JPH092830A - Production device for glass preform - Google Patents

Production device for glass preform

Info

Publication number
JPH092830A
JPH092830A JP17794295A JP17794295A JPH092830A JP H092830 A JPH092830 A JP H092830A JP 17794295 A JP17794295 A JP 17794295A JP 17794295 A JP17794295 A JP 17794295A JP H092830 A JPH092830 A JP H092830A
Authority
JP
Japan
Prior art keywords
glass
shaped member
chamber
rod
glass fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17794295A
Other languages
Japanese (ja)
Inventor
Shigeru Emori
滋 江森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP17794295A priority Critical patent/JPH092830A/en
Publication of JPH092830A publication Critical patent/JPH092830A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE: To provide a production device for a glass preform capable of increasing the sticking efficiency of glass fine particles to a rod shaped member by forming inclined parts toward the rear exhausting direction at the upper and lower walls of a chamber and making the chamber transferrable so as to keep distances between the inclined parts and stuck and accumulated glass fine particles constant. CONSTITUTION: This production device for a glass preform is a device for sticking and accumulating glass fine particles around a rod shaped member, and an upper wall 10a and a lower wall 12a of its chamber 10 base inclined parts 10b and 12b respectivley in the exhaust direction. An opening 5 at a front wall 10c and a burner 3 for generating glass fine particles in the center are formed. A wall 10d at the exhaust side is provided with an opening 6 and an exhausting pipe 40 having bellows 40a. The chamber 10 is transferred to the arrow marked direction as the amount of stuck and accumulated glass fine particles on the rod shaped member 2 increases, and also the rod shaped member is transferred to the same direction as the diameter of a glass fine particle body 2a increases. A driving pressure by a gas flow and a raw material gas burner flame 3a becomes constant to increase the sticking efficiency by adjusting the both transferring speeds to keep a distance (r) at a constantly held state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ガラス母材の製造装
置に関するもので、特に、光ファイバ母材の製造に好適
に使用しうる製造装置を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a glass preform, and more particularly, it provides an apparatus suitable for use in producing an optical fiber preform.

【0002】[0002]

【従来の技術】光ファイバ母材の製造方法としては、い
わゆる外付け法が知られている。この方法は、コアとな
る部分もしくはコアとクラッドの一部となる部分からな
る棒状部材の周りにバーナを用いて生成されるクラッド
となるガラス微粉末を付着堆積させる方法であり、その
装置としては、例えば図2に示す装置が挙げられる。図
2において、1は箱形のチャンバで、1a,1bは互い
に平行な上壁と下壁で、1cは前部の開口5を有する前
壁、1dは後部の開口6を有する後壁であり、両者すな
わち前壁と後壁の開口(仮想線で示す)はそれぞれ平行
に形成されている。また、石英ガラス棒はこれら開口
5,6と平行な軸を有し、その周りに回転するようにな
っており石英ガラスの棒状部材2を設けてある。3はチ
ャンバ1の前壁1cの開口5より軸に直交するように対
峙しているバーナで、燃焼ガス(酸素、水素、LNG
等)と石英ガラス生成ガス(SiCl4 ) が供給され
る。火炎3a中で反応生成された石英ガラス微粉末は、
石英系ガラス棒2の周囲に付着堆積してガラス微粒子体
(クラッド)2aを構成する。4はチャンバ1の後壁1
dの開口6に取付けられた排気管で、排気手段(図示せ
ず)と直結して未反応ガスや非付着ガラス微粉末を吸引
排気する。このように全体をチャンバで囲むのは、ガラ
ス原料ガスに前記のように塩素系ガスを用いているた
め、生成されるHCl等の有害ガスや未反応ガスおよび
非付着ガラス微粉末を周囲と隔離して効率よく吸引排気
するものである。
2. Description of the Related Art A so-called external attachment method is known as a method for manufacturing an optical fiber preform. This method is a method of depositing and depositing fine glass powder to be a clad, which is generated by using a burner, around a rod-shaped member composed of a part to be a core or a part to be a part of a core and a clad. An example is the device shown in FIG. In FIG. 2, 1 is a box-shaped chamber, 1a and 1b are parallel upper and lower walls, 1c is a front wall having a front opening 5, and 1d is a rear wall having a rear opening 6. , The openings of the front wall and the rear wall (shown by phantom lines) are formed in parallel with each other. Further, the quartz glass rod has an axis parallel to these openings 5 and 6, and is adapted to rotate around it, and a quartz glass rod member 2 is provided. Reference numeral 3 denotes a burner which faces the opening 5 of the front wall 1c of the chamber 1 so as to be orthogonal to the axis, and is a combustion gas (oxygen, hydrogen, LNG).
Etc.) and quartz glass forming gas (SiCl 4 ) are supplied. The quartz glass fine powder produced by reaction in the flame 3a is
The fine glass particles (clad) 2a are formed by adhering and depositing around the quartz glass rod 2. 4 is a rear wall 1 of the chamber 1
An exhaust pipe attached to the opening 6 of d is directly connected to an exhaust means (not shown) to suck and exhaust unreacted gas and non-adhered glass fine powder. Since the chlorine-based gas is used as the glass raw material gas as described above for surrounding the whole with the chamber, the generated harmful gas such as HCl, unreacted gas and non-adhered glass fine powder are isolated from the surroundings. And efficiently suck and exhaust.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光ファ
イバの製造コストを低減するために、大型の母材を作成
する要求が高まり、これへの代表的な対応手段として、
投入原料の供給量を多くすることによりガラス微粉末の
堆積速度を速めて製造時間を短縮することが提案されて
いる。ところが、単に投入原料ガスを増量しても、それ
に伴って排気量も増えるためにその処理能力を高めねば
ならず、結果として設備の増強となり、必ずしもコスト
ダウンとはならない。また、投入原料の量を増大させる
とバーナ炎の集束が困難となって、生成されるガラス微
粒子の堆積効率が必ずしも高まるというものでもない。
従って、投入原料の絶対量を増加させずに堆積効率を高
めることで堆積速度を向上させることが望まれている。
However, in order to reduce the manufacturing cost of the optical fiber, there is an increasing demand for producing a large preform, and as a typical measure against this,
It has been proposed to increase the deposition rate of the glass fine powder to shorten the manufacturing time by increasing the amount of feed material supplied. However, even if the amount of the raw material gas is simply increased, the amount of exhaust gas is also increased, so that the processing capacity must be increased, resulting in an increase in equipment and not necessarily a cost reduction. Further, if the amount of the input raw material is increased, it becomes difficult to focus the burner flame, and the deposition efficiency of the generated glass particles is not necessarily improved.
Therefore, it is desired to improve the deposition rate by increasing the deposition efficiency without increasing the absolute amount of the input raw material.

【0004】[0004]

【課題を解決するための手段】この発明は、以上の観点
からなされたもので、その特徴とする請求項1記載の発
明は、全体として箱形でその前後に互いに平行な開口を
有するチャンバと、チャンバの開口の中間部の前記開口
面に平行な軸の周囲に回動自在に支持されたターゲット
となる棒状部材と、一方の開口側に前記棒状部材に直交
して対峙して設置されたガラス微粉末発生用バーナと、
他方の開口側に設けられた排気手段とを具備し、前記バ
ーナによって生成されるガラス微粉末を棒状部材の周囲
に付着堆積すると共に、非付着ガラス微粉末を排気手段
によって排出するようにしたガラス母材の製造装置にお
いて、チャンバの上壁及び下壁とは排気側開口に至るに
従い間隔が次第に小さくなるように傾斜(テーパー)が
付されており、かつ前記棒状部材に堆積されたガラス微
粉末の表面との最小距離が所定の大きさとなるように、
チャンバを棒状部材の軸と直交する方向に移動しうるよ
うに形成されていることを特徴とするガラス母材の製造
装置であり、その特徴とする請求項2記載の発明は、チ
ャンバの上壁及び下壁と、棒状部材の周囲に付着堆積さ
れたガラス微粉末の最小距離を50〜100mmとした
ことにある。更に、その特徴とする請求項3記載の発明
は、棒状部材が少なくとも光ファイバのコアとなる部分
を含む石英系ガラスからなり、その周りに付着堆積され
るガラス微粉末が光ファイバのクラッドとなる石英系ガ
ラスからなることにある。
The present invention has been made from the above point of view, and the invention according to claim 1 is characterized by a box-shaped chamber as a whole and a chamber having front and rear openings parallel to each other. A rod-shaped member that is a target that is rotatably supported around an axis parallel to the opening surface in the middle of the opening of the chamber, and is installed on one opening side so as to face the rod-shaped member at right angles. A burner for generating fine glass powder,
A glass having an exhaust means provided on the other opening side, wherein glass fine powder produced by the burner is adhered and deposited around the rod-shaped member, and non-adhered glass fine powder is exhausted by the exhaust means. In the base material manufacturing apparatus, the upper wall and the lower wall of the chamber are inclined (tapered) so that the distance between the upper wall and the lower wall becomes gradually smaller toward the opening on the exhaust side, and the fine glass powder deposited on the rod-shaped member. So that the minimum distance from the surface of
An apparatus for manufacturing a glass base material, characterized in that the chamber is formed so as to be movable in a direction orthogonal to the axis of the rod-shaped member. Also, the minimum distance between the lower wall and the fine glass powder deposited and deposited around the rod-shaped member is set to 50 to 100 mm. Further, the invention according to claim 3 is characterized in that the rod-shaped member is made of silica-based glass including at least a portion to be a core of the optical fiber, and fine glass powder adhered and deposited around the silica-shaped glass serves as a clad of the optical fiber. It consists of quartz glass.

【0005】[0005]

【作用】本発明は、上記の構成を有するので、光ファイ
バ母材を製造する過程で、チャンバ内を排気手段により
排気すると、チャンバ内の気流は、上壁および下壁とガ
ラス微粒子体の間の次第に小さくなった隙間を流れ、か
つその隙間すなわち上壁および下壁とガラス微粒子体の
間の最小距離が母材の製造中一定になるので、バーナの
炎はこの空間を流れる気流によりガラス微粒子体に常に
一定して押しつけられるので、ガラス微粒子の堆積効率
が向上する。
Since the present invention has the above-described structure, when the chamber is evacuated by the evacuation means in the process of manufacturing the optical fiber preform, the air flow in the chamber is between the upper and lower walls and the glass fine particles. Of the burner flame, because the minimum distance between the glass fine particles and the upper and lower walls, which flow through the gradually decreasing gap, becomes constant during the manufacturing of the base metal, the burner flame is affected by the air flow in this space. Since it is constantly pressed against the body, the deposition efficiency of glass particles is improved.

【0006】[0006]

【実施例】図1は、この発明方法の光ファイバ母材の製
造装置の概略説明図である。図1において、10はチャ
ンバで、10aは上壁で10bはその排気方向の傾斜部
である。また12aは下壁で12bはその排気方向の傾
斜部である。さらに10cは前方の壁で開口5(仮想線
で示す)を有している。この開口5にはガラス微粒子生
成用バーナ3が中央にあるガラス微粒子を堆積用の軸に
直角に設けられている。10dは排気側の壁で開口6
(仮想線で示す)を有している。なお、排気側の開口6
には蛇腹40aを有する排気管40が連結されている。
この排気管40には図示してないが吸引排気装置が取付
けられている。なお、rは棒状部材2に付着堆積された
ガラス微粒子体2aとチャンバ10の上壁12aおよび
下壁12bとの最小距離を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic explanatory view of an optical fiber preform manufacturing apparatus of the method of the present invention. In FIG. 1, 10 is a chamber, 10a is an upper wall, and 10b is an inclined portion in the exhaust direction. Further, 12a is a lower wall and 12b is an inclined portion in the exhaust direction. Further, 10c is a front wall and has an opening 5 (shown in phantom). A burner 3 for producing fine glass particles is provided in the opening 5 at a right angle to the axis for depositing fine glass particles in the center. 10d is a wall on the exhaust side and has an opening 6
(Shown in phantom). The exhaust side opening 6
An exhaust pipe 40 having a bellows 40a is connected to.
A suction / exhaust device (not shown) is attached to the exhaust pipe 40. It should be noted that r represents the minimum distance between the glass fine particles 2a attached and deposited on the rod-shaped member 2 and the upper wall 12a and the lower wall 12b of the chamber 10.

【0007】チャンバ10は、棒状部材2に付着堆積さ
れるガラス微粒子の堆積量が増すにつれて矢印方向に移
動させ(図では右側)、棒状部材2もガラス微粒子体2
aの径が増大するにつれて同方向に移動させる。その
際、チャンバ10の移動速度を棒状部材2の速度を調製
することにより、丁度距離rは常に一定に保たれた状態
とする。これにより、上壁および下壁の傾斜部10bお
よび12bとガラス微粒子体2の間を流れるガス流の流
れが一定になってバーナ炎3aがガラス微粒子体2aに
押しつけられる状態となりガラス微粒子が効率良く堆積
される。なお、チャンバ10の移動吸収は蛇腹40aの
伸縮によってなされる。また、棒状部材2を矢印方向に
移動させるのは、この移動によって棒状部材とバーナ2
との距離を一定に保つためである。実験によれば、距離
rは50〜100mm程度が好ましく、50mm未満で
はバーナ炎のバタツキが見られ、ガラス微粒子の付着効
率が落ちる現象が生じた。その理由は距離rが狭過ぎる
とガス流に乱れが生じて、バーナ炎がガラス微粒子体2
a側に押さえつけにくくなるためと考えられる。また、
距離rが100mmをこえて大きいとガス流の速度が低
下するため付着効率が従来と余り変わらないことが判っ
た。
The chamber 10 is moved in the arrow direction (the right side in the figure) as the deposition amount of the glass particles adhered and deposited on the rod-shaped member 2 increases, and the rod-shaped member 2 also moves to the glass particle body 2.
It is moved in the same direction as the diameter of a increases. At that time, the distance r is always kept constant by adjusting the moving speed of the chamber 10 to the speed of the rod-shaped member 2. As a result, the flow of the gas flow flowing between the inclined portions 10b and 12b of the upper and lower walls and the glass fine particle body 2 becomes constant, and the burner flame 3a is pressed against the glass fine particle body 2a, so that the glass fine particles are efficiently generated. Is deposited. The movement absorption of the chamber 10 is performed by the expansion and contraction of the bellows 40a. The movement of the rod-shaped member 2 in the direction of the arrow is caused by the movement of the rod-shaped member and the burner 2.
This is to keep a constant distance from. According to the experiment, the distance r is preferably about 50 to 100 mm, and if it is less than 50 mm, flapping of a burner flame is observed, and a phenomenon in which the adhesion efficiency of glass fine particles is lowered occurs. The reason is that if the distance r is too narrow, the gas flow is disturbed, and the burner flame causes the glass fine particles 2
It is considered that it is difficult to hold it down to the a side. Also,
It has been found that when the distance r is greater than 100 mm and is large, the speed of the gas flow is reduced and the adhesion efficiency is not so different from the conventional one.

【0008】具体例 棒状部材2として、20mmφ、長さ600mmのもの
を使用し、バーナに供給する原料ガスSiCl4 :4S
LM,酸素:20SLM,水素;40SLM、バーナと
棒状部材との距離170mm,チャンバの上壁および下
壁と棒状部材との最小距離rを80mmとして、これを
一定に維持しながら棒状部材の周りにSiO2 ガラス微
粒子を付着堆積させた。本発明では上記の条件下にSi
2 ガラス微粒子を3Kg付着させ、図2の従来法でも
同じくSiO2 ガラス微粒子を3Kg付着させてその付
着効率を比較したところ、従来の装置によるものは、上
記のSiO2 ガラス微粒子の35%が付着したのに対
し、本発明の装置を用いた場合は40%が付着し、本発
明によるものは明らかに付着効率が向上した。
Concrete Example A rod-shaped member 2 having a diameter of 20 mm and a length of 600 mm is used, and a raw material gas supplied to the burner is SiCl 4 : 4S.
LM, oxygen: 20 SLM, hydrogen; 40 SLM, the distance between the burner and the rod-shaped member is 170 mm, the minimum distance r between the upper and lower walls of the chamber and the rod-shaped member is 80 mm, and while keeping this constant, around the rod-shaped member. SiO 2 glass particles were deposited and deposited. In the present invention, under the above conditions, Si
When 2 kg of O 2 glass particles were adhered and 3 kg of SiO 2 glass particles were also adhered in the conventional method of FIG. 2 and the adhesion efficiency was compared, it was found that 35% of the above SiO 2 glass particles were obtained by the conventional device. In contrast to the adherence, 40% was adhered when the device of the present invention was used, and the adhering efficiency of the present invention was obviously improved.

【0009】[0009]

【発明の効果】この発明は、以上のように棒状部材の周
りにガラス状微粒子を付着堆積させる装置において、チ
ャンバの上壁と下壁に後部の排気方向に向かう傾斜部を
設け、かつ、これら傾斜部と棒状部材の周りに付着堆積
されるガラス微粒子との間の最小距離が一定に保たれる
ようにチャンバが移動可能になされているので、上記上
下の壁の傾斜部とガラス微粒子体との間を流れるガス流
が常に一定の流速で流れるので、バーナの炎がガラス微
粒子側に押しつけられることとなり、これによってガラ
ス微粒子の棒状部材への付着効率を高めることができ
る。
As described above, according to the present invention, in the apparatus for depositing and depositing the glassy fine particles around the rod-shaped member as described above, the upper wall and the lower wall of the chamber are provided with the rearward inclined portions toward the exhaust direction, and Since the chamber is made movable so that the minimum distance between the inclined portion and the glass particles adhered and deposited around the rod-shaped member is kept constant, the inclined portions of the upper and lower walls and the glass particle body are Since the gas flow flowing between them always flows at a constant flow rate, the flame of the burner is pressed against the glass fine particles side, which can increase the adhesion efficiency of the glass fine particles to the rod-shaped member.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一例を示す概略説明図。FIG. 1 is a schematic explanatory view showing an example of the present invention.

【図2】従来の装置の概略説明図。FIG. 2 is a schematic explanatory view of a conventional device.

【符号の説明】[Explanation of symbols]

1 チャンバ 1a 上壁 1b 下壁 1c 前壁 1d 後壁 2 石英ガラス棒 2a クラッド 3 バーナ 3a バーナ炎 4 排気管 5 前部開口 6 後部開口 10 チャンバ 10a 上壁 10b 傾斜部 10c 前壁 10d 後壁 12a 下壁 12b 傾斜部 40 排気管 40a 蛇腹 r 傾斜部とガラス微粒子体との最小距離 1 chamber 1a upper wall 1b lower wall 1c front wall 1d rear wall 2 quartz glass rod 2a clad 3 burner 3a burner flame 4 exhaust pipe 5 front opening 6 rear opening 10 chamber 10a upper wall 10b slope 10c front wall 10d rear wall 12a Lower wall 12b Slope 40 Exhaust pipe 40a Bellows r Minimum distance between slope and glass fine particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 全体として箱形でその前後に互いに平行
な開口を有するチャンバと、チャンバの開口の中間部の
前記開口面に平行な軸の周囲に回動自在に支持されたタ
ーゲットとなる棒状部材と、一方の開口側に前記棒状部
材に直交して対峙して設置されたガラス微粉末発生用バ
ーナと、他方の開口側に設けられた排気手段とを具備
し、前記バーナによって生成されるガラス微粉末を棒状
部材の周囲に付着堆積すると共に、非付着ガラス微粉末
を排気手段によって排出するようにしたガラス母材の製
造装置において、チャンバの上壁及び下壁とは排気側開
口に至るに従い間隔が小さくなるように傾斜が付されて
おり、かつ前記棒状部材に堆積されたガラス微粉末の表
面との最小距離が所定の大きさとなるように、チャンバ
を棒状部材の軸と直交する方向に移動しうるように形成
されていることを特徴とするガラス母材の製造装置。
1. A chamber having a box shape as a whole and having openings parallel to each other in the front and rear thereof, and a rod shape serving as a target rotatably supported around an axis parallel to the opening surface in the middle of the opening of the chamber. The burner is provided with a member, a burner for generating fine glass powder which is installed on one opening side so as to face the rod-shaped member at right angles, and an exhaust means provided on the other opening side, and is generated by the burner. In a glass base material manufacturing apparatus in which glass fine powder is adhered and deposited around a rod-shaped member and non-adhered glass fine powder is discharged by an exhaust means, an upper wall and a lower wall of a chamber reach an exhaust side opening. The chamber is orthogonal to the axis of the rod-shaped member so that the distance between the rod-shaped member and the surface of the glass fine powder deposited on the rod-shaped member becomes a predetermined value. An apparatus for manufacturing a glass base material, which is formed so as to be movable in a direction.
【請求項2】 チャンバの上壁及び下壁と、棒状部材の
周囲に付着堆積されたガラス微粉末体との最小距離が5
0〜100mmであることを特徴とする請求項1記載の
ガラス母材の製造装置。
2. The minimum distance between the upper wall and the lower wall of the chamber and the fine glass powder adhered and deposited around the rod-shaped member is 5
It is 0-100 mm, The manufacturing apparatus of the glass base material of Claim 1 characterized by the above-mentioned.
【請求項3】 棒状部材が少なくとも光ファイバのコア
となる部分を含む石英系ガラスからなり、その周りに付
着堆積されるガラス微粉末が光ファイバのクラッドとな
る石英系ガラスからなる請求項1もしくは2記載のガラ
ス母材の製造装置。
3. The method according to claim 1, wherein the rod-shaped member is made of silica-based glass including at least a portion to be a core of the optical fiber, and the fine glass powder adhered and deposited around the portion is made of silica-based glass to be a clad of the optical fiber. 2. The glass base material manufacturing apparatus described in 2.
JP17794295A 1995-06-22 1995-06-22 Production device for glass preform Pending JPH092830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17794295A JPH092830A (en) 1995-06-22 1995-06-22 Production device for glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17794295A JPH092830A (en) 1995-06-22 1995-06-22 Production device for glass preform

Publications (1)

Publication Number Publication Date
JPH092830A true JPH092830A (en) 1997-01-07

Family

ID=16039774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17794295A Pending JPH092830A (en) 1995-06-22 1995-06-22 Production device for glass preform

Country Status (1)

Country Link
JP (1) JPH092830A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270521A1 (en) * 2000-05-09 2003-01-02 PIRELLI CAVI E SISTEMI S.p.A. Method and device for manufacturing a preform for optical fibres
WO2003000609A1 (en) * 2001-06-25 2003-01-03 Pirelli & C. S.P.A. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
WO2003000608A1 (en) * 2001-06-25 2003-01-03 Pirelli & C. S.P.A. Device for manufacturing a preform for optical fibres through chemical deposition
US8387416B2 (en) 2001-06-25 2013-03-05 Prysmian Cavi E Sistemi Energia S.R.L. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270521A1 (en) * 2000-05-09 2003-01-02 PIRELLI CAVI E SISTEMI S.p.A. Method and device for manufacturing a preform for optical fibres
WO2003000609A1 (en) * 2001-06-25 2003-01-03 Pirelli & C. S.P.A. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition
WO2003000608A1 (en) * 2001-06-25 2003-01-03 Pirelli & C. S.P.A. Device for manufacturing a preform for optical fibres through chemical deposition
US8387416B2 (en) 2001-06-25 2013-03-05 Prysmian Cavi E Sistemi Energia S.R.L. Device and method for manufacturing a preform for optical fibres by chemical vapour deposition

Similar Documents

Publication Publication Date Title
JPH092830A (en) Production device for glass preform
JP3196629B2 (en) Method and apparatus for producing silica glass
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
JP2000272930A (en) Production of optical fiber preform
JP2007106616A (en) Method of manufacturing porous glass preform for optical fiber
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
JP2003063841A (en) Method and apparatus for producing optical fiber preform
JP2005075682A (en) Method of manufacturing porous glass preform
JP3290559B2 (en) Method for producing porous glass preform for optical fiber
JP2004131303A (en) Exhaust hood apparatus, exhaust method and process for manufacturing glass preform
JP3157628B2 (en) Equipment for manufacturing porous glass base material
JP5092226B2 (en) Method for producing glass particulate deposit
JP4343146B2 (en) Method and apparatus for manufacturing quartz porous base material
JP3186572B2 (en) Method for producing glass preform for optical fiber
JP4459481B2 (en) Manufacturing method and manufacturing apparatus of porous preform for optical fiber
JP2000109329A (en) Production of porous preform
JPH09118539A (en) Production of optical fiber preform
JP3131093B2 (en) Equipment for manufacturing porous glass preform for optical fiber
JPH04260624A (en) Method for depositing fine glass particle
JP3654232B2 (en) Optical fiber preform manufacturing method
JPH0742129B2 (en) Method for manufacturing base material for optical fiber
JP2000185930A (en) Production of optical fiber preform
JPH0354124A (en) Production of porous glass preform and system therefor
JPS58185446A (en) Preparation of base material for optical fiber
JP2001322826A (en) Method and device for manufacturing porous glass preform