the sample before injecting mercury when measuring the pore size distribution with a mercury porosimeter. The loading ratio can be calculated using the bulk density of the composite determined from the sample volume and the content of the active material in the composite determined by an appropriate elemental analysis method using a combination of the carrier and the active material. .

【0028】前記複合体においては、高容量を実現し、
且つ充電時の体積膨張をより効果的に抑制するために、
水銀ポロシメータにより測定される細孔径6.6nm以
上の細孔の気孔率が10〜60vol%、特に20〜5
0vol.%であるであることが好ましい。
In the composite, a high capacity is realized,
And in order to more effectively suppress volume expansion during charging,
The porosity of pores having a pore diameter of 6.6 nm or more measured by a mercury porosimeter is 10 to 60 vol%, particularly 20 to 5 vol%.
0 vol. %.

【0029】本発明の負極活物質の製造方法は特に限定
されないが、以下のような方法により好適に製造するこ
とができる。
The method for producing the negative electrode active material of the present invention is not particularly limited, but it can be suitably produced by the following method.

【0030】即ち、前述の多孔性の担体に活物質又はそ
の前駆体を含む溶液又は懸濁液を含浸させ、活物質を担
持することにより製造することができる。
That is, it can be produced by impregnating the above-mentioned porous carrier with a solution or suspension containing the active material or its precursor and supporting the active material.

【0031】上記製造方法で使用する活物質の前駆体と
は熱処理等により活物質に転化し得る物質を意味し、使
用可能な前駆体を例示すれば活物質のハロゲン化物、硝
酸塩、炭酸塩、硫酸塩などの塩、アルコキシドおよびそ
の縮合物などを挙げることができる。
The precursor of the active material used in the above-mentioned production method means a material which can be converted into the active material by heat treatment or the like. Examples of usable precursors include halides, nitrates, carbonates, and the like of the active material. Salts such as sulfates, alkoxides and condensates thereof, and the like can be given.

【0032】また、上記方法で使用する活物質又はその
前駆体(以下、活物質等ともいう)を含む溶液又は懸濁
液における溶媒又は分散媒は、特に限定されず、水、ア
ルコール、グリコール、フェノール、カルボン酸、無機
酸などのプロトン性溶媒やシクロヘキサン、ベンゼン、
クロロホルム、四塩化炭素、ジエチルエーテル、TH
F、ジオキサン、アセトン、アセトニトリル、ニトロベ
ンゼン、ニトロメタン、ピリジン、DMF、DMSOな
どの非プロトン性溶媒などを使用することができる。
The solvent or dispersion medium in the solution or suspension containing the active material or its precursor (hereinafter also referred to as active material) used in the above method is not particularly limited, and may be water, alcohol, glycol, Protic solvents such as phenol, carboxylic acid and inorganic acid, cyclohexane, benzene,
Chloroform, carbon tetrachloride, diethyl ether, TH
An aprotic solvent such as F, dioxane, acetone, acetonitrile, nitrobenzene, nitromethane, pyridine, DMF, DMSO and the like can be used.

【0033】上記溶媒又は懸濁液に含まれる活物質等の
量は、目的とする担持率に応じて適宜調整するればよ
い。また、これら溶媒又は懸濁液には、活物質等のほか
に、安定化の目的等で、公知の錯化剤、あるいは電解
質、高分子等からなる解膠剤を適宜添加することもでき
る。
The amount of the active material and the like contained in the above-mentioned solvent or suspension may be appropriately adjusted according to the target loading. In addition to the active material and the like, a known complexing agent or a deflocculant comprising an electrolyte, a polymer, or the like can be appropriately added to these solvents or suspensions for the purpose of stabilization.

【0034】前記製造方法において、活物質の担持方法
は、担体に活物質等の溶液又は懸濁液を含浸して担持す
る所謂含浸法であれば特に限定されず、例えば上記溶媒
又は懸濁液に担体を浸漬して含浸させて活物質又はその
前駆体を担体に収着させ、前駆体を用いた場合には収着
した前駆体を活物質に転化させる方法、同様に浸漬して
含浸した後、或いは担体に所定量の活物質等を含む溶液
若しくは懸濁液を全て吸収させて含浸した後に、担体の
細孔内に活物質を析出させる方法等を採用することがで
きる。なお、上記前二者の方法を採用する場合において
は、使用する溶液や懸濁液における活物質等種類、濃
度、使用量、担体の種類及び使用量、温度等の含浸条件
と最終的に得られる複合体における活物質の担持量との
関係を予め調べておくことにより、担持条件によって担
持量を制御することができる。
In the above-mentioned production method, the method of supporting the active material is not particularly limited as long as it is a so-called impregnation method in which the carrier is impregnated with a solution or suspension of the active material or the like. The carrier is immersed and impregnated to allow the active material or its precursor to be sorbed to the carrier, and when the precursor is used, a method of converting the sorbed precursor to the active material, similarly immersed and impregnated After that, or after all the solution or suspension containing the predetermined amount of the active material or the like is absorbed and impregnated into the carrier, a method of depositing the active material in the pores of the carrier can be adopted. In the case of adopting the former two methods, the impregnation conditions such as the type of active material, the concentration, the amount used, the type and amount of the carrier, the temperature and the like in the solution or suspension to be used are finally obtained. By examining the relationship between the active material and the amount of the active material carried in the composite in advance, the amount of the active material carried can be controlled according to the supporting conditions.

【0035】活物質を析出させる方法は特に限定されな
いが、例えば、乾燥により溶媒を除去する方法、中和、
加水分解あるいは還元などにより化学的に析出させる方
法、または電気化学的に還元して析出させる方法等を用
いることができる。又、析出物や収着物が前駆体やその
反応物で活物質そのものでない場合でも、熱処理などの
後処理を行うことによりこれら物質を容易に活物質に転
化させることができる。
The method for precipitating the active material is not particularly limited. For example, a method for removing the solvent by drying, neutralization,
A method of chemically depositing by hydrolysis or reduction, or a method of electrochemically reducing and depositing can be used. Further, even when the precipitate or the sorbate is a precursor or a reaction product thereof and is not the active material itself, the material can be easily converted to the active material by performing post-treatment such as heat treatment.

【0036】また、本発明の負極活物質は、活物質等を
加熱溶融して得られる溶融物を前述の多孔性の担体に含
浸させて、担体の細孔内に導入し、これを固化すること
により製造することもできる。この場合においても前駆
体を使用した場合には、熱処理などの後処理を行うこと
により活物質に転化することもがきる。
In the negative electrode active material of the present invention, a melt obtained by heating and melting the active material or the like is impregnated into the above-described porous carrier, introduced into the pores of the carrier, and solidified. It can also be manufactured. Also in this case, when a precursor is used, it can be converted into an active material by performing post-treatment such as heat treatment.

【0037】このように製造された本発明の錫系複合酸
化物は、非水電解液二次電池用の負極活物質として好適
に使用でき、該負極活物質を用いた非水電解液二次電池
は高容量でサイクル性に優れしかもラミネートフィルム
を外装材としても充電による体積膨張が起こりにくいと
いう特徴を有する。
The tin-based composite oxide of the present invention thus produced can be suitably used as a negative electrode active material for a non-aqueous electrolyte secondary battery. Batteries are characterized by high capacity, excellent cyclability, and little volume expansion due to charging even when a laminate film is used as an exterior material.

【0038】本発明の複合酸化物を負極活物質として用
いた非水電解液二次電池の製造は、公知の方法で実施す
ることができ、例えば、次のような方法で作製すること
ができる。
The production of a non-aqueous electrolyte secondary battery using the composite oxide of the present invention as a negative electrode active material can be carried out by a known method, for example, by the following method. .

【0039】即ち、まず混練機、混合機などを用いて、
本発明の複合酸化物をN−メチルピロリドンなどの溶媒
と混練し、ペーストを製造する。このとき黒鉛やアセチ
レンブラックなどの導電性付与剤、あるいはポリテトラ
フルオロエチレン、ポリフッ化ビニリデンなどの結着剤
を適宜添加しても構わない。
That is, first, using a kneader, a mixer or the like,
The composite oxide of the present invention is kneaded with a solvent such as N-methylpyrrolidone to produce a paste. At this time, a conductivity-imparting agent such as graphite or acetylene black, or a binder such as polytetrafluoroethylene or polyvinylidene fluoride may be appropriately added.

【0040】次いで、ペースト製造後、集電体にペース
トを塗布、充填あるいは含浸させ、溶媒を乾燥、除去し
た後、加圧、切断などを行って所望の形状に加工して負
極とする。該負極と、正極活物質を用いて同様にして製
造した正極、非水電解質、および必要に応じてセパレー
タを、所望の電池容器に挿入し、非水電解液を注入後、
封止する。
Next, after the paste is produced, the current collector is coated, filled or impregnated with the paste, the solvent is dried and removed, and then processed by pressing and cutting into a desired shape to obtain a negative electrode. The negative electrode, a positive electrode manufactured in the same manner using the positive electrode active material, a non-aqueous electrolyte, and a separator as necessary, inserted into a desired battery container, after injecting a non-aqueous electrolyte,
Seal.

【0041】正極、集電体、非水電解質、セパレータな
どは、従来の非水電解液二次電池に用いられている材料
が何ら問題なく使用される。
For the positive electrode, the current collector, the non-aqueous electrolyte, the separator, and the like, the materials used in conventional non-aqueous electrolyte secondary batteries are used without any problem.

【0042】正極活物質としては、TiS2、MoS2
FeS2などの硫化物、NbSe3などのセレン化物など
のカルコゲン化合物、あるいはCr25、Cr38、V
38、V25、V613などの遷移金属の酸化物、Li
Mn24、LiMnO2、LiV35、LiNiO2、L
iCoO2などのリチウムと遷移金属との複合酸化物、
あるいはポリアニリン、ポリアセチレン、ポリパラフェ
ニリン、ポリフェニレンビニレン、ポリピロール、ポリ
チオフェンなどの共役系高分子、ジスルフィド結合を有
する架橋高分子などのリチウムを吸蔵、放出することが
可能な材料を使用することができる。
As the positive electrode active material, TiS 2 , MoS 2 ,
Chalcogen compounds such as sulfides such as FeS 2 , selenides such as NbSe 3 , or Cr 2 O 5 , Cr 3 O 8 , V
Oxides of transition metals such as 3 O 8 , V 2 O 5 , V 6 O 13 , Li
Mn 2 O 4 , LiMnO 2 , LiV 3 O 5 , LiNiO 2 , L
a composite oxide of lithium and a transition metal, such as iCoO 2 ;
Alternatively, a material capable of occluding and releasing lithium, such as a conjugated polymer such as polyaniline, polyacetylene, polyparaphenylene, polyphenylenevinylene, polypyrrole, or polythiophene, or a crosslinked polymer having a disulfide bond can be used.

【0043】集電体としては、銅、アルミニウムなどか
らなる帯形状の薄板あるいはメッシュなどを用いること
ができる。
As the current collector, a strip-shaped thin plate or mesh made of copper, aluminum, or the like can be used.

【0044】非水電解質としては、プロピレンカーボネ
ート、エチレンカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、γ−ブチロラクトン、
テトラヒドロフラン、1,3−ジオキソラン、4−メチ
ル−1,3−ジオキソラン、ジエチルエーテル、スルホ
ラン、メチルスルホラン、アセトニトリル、プロピオニ
トリルなどの単独あるいは2種類以上の混合非水溶媒
に、LiClO4、LiPF6、LiAsF6、LiB
4、LiB(C654、LiCl、LiBr、CH3
SO3Li、CF3SO3Liなどのリチウム塩などの支
持塩が溶解してなる非水電解質がいずれの組合せにおい
ても使用可能である。又、この様な溶液をゲルポリマー
に含浸させたゲル電解質、あるいはポリエチレンオキサ
イドなどに上述の支持塩を添加したポリマー電解質など
も非水電解質として使用することができる。
Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone,
LiClO 4 , LiPF 6 may be used alone or in a mixture of two or more kinds of non-aqueous solvents such as tetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like. , LiAsF 6 , LiB
F 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3
A non-aqueous electrolyte obtained by dissolving a supporting salt such as a lithium salt such as SO 3 Li and CF 3 SO 3 Li can be used in any combination. Further, a gel electrolyte obtained by impregnating such a solution with a gel polymer, or a polymer electrolyte obtained by adding the above-described supporting salt to polyethylene oxide or the like can also be used as the non-aqueous electrolyte.

【0045】セパレータとしては、イオンの移動に対し
て低抵抗であり、かつ溶液保持性に優れたものを用いれ
ばよい。例えば、ポリプロピレン、ポリエチレン、ポリ
エステル、ポリフロンなどからなる高分子ポアフィルタ
ー、ガラス繊維フィルター、不織布、あるいはガラス繊
維とこれらの上記高分子からなる不織布が使用可能であ
る。更に、電池内部が高温になったとき、溶融して細孔
をふさぎ、正極及び負極のショートを防ぐ材料が好まし
い。
As the separator, a separator having a low resistance to the movement of ions and having an excellent solution holding property may be used. For example, a polymer pore filter made of polypropylene, polyethylene, polyester, polyflon, or the like, a glass fiber filter, a nonwoven fabric, or a nonwoven fabric made of glass fibers and these polymers can be used. Further, when the temperature inside the battery becomes high, a material that melts to close the pores and prevent short circuit between the positive electrode and the negative electrode is preferable.

【0046】[0046]

【実施例】以下、本発明に付いて実施例及び比較例を挙
げてより具体的に説明するが、本発明はこれら実施例に
限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0047】実施例1 35wt%のレゾルシノール水溶液63gに37%のホ
ルムアルデヒド水溶液32.5g、更に触媒としてNa
2CO340mgを加え、50℃で24時間次いで95℃
で72時間保持してレゾルシノール−ホルムアルデヒド
樹脂の多孔質ゲルを作製した。このヒドロゲルをt−ブ
タノールで溶媒置換した後、凍結乾燥して多孔性のレソ
ルシノール−ホルムアルデヒド樹脂を得た。次いでレソ
ルシノール−ホルムアルデヒド樹脂をアルゴン雰囲気
下、1050℃で5時間加熱することにより、炭素化し
て多孔性炭素を作製し担体とした。
EXAMPLE 1 32.5 g of a 37% aqueous formaldehyde solution was added to 63 g of a 35 wt% aqueous resorcinol solution, and Na was used as a catalyst.
The 2 CO 3 40 mg was added, 24 hours and then 95 ° C. at 50 ° C.
For 72 hours to produce a porous gel of resorcinol-formaldehyde resin. This hydrogel was solvent-substituted with t-butanol and freeze-dried to obtain a porous resorcinol-formaldehyde resin. Next, the resorcinol-formaldehyde resin was heated at 1050 ° C. for 5 hours in an argon atmosphere to carbonize it to produce porous carbon, which was used as a carrier.

【0048】この多孔性炭素について水銀ポロシメータ
を用いて気孔率、及びモード孔径を測定したところ、気
孔率は66.2vol.%であり、モード孔径は20.
3nmであった。またこの時に測定された体積に基づい
て求めた嵩密度は0.49g/mlであった。
The porosity and the mode pore diameter of the porous carbon were measured using a mercury porosimeter. The porosity was 66.2 vol. %, And the mode pore diameter is 20.
It was 3 nm. The bulk density determined based on the volume measured at this time was 0.49 g / ml.

【0049】メタノール250mlにSn27.5g、
SnCl231.9gを酸素をバブリングさせながら溶
解した。得られた溶液を液量が80mlになるように濃
縮しして前駆体溶液を得た。
27.5 g of Sn in 250 ml of methanol,
31.9 g of SnCl 2 was dissolved while bubbling oxygen. The obtained solution was concentrated to a liquid volume of 80 ml to obtain a precursor solution.

【0050】担体1gにこの前駆体溶液を浸漬して含浸
させた後、ろ過して担体を取り出し、これを過剰の2.
8wt%アンモニア水に浸漬して前駆体溶液を中和処理
して(以上の処理をまとめて含浸処理ともいう)、細孔
表面に水酸化錫が担持させた担体を得、次いで該担体を
アルゴン中、550℃で5時間加熱し、複合体1を得
た。なお、以下、焼成前の水酸化錫が担持された担体を
複合体前駆体ともいう。
The precursor solution was immersed in 1 g of the carrier to impregnate it, and then filtered to take out the carrier.
The precursor solution is neutralized by immersion in 8 wt% aqueous ammonia (the above treatments are collectively referred to as impregnation treatment) to obtain a carrier having tin hydroxide supported on the surface of the pores. The mixture was heated at 550 ° C. for 5 hours to obtain a composite 1. Hereinafter, the carrier supporting tin hydroxide before firing is also referred to as a composite precursor.

【0051】得られた複合体1について粉末X線回折を
用いて分析したところ、担体の細孔表面に担持させた水
酸化錫はSnO2に転化していることが確認された。ま
た、上記複合体について水銀ポロシメータを用いて気孔
率を測定したところ、気孔率は55.7vol.%であ
った。灼熱減量法により求めたSnO2の含有率は41
wt%であり、担持率は2.7mmol/mlであっ
た。
When the obtained composite 1 was analyzed using powder X-ray diffraction, it was confirmed that the tin hydroxide supported on the pore surfaces of the carrier was converted to SnO 2 . When the porosity of the above composite was measured using a mercury porosimeter, the porosity was 55.7 vol. %Met. The SnO 2 content determined by the burning loss method was 41.
wt%, and the loading was 2.7 mmol / ml.

【0052】次に、上記複合体1の粉末、グラファイト
粉末、ポリフッ化ビニリデン(結着剤)及びアセチレン
ブラック(導電性付与剤)を100/20/2/5(重
量比)の割合で混合し、この混合物500mgに対し、
N−メチルピロリドン1mlを添加して混練し、ペース
トを作製し、これを銅箔に塗布し100℃の真空乾燥器
にて24時間乾燥した後、圧延し負極として用い、非水
電解液としてLiPF 6(1モル/リットルの濃度)を
エチレンカーボネートとジエチルカーボネートの等体積
混合溶媒に溶解したものを用い、更にリチウム金属を対
極として用いて上記複合体を負極活物質とするコイン型
リチウムイオン電池を作製した。
Next, the powder of the composite 1 and graphite
Powder, polyvinylidene fluoride (binder) and acetylene
Black (conductivity imparting agent) 100/20/2/5 (weight
Volume ratio), and mixed with 500 mg of this mixture,
Add 1 ml of N-methylpyrrolidone, knead and pace
And then apply it to copper foil and apply a vacuum dryer at 100 ° C.
, And rolled to use as a negative electrode.
LiPF as electrolyte 6(Concentration of 1 mol / liter)
Equal volume of ethylene carbonate and diethyl carbonate
Use the one dissolved in the mixed solvent, and further
Coin type using the above composite as a negative electrode active material by using as a pole
A lithium ion battery was manufactured.

【0053】得られたリチウムイオン電池について、充
放電容量、及び充電に伴う負極活物質の体積膨張率を次
のようにし、容量、サイクル特性、及び体積安定性を評
価した。
With respect to the obtained lithium ion battery, the charge / discharge capacity and the volume expansion coefficient of the negative electrode active material upon charging were evaluated as follows, and the capacity, cycle characteristics, and volume stability were evaluated.

【0054】充放電容量の測定: 充放電装置(北斗電
工製)を用いて、上記簡易型リチウム電池の充放電サイ
クル試験を行い、放電時間t(単位;時間)を測定する
ことにより負極活物質の充放電容量を測定した。充放電
サイクル試験は、48mA/gに相当する電流値(一
定)で行い、充放電は0〜1.0Vの範囲内で行った。
充放電容量は、ペースト中に添加した活物質の単位重量
当たりの量として、算出した。サイクル特性は、1サイ
クル目の放電容量に対する50サイクル目の放電容量の
維持率で評価した。
Measurement of charge / discharge capacity: Using a charge / discharge device (manufactured by Hokuto Denko), a charge / discharge cycle test of the simple lithium battery was performed, and a discharge time t (unit: time) was measured to obtain a negative electrode active material. Was measured. The charge / discharge cycle test was performed at a current value (constant) corresponding to 48 mA / g, and the charge / discharge was performed within a range of 0 to 1.0 V.
The charge / discharge capacity was calculated as an amount per unit weight of the active material added to the paste. The cycle characteristics were evaluated by the maintenance ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle.

【0055】充電に伴う負極活物質の体積膨張率の測
定: まず、1サイクル目の放電を終えた上述のコイン
型リチウムイオン電池から負極を取り出し、集電体であ
る銅箔の厚さを差引いた厚さd1dをマイクロメータを用
いて測定する。次いで2サイクル目の充電を終えた上述
のコイン型リチウムイオン電池から負極を取り出し、集
電体である銅箔の厚さを差引いた厚さd2cをマイクロメ
ータを用いて測定し、負極の面積は一定であることか
ら、次式により体積膨張率を求めた。
Measurement of Volume Expansion Ratio of Negative Electrode Active Material During Charging: First, the negative electrode was taken out of the above-mentioned coin-type lithium ion battery after the first cycle of discharge, and the thickness of the current collector copper foil was subtracted. The thickness d 1d is measured using a micrometer. Next, the negative electrode was taken out from the above-mentioned coin-type lithium ion battery after the second cycle of charging, and the thickness d 2c obtained by subtracting the thickness of the copper foil as a current collector was measured using a micrometer, and the area of the negative electrode was measured. Since is constant, the volume expansion coefficient was determined by the following equation.

【0056】(体積膨張率)=(d2c−d1d)/d1d×
100 なお、上記式で求まる体積膨張率は、グラファイト粉
末、ポリフッ化ビニリデン(結着剤)及びアセチレンブ
ラック(導電性付与剤)などを含めたものの膨張率であ
るが、該体積膨張率が低いほど体積安定性が高いといえ
る。
(Volume expansion coefficient) = (d 2c −d 1d ) / d 1d ×
100 The volume expansion coefficient obtained by the above equation is the expansion coefficient of a material including graphite powder, polyvinylidene fluoride (binder), acetylene black (conductivity imparting agent), and the like. It can be said that the volume stability is high.

【0057】その結果は、1サイクル目の放電容量(初
期容量)は334mAh/gであり、初期容量に対する
50サイクル目の放電容量の維持率は97%であり、充
電に伴う負極活物質の体積膨張率は4.0vol.%で
あった。
As a result, the discharge capacity (initial capacity) at the first cycle was 334 mAh / g, the maintenance ratio of the discharge capacity at the 50th cycle to the initial capacity was 97%, and the volume of the negative electrode active material accompanying the charge was The expansion rate is 4.0 vol. %Met.

【0058】実施例2 実施例1と同じ含浸処理をして複合体前駆体1を調製
し、これを水洗、乾燥した後に再び同じ含浸処理を行な
って、水酸化錫の担持量が多い複合体前駆体2を得た。
この複合体前駆体2をアルゴン中、550℃で5時間加
熱し、複合体2を得た。得られた複合体2を粉末X線回
折により分析したところ、担持された水酸化錫はSnO
2に転化していることが確認された。また、実施例1と
同様にして気孔率、及びSnO2担持率を測定したとこ
ろ気孔率は45.2vol.%であり、担持率は5.3
mmol/ml(含有率は56wt%)であった。
Example 2 A composite precursor 1 was prepared by performing the same impregnation treatment as in Example 1, washed with water and dried, and then subjected to the same impregnation treatment again to obtain a composite having a large amount of supported tin hydroxide. Precursor 2 was obtained.
The composite precursor 2 was heated at 550 ° C. for 5 hours in argon to obtain a composite 2. When the obtained composite 2 was analyzed by powder X-ray diffraction, the supported tin hydroxide was SnO
2 was confirmed. When the porosity and the SnO 2 carrying ratio were measured in the same manner as in Example 1, the porosity was 45.2 vol. % And the loading ratio is 5.3.
mmol / ml (content: 56 wt%).

【0059】上記複合体2を用いて実施例1と同様にし
てリチウムイオン電池を作製し、その評価を行なったと
ころ、1サイクル目の放電容量は435mAh/g、5
0サイクル目の放電容量の維持率は95%、充電に伴う
負極活物質の体積膨張率は4.8vol.%であった。
A lithium ion battery was prepared using the above-described composite 2 in the same manner as in Example 1, and the battery was evaluated. The discharge capacity at the first cycle was 435 mAh / g,
The maintenance rate of the discharge capacity at the 0th cycle was 95%, and the volume expansion rate of the negative electrode active material upon charging was 4.8 vol. %Met.

【0060】実施例3 実施例2と同様にして得た複合体前駆体2を水洗、乾燥
した後に再び同じ含浸処理を行なって、水酸化錫の担持
量が更に多い複合体前駆体3を得た。この複合体前駆体
3を実施例1と同様にしてアルゴン中、550℃で5時
間加熱し、複合体3を得た。
Example 3 The composite precursor 2 obtained in the same manner as in Example 2 was washed with water, dried and then subjected to the same impregnation treatment again to obtain a composite precursor 3 having a larger amount of tin hydroxide carried. Was. The composite precursor 3 was heated at 550 ° C. for 5 hours in argon in the same manner as in Example 1 to obtain a composite 3.

【0061】得られた複合体3を粉末X線回折により分
析したところ、担持された水酸化錫はSnO2に転化し
ていることが確認された。また、実施例1と同様にして
気孔率、及びSnO2担持率を測定したところ気孔率は
36.1vol.%であり、担持率は8.2mmol/
ml(含有率は65wt%)であった。
When the obtained composite 3 was analyzed by powder X-ray diffraction, it was confirmed that the supported tin hydroxide was converted to SnO 2 . When the porosity and the SnO 2 carrying ratio were measured in the same manner as in Example 1, the porosity was 36.1 vol. % And the supporting rate is 8.2 mmol /
ml (content: 65 wt%).

【0062】上記複合体3を用いて実施例1と同様にし
てリチウムイオン電池を作製し、その評価を行なったと
ころ、1サイクル目の放電容量は502mAh/g、5
0サイクル目の放電容量の維持率は94%、充電に伴う
負極活物質の体積膨張率は5.2vol.%であった。
A lithium ion battery was fabricated using the above-described composite 3 in the same manner as in Example 1, and the lithium ion battery was evaluated. The discharge capacity at the first cycle was 502 mAh / g,
The maintenance rate of the discharge capacity at the 0th cycle was 94%, and the volume expansion rate of the negative electrode active material upon charging was 5.2 vol. %Met.

【0063】実施例4 実施例3と同様にして得た複合体前駆体3を水洗、乾燥
した後に再び同じ含浸処理を行なって、水酸化錫の担持
量が更に多い複合体前駆体4を得た。この複合体前駆体
4を実施例1と同様にしてアルゴン中、550℃で5時
間加熱し、複合体4を得た。
Example 4 The composite precursor 3 obtained in the same manner as in Example 3 was washed with water, dried, and then subjected to the same impregnation treatment to obtain a composite precursor 4 having a larger amount of tin hydroxide carried thereon. Was. The composite precursor 4 was heated at 550 ° C. for 5 hours in argon in the same manner as in Example 1 to obtain a composite 4.

【0064】得られた複合体4を粉末X線回折により分
析したところ、担持された水酸化錫はSnO2に転化し
ていることが確認された。また、実施例1と同様にして
気孔率、及びSnO2担持率を測定したところ気孔率は
29.5vol.%であり、担持率は10.8mmol
/ml(含有率は71wt%)であった。
When the obtained composite 4 was analyzed by powder X-ray diffraction, it was confirmed that the supported tin hydroxide was converted to SnO 2 . When the porosity and the SnO 2 carrying ratio were measured in the same manner as in Example 1, the porosity was 29.5 vol. % And the loading is 10.8 mmol
/ Ml (content: 71 wt%).

【0065】上記複合体4を用いて実施例1と同様にし
てリチウムイオン電池を作製し、その評価を行なったと
ころ、1サイクル目の放電容量は549mAh/g、5
0サイクル目の放電容量の維持率は94%、充電に伴う
負極活物質の体積膨張率は5.5vol.%であった。
A lithium ion battery was prepared using the above-described composite 4 in the same manner as in Example 1, and the lithium ion battery was evaluated. The discharge capacity at the first cycle was 549 mAh / g,
The maintenance rate of the discharge capacity at the 0th cycle was 94%, and the volume expansion rate of the negative electrode active material upon charging was 5.5 vol. %Met.

【0066】比較例1 市販のSnO2粉末4gとグラファイト粉末6gをめの
う乳鉢を用いて鑑識混合し、得られた混合物を負極活物
質として実施例1と同様にしてリチウムイオン電池を作
製し、得られたリチウムイオン電池の充放電容量及びサ
イクル特性を評価した。1サイクル目の放電容量は30
3mAh/g、50サイクル目の放電容量の維持率は8
0%、充電に伴う負極活物質の体積膨張率は19.7v
ol.%であった。
Comparative Example 1 4 g of commercially available SnO 2 powder and 6 g of graphite powder were mixed by using an agate mortar, and the obtained mixture was used as a negative electrode active material in the same manner as in Example 1 to prepare a lithium ion battery. The charge / discharge capacity and cycle characteristics of the obtained lithium ion battery were evaluated. The discharge capacity in the first cycle is 30
3 mAh / g, the discharge capacity retention rate at the 50th cycle was 8
0%, the volume expansion coefficient of the negative electrode active material upon charging is 19.7 v
ol. %Met.

【0067】比較例2 市販のSnO2粉末5.5gとグラファイト粉末4.5
gをめのう乳鉢を用いて鑑識混合し、得られた混合物を
負極活物質として実施例1と同様にしてリチウムイオン
電池を作製し、得られたリチウムイオン電池の充放電容
量及びサイクル特性を評価した。1サイクル目の放電容
量は414mAh/g、50サイクル目の放電容量の維
持率は62%、充電に伴う負極活物質の体積膨張率は2
8.1vol.%であった。
Comparative Example 2 5.5 g of commercially available SnO 2 powder and 4.5 of graphite powder
g was discriminated and mixed using an agate mortar, and the obtained mixture was used as a negative electrode active material to prepare a lithium ion battery in the same manner as in Example 1. The charge / discharge capacity and cycle characteristics of the obtained lithium ion battery were evaluated. . The discharge capacity at the first cycle was 414 mAh / g, the maintenance rate of the discharge capacity at the 50th cycle was 62%, and the volume expansion rate of the negative electrode active material upon charging was 2%.
8.1 vol. %Met.

【0068】比較例3 市販のSnO2粉末6.5gとグラファイト粉末3.5
gをめのう乳鉢を用いて鑑識混合し、得られた混合物を
負極活物質として実施例1と同様にしてリチウムイオン
電池を作製し、得られたリチウムイオン電池の充放電容
量及びサイクル特性を評価した。1サイクル目の放電容
量は498mAh/g、50サイクル目の放電容量の維
持率は55%、充電に伴う負極活物質の体積膨張率は4
9.1vol.%であった。
Comparative Example 3 6.5 g of commercially available SnO 2 powder and 3.5 g of graphite powder
g was discriminated and mixed using an agate mortar, and the obtained mixture was used as a negative electrode active material to prepare a lithium ion battery in the same manner as in Example 1. The charge / discharge capacity and cycle characteristics of the obtained lithium ion battery were evaluated. . The discharge capacity in the first cycle was 498 mAh / g, the maintenance rate of the discharge capacity in the 50th cycle was 55%, and the volume expansion rate of the negative electrode active material upon charging was 4%.
9.1 vol. %Met.

【0069】比較例4 市販のSnO2粉末7gとグラファイト粉末3gをめの
う乳鉢を用いて鑑識混合し、得られた混合物を負極活物
質として実施例1と同様にしてリチウムイオン電池を作
製し、得られたリチウムイオン電池の充放電容量及びサ
イクル特性を評価した。1サイクル目の放電容量は53
8mAh/g、50サイクル目の放電容量の維持率は4
7%、充電に伴う負極活物質の体積膨張率は50.1v
ol.%であった。
Comparative Example 4 7 g of commercially available SnO 2 powder and 3 g of graphite powder were mixed by using an agate mortar, and the resulting mixture was used as a negative electrode active material in the same manner as in Example 1 to produce a lithium ion battery. The charge / discharge capacity and cycle characteristics of the obtained lithium ion battery were evaluated. The discharge capacity in the first cycle is 53
8 mAh / g, the discharge capacity retention rate at the 50th cycle was 4
7%, the volume expansion coefficient of the negative electrode active material upon charging is 50.1 v
ol. %Met.

【0070】[0070]

【発明の効果】本発明の非水電解液二次電池用負極活物
質を用いることにより、既存の非水電解液二次電池より
も高容量で、しかもサイクル劣化がなく、体積安定性に
優れた非水電解液二次電池用負極活物質を製造すること
が可能となる。
By using the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it has a higher capacity than existing non-aqueous electrolyte secondary batteries, has no cycle deterioration, and has excellent volume stability. Thus, it becomes possible to produce a negative electrode active material for a non-aqueous electrolyte secondary battery.

フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK02 AK03 AK05 AK16 AL02 AL11 AM03 AM04 AM05 AM07 DJ07 DJ13 EJ04 HJ06 HJ09 5H050 AA07 AA08 BA17 CA17 CB02 CB11 CB13 CB15 DA03 DA04 HA00 HA06 HA09 Continued on the front page F term (reference) 5H029 AJ03 AJ05 AK02 AK03 AK05 AK16 AL02 AL11 AM03 AM04 AM05 AM07 DJ07 DJ13 EJ04 HJ06 HJ09 5H050 AA07 AA08 BA17 CA17 CB02 CB11 CB13 CB15 DA03 DA04 HA00 HA06 HA09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水銀ポロシメータで測定される細孔径分
布におけるモードが1nm以上である多孔性導電性物質
からなる担体にリチウムイオンを可逆的に吸蔵・放出し
得る物質を担持させた複合体からなることを特徴とする
非水電解液二次電池用負極活物質。
1. A composite comprising a carrier made of a porous conductive material having a mode of 1 nm or more in a pore size distribution measured by a mercury porosimeter and supporting a substance capable of reversibly occluding and releasing lithium ions. A negative electrode active material for a non-aqueous electrolyte secondary battery, comprising:
【請求項2】 前記複合体におけるリチウムイオンを可
逆的に吸蔵・放出し得る物質の担持率が2〜15mmo
l/mlであり、且つ該複合体の気孔率が10〜60v
ol.%であることを特徴とする請求項1記載の非水電
解液二次電池用負極活物質。
2. The loading rate of a substance capable of reversibly occluding and releasing lithium ions in the composite is 2 to 15 mmol.
1 / ml and the porosity of the complex is 10-60 v
ol. %. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein
【請求項3】 水銀ポロシメータで測定される細孔径分
布におけるモードが1nm以上である多孔性導電性物質
からなる担体に、リチウムイオンを可逆的に吸蔵・放出
し得る物質又はその前駆体を含む溶液又は懸濁液を含浸
させ、前記担体にリチウムイオンを可逆的に吸蔵・放出
し得る物質を担持することを特徴とする請求項1に記載
の非水電解液二次電池用負極活物質の製造方法。
3. A solution containing a substance capable of reversibly occluding and releasing lithium ions or a precursor thereof on a carrier made of a porous conductive substance whose mode in a pore diameter distribution measured by a mercury porosimeter is 1 nm or more. 2. The method according to claim 1, wherein the suspension is impregnated with a substance capable of reversibly occluding and releasing lithium ions on the carrier. Method.
【請求項4】 水銀ポロシメータで測定される細孔径分
布におけるモードが1nm以上である多孔性導電性物質
からなる担体に、リチウムイオンを可逆的に吸蔵・放出
し得る物質又はその前駆体の溶融物を含浸させ、前記担
体にリチウムイオンを可逆的に吸蔵・放出し得る物質を
担持することを特徴とする請求項1に記載の非水電解液
二次電池用負極活物質の製造方法。
4. A substance or a precursor thereof capable of reversibly occluding and releasing lithium ions in a carrier made of a porous conductive substance whose mode in the pore diameter distribution measured by a mercury porosimeter is 1 nm or more. The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein a substance capable of reversibly occluding and releasing lithium ions is supported on the carrier.
【請求項5】 請求項1又は請求項4に記載の負極活物
質を用いたことを特徴とする非水電解液二次電池。
5. A non-aqueous electrolyte secondary battery using the negative electrode active material according to claim 1 or 4.
JP2000311349A 2000-10-12 2000-10-12 Negative electrode active material for nonaqueous electrolytic solution secondary battery Pending JP2002117850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000311349A JP2002117850A (en) 2000-10-12 2000-10-12 Negative electrode active material for nonaqueous electrolytic solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000311349A JP2002117850A (en) 2000-10-12 2000-10-12 Negative electrode active material for nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2002117850A true JP2002117850A (en) 2002-04-19

Family

ID=18791132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000311349A Pending JP2002117850A (en) 2000-10-12 2000-10-12 Negative electrode active material for nonaqueous electrolytic solution secondary battery

Country Status (1)

Country Link
JP (1) JP2002117850A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187320A (en) * 2003-12-01 2005-07-14 Hajime Tamon Method for producing carbon material and tablet-like dried gel
JP2007273182A (en) * 2006-03-30 2007-10-18 Sony Corp Current collector, negative electrode and battery
JP2008501214A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Battery with tin-based negative electrode material
WO2011114826A1 (en) * 2010-03-18 2011-09-22 独立行政法人物質・材料研究機構 Network-form polymeric nanofibers, process for producing same, gas absorbent, and gas separation material
JP2012533498A (en) * 2009-07-17 2012-12-27 エボニック デグサ ゲーエムベーハー Nanostructured silicon-carbon composites for battery electrodes
WO2014141732A1 (en) 2013-03-14 2014-09-18 Dic株式会社 Metal tin-carbon complex, method for producing said complex, negative electrode active material for non-aqueous lithium secondary batteries which is produced using said complex, negative electrode for non-aqueous lithium secondary batteries which comprises said negative electrode active material, and non-aqueous lithium secondary battery
CN113113576A (en) * 2021-03-01 2021-07-13 三峡大学 Bi/SnOxComposite electrode material of @ C sodium ion battery and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187320A (en) * 2003-12-01 2005-07-14 Hajime Tamon Method for producing carbon material and tablet-like dried gel
JP2008501214A (en) * 2004-03-16 2008-01-17 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ インコーポレイテッド Battery with tin-based negative electrode material
US9350050B2 (en) 2006-03-30 2016-05-24 Sony Corporation Current collector, negative electrode and battery
JP2007273182A (en) * 2006-03-30 2007-10-18 Sony Corp Current collector, negative electrode and battery
US9742039B2 (en) 2006-03-30 2017-08-22 Sony Corporation Current collector, negative electrode and battery
US9640830B2 (en) 2006-03-30 2017-05-02 Sony Corporation Current collector, negative electrode and battery
JP2012533498A (en) * 2009-07-17 2012-12-27 エボニック デグサ ゲーエムベーハー Nanostructured silicon-carbon composites for battery electrodes
WO2011114826A1 (en) * 2010-03-18 2011-09-22 独立行政法人物質・材料研究機構 Network-form polymeric nanofibers, process for producing same, gas absorbent, and gas separation material
JP5637208B2 (en) * 2010-03-18 2014-12-10 独立行政法人物質・材料研究機構 Network-like polymer nanofiber, production method thereof, gas adsorbent, and gas separation material
KR20150128676A (en) 2013-03-14 2015-11-18 디아이씨 가부시끼가이샤 Metal tin-carbon complex, method for producing said complex, negative electrode active material for non-aqueous lithium secondary batteries which is produced using said complex, negative electrode for non-aqueous lithium secondary batteries which comprises said negative electrode active material, and non-aqueous lithium secondary battery
US9653727B2 (en) 2013-03-14 2017-05-16 Dic Corporation Metal tin-carbon composites, method for producing said composites, anode active material for non-aqueous lithium secondary batteries which is produced using said composites, anode for non-aqueous lithium secondary batteries which comprises said anode active material, and non-aqueous lithium secondary battery
WO2014141732A1 (en) 2013-03-14 2014-09-18 Dic株式会社 Metal tin-carbon complex, method for producing said complex, negative electrode active material for non-aqueous lithium secondary batteries which is produced using said complex, negative electrode for non-aqueous lithium secondary batteries which comprises said negative electrode active material, and non-aqueous lithium secondary battery
CN113113576A (en) * 2021-03-01 2021-07-13 三峡大学 Bi/SnOxComposite electrode material of @ C sodium ion battery and preparation method thereof
CN113113576B (en) * 2021-03-01 2023-07-28 三峡大学 Bi/SnO x Composite electrode material of@C sodium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102537225B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
CN106797022B (en) Potassium ion secondary battery or potassium ion capacitor
JP4049328B2 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
JP7078741B2 (en) Negative electrode for lithium metal batteries and lithium metal batteries containing them
US5851504A (en) Carbon based electrodes
US20140377643A1 (en) Porous silicon-based anode active material, method of preparing the same, and lithium secondary battery including the anode active material
KR102355101B1 (en) Three-dimensional porous-structured electrode, and electrochemical device having the electrode
JP2002367678A (en) Lithium-sulfur battery
JP2003303585A (en) Battery
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
US11611067B2 (en) Sulfur-carbon composite and lithium-sulfur battery including same
JP2007042601A (en) Carbon electrode, production method therefor and nonaqueous electrolyte secondary battery
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
US20190123342A1 (en) Method For Manufacturing An Electrode For A Lithium-Sulfur Battery Using Li2S As An Active Material
JP2002246020A (en) Active material and non-aqueous electrolyte battery using the same, and battery producing method
KR101049826B1 (en) A positive electrode for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same
CN115769399A (en) Method for manufacturing lithium metal electrode, lithium metal electrode manufactured thereby, and lithium secondary battery comprising same
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
JP4751502B2 (en) Polymer battery
JP2011060541A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using it
JP2007042602A (en) Polymer battery
JP2002117850A (en) Negative electrode active material for nonaqueous electrolytic solution secondary battery
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JP2007018794A (en) Carbon material electrode, its manufacturing method and nonaqueous electrolyte secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery