JP4343146B2 - Method and apparatus for manufacturing quartz porous base material - Google Patents

Method and apparatus for manufacturing quartz porous base material Download PDF

Info

Publication number
JP4343146B2
JP4343146B2 JP2005161333A JP2005161333A JP4343146B2 JP 4343146 B2 JP4343146 B2 JP 4343146B2 JP 2005161333 A JP2005161333 A JP 2005161333A JP 2005161333 A JP2005161333 A JP 2005161333A JP 4343146 B2 JP4343146 B2 JP 4343146B2
Authority
JP
Japan
Prior art keywords
gas
base material
glass
quartz
porous base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005161333A
Other languages
Japanese (ja)
Other versions
JP2006335595A (en
Inventor
智宏 布目
成敏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005161333A priority Critical patent/JP4343146B2/en
Publication of JP2006335595A publication Critical patent/JP2006335595A/en
Application granted granted Critical
Publication of JP4343146B2 publication Critical patent/JP4343146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0144Means for after-treatment or catching of worked reactant gases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus capable of further improving the efficiency of the deposition to a target rod of glass fine particles in the manufacture of a quartz porous preform. <P>SOLUTION: In the method for manufacturing the quartz porous preform by supplying at least a glass raw material gas, a hydrogen gas and an oxygen gas to a burner provided in a chamber, forming the glass fine particles in the oxyhydrogen flame ejected from the burner and depositing the formed glass fine particles on the surface of a rotating target rod, the deposition of the glass fine particles is performed while controlling each supply gas quantity so that a ratio of the A to total of A and B satisfies the formula: [A/(A+B)]&ge;0.95 when an HCl concentration in a waste gas is A and Cl<SB>2</SB>concentration is B. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、光ファイバやロッドレンズなどの作製に用いられる石英多孔質母材の製造方法及び製造装置に関する。   The present invention relates to a method and an apparatus for producing a quartz porous base material used for producing optical fibers, rod lenses, and the like.

光ファイバの製造などに用いられる石英ガラス母材の製造には、VAD法やOVD法等のスート堆積法で作製された石英多孔質母材を、焼結ガラス化する方法が一般に用いられている。この石英多孔質母材を形成するには、SiClやGeClなどのガラス原料ガスを、酸水素火炎を形成するバーナに供給し、ガラス微粒子を生成する。生成したガラス微粒子を、バーナと対向した位置に設けた回転しているターゲット棒表面に堆積させることで、石英多孔質母材を得ることができる。 For the production of a quartz glass base material used for the production of optical fibers or the like, a method is generally used in which a quartz porous base material produced by a soot deposition method such as a VAD method or an OVD method is made into sintered glass. . In order to form the quartz porous base material, a glass raw material gas such as SiCl 4 or GeCl 4 is supplied to a burner that forms an oxyhydrogen flame to generate glass fine particles. By depositing the generated glass particles on the surface of a rotating target bar provided at a position facing the burner, a quartz porous base material can be obtained.

近年、光ファイバの製造コストを低減するため、光ファイバ用母材の大型化が進められている。そのため、OVD法などに代表されるスート堆積法で作製する光ファイバ用多孔質母材も大型化する傾向にある。大型化に伴い、製造時間の短縮化もコスト低減のために必要となるため、ガラス微粒子の堆積効率(供給したガラス原料ガスに対するガラス微粒子の付着率)を上げ、ガラス微粒子のターゲット棒への堆積速度を向上させる技術が要望されている。   In recent years, the size of optical fiber preforms has been increased in order to reduce the manufacturing cost of optical fibers. Therefore, the porous optical fiber preform produced by the soot deposition method typified by the OVD method or the like also tends to increase in size. As the size increases, shortening the manufacturing time is also necessary to reduce costs, so the deposition efficiency of glass particles (the adhesion rate of glass particles to the supplied glass raw material gas) is increased, and the glass particles are deposited on the target rod. There is a need for techniques to improve speed.

この種の従来技術として、特許文献1は、石英多孔質母材の径に応じて、原料ノズル径の太さを適宜選択することで、ガラス微粒子の堆積効率を向上させることを提案している。特許文献1記載の方法では、ターゲット棒が細い場合は、ガラス微粒子の堆積効率が悪いため、バーナの原料ノズル径を細くすることで堆積効率を向上することができる。また、ターゲット棒が太い場合は、原料ノズル径を太くし原料流速を遅くすることで、反応時間をかせぎ、結果として堆積効率を向上することができる。
特開2001−322826号公報
As this type of prior art, Patent Document 1 proposes to improve the deposition efficiency of glass fine particles by appropriately selecting the diameter of the raw material nozzle diameter according to the diameter of the quartz porous base material. . In the method described in Patent Document 1, when the target rod is thin, the deposition efficiency of the glass fine particles is poor. Therefore, the deposition efficiency can be improved by narrowing the raw material nozzle diameter of the burner. When the target rod is thick, the reaction time can be increased by increasing the raw material nozzle diameter and slowing the raw material flow rate, and as a result, the deposition efficiency can be improved.
JP 2001-322826 A

しかしながら、特許文献1記載の方法を用いても、ガラス微粒子のターゲット棒への堆積効率を向上させるという点は不十分であった。すなわち、実際に石英多孔質母材を製造するには、石英多孔質母材の嵩密度(単位体積当たりの多孔質ガラス微粒子の質量)を考慮する必要がある。石英多孔質母材の嵩密度を、径方向にどのように変化させて作製するかによって、最終的なターゲット棒の径も異なる。そのため、単純にターゲット棒の径と原料ノズル径との関係で堆積効率の向上を議論することは困難である。また、堆積効率に影響を及ぼす要因として、ガラス原料ガスの反応率が重要であるが、特許文献1では、この反応率という観点が十分考慮されているとは言えず、ガラス微粒子のターゲット棒への堆積効率の向上効果には限界があった。   However, even if the method described in Patent Document 1 is used, it is insufficient to improve the deposition efficiency of glass fine particles on the target rod. That is, in order to actually manufacture a quartz porous matrix, it is necessary to consider the bulk density of the quartz porous matrix (the mass of the porous glass fine particles per unit volume). Depending on how the bulk density of the porous quartz base material is changed in the radial direction, the final diameter of the target bar also varies. Therefore, it is difficult to discuss the improvement of the deposition efficiency simply by the relationship between the diameter of the target rod and the diameter of the raw material nozzle. Further, the reaction rate of the glass raw material gas is important as a factor affecting the deposition efficiency. However, in Patent Document 1, it cannot be said that this viewpoint of the reaction rate is sufficiently taken into consideration. There was a limit to the effect of improving the deposition efficiency.

本発明は前記事情に鑑みてなされ、石英多孔質母材の製造においてガラス微粒子のターゲット棒への堆積効率をより向上させることができる方法及び装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus capable of further improving the deposition efficiency of glass fine particles on a target rod in the production of a quartz porous base material.

前記目的を達成するため、本発明は、チャンバ内に設けられたバーナに、少なくともガラス原料ガスと水素ガスと酸素ガスを供給し、バーナから噴出する酸水素火炎中でガラス微粒子を生成させ、生成させたガラス微粒子を回転するターゲット棒の表面に堆積させて石英多孔質母材を製造する方法において、チャンバからの排気ガス中のHCl濃度をA、Cl濃度をBとした場合に、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、各供給ガス量を制御しながらガラス微粒子の堆積を行って石英多孔質母材を得ることを特徴とする石英多孔質母材の製造方法を提供する。 In order to achieve the above object, the present invention supplies at least a glass raw material gas, hydrogen gas, and oxygen gas to a burner provided in a chamber, and generates glass fine particles in an oxyhydrogen flame ejected from the burner. In the method for producing a quartz porous base material by depositing the fine glass particles on the surface of a rotating target rod, when the HCl concentration in the exhaust gas from the chamber is A and the Cl 2 concentration is B, A and Glass fine particles are deposited while controlling the amount of each supply gas so that the ratio [A / (A + B)] of A to the total of B is in the relationship of A / (A + B) ≧ 0.95. Provided is a method for producing a porous quartz base material characterized by obtaining a base material.

本発明の石英多孔質母材の製造方法において、ガラス微粒子の堆積効率を55%以上としてガラス微粒子の堆積を行うことが好ましい。   In the method for producing a porous quartz base material of the present invention, it is preferable to deposit glass particles with a glass particle deposition efficiency of 55% or more.

本発明の石英多孔質母材の製造方法において、チャンバからの排気ガス中の前記AとBを測定し、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、各供給ガス量を自動制御しながらガラス微粒子の堆積を行うことが好ましい。あるいは、濃度測定をした次の母材作製の際に、前回と同様にガス流量を調整してもよい。   In the method for producing a porous quartz base material of the present invention, the A and B in the exhaust gas from the chamber are measured, and the ratio of A to the total of A and B [A / (A + B)] is A / ( It is preferable to deposit the glass particles while automatically controlling the amount of each supply gas so that the relationship of A + B) ≧ 0.95 is satisfied. Alternatively, the gas flow rate may be adjusted in the same manner as the previous time when the base material is manufactured after the concentration measurement.

また本発明は、排気口付きのチャンバ内に、ターゲット棒の両端を保持し周方向に回転させる保持部材と、該保持部材に保持されたターゲット棒の長手方向に沿って移動可能に設けられたバーナと、該バーナに少なくともガラス原料ガスと水素ガスと酸素ガスを供給するガス供給装置とを有する石英多孔質母材の製造装置において、前記チャンバの排気口に、該排気口から排出される排気ガス中のHCl濃度とCl濃度を必要に応じて測定する排ガス分析装置が接続されていることを特徴とする石英多孔質母材の製造装置を提供する。この排ガス濃度の分析は、定期管理項目として扱い、経時的に堆積効率が悪化したらガス濃度チェックするように実行することができる。 Further, the present invention is provided in a chamber with an exhaust port, a holding member that holds both ends of the target rod and rotates in the circumferential direction, and is movable along the longitudinal direction of the target rod held by the holding member. In a quartz porous base material manufacturing apparatus having a burner and a gas supply device that supplies at least glass raw material gas, hydrogen gas, and oxygen gas to the burner, exhaust exhausted from the exhaust port to the exhaust port of the chamber Provided is an apparatus for producing a quartz porous base material, which is connected to an exhaust gas analyzer for measuring HCl concentration and Cl 2 concentration in gas as required. The analysis of the exhaust gas concentration is handled as a periodic management item, and can be executed to check the gas concentration when the deposition efficiency deteriorates with time.

本発明の石英多孔質母材の製造装置において、前記排ガス分析装置によって測定された排気ガス中のHCl濃度をA、Cl濃度をBとした場合に、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、前記ガス供給装置の各供給ガス量を制御可能に構成されていることを特徴とする請求項4に記載の石英多孔質母材の製造装置を提供する。 In the quartz porous base material manufacturing apparatus of the present invention, when the HCl concentration in the exhaust gas measured by the exhaust gas analyzer is A and the Cl 2 concentration is B, the ratio of A to the total of A and B 5. Each supply gas amount of the gas supply device is configured to be controllable so that [A / (A + B)] has a relationship of A / (A + B) ≧ 0.95. An apparatus for producing a quartz porous base material as described in 1) is provided.

本発明の石英多孔質母材の製造装置において、前記排ガス分析装置で測定された排気ガス中の前記AとBのデータを入力し、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように前記ガス供給装置の各供給ガス量を制御する制御部を有することが好ましい。   In the quartz porous base material manufacturing apparatus of the present invention, the data of A and B in the exhaust gas measured by the exhaust gas analyzer are input, and the ratio of A to the total of A and B [A / (A + B )] Preferably includes a control unit that controls the amount of each supply gas of the gas supply device such that A / (A + B) ≧ 0.95.

本発明によれば、石英多孔質母材の製造において、チャンバからの排気ガス中のHCl濃度をA、Cl濃度をBとした場合に、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、各供給ガス量を制御しながらガラス微粒子の堆積を行って石英多孔質母材を得ることによって、ガラス微粒子のターゲット棒への堆積効率をより向上させることができる。
本発明によれば、大型の光ファイバ用多孔質母材を短時間で製造することが可能となり、低コストで光ファイバを提供できる。
According to the present invention, in the production of a quartz porous base material, when the HCl concentration in the exhaust gas from the chamber is A and the Cl 2 concentration is B, the ratio of A to the total of A and B [A / (A + B)] is in a relationship of A / (A + B) ≧ 0.95, and glass fine particles are deposited while controlling the amount of each supply gas to obtain a quartz porous base material. The deposition efficiency on the target rod can be further improved.
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture a porous preform | base_material for large optical fibers in a short time, and can provide an optical fiber at low cost.

本発明者らは、石英多孔質母材の製造において、ガラス微粒子のターゲット棒への堆積効率をより向上させることを目的として様々な検討を行った結果、排気ガス中のHCl濃度とCl濃度の関係を一定範囲になるように、バーナに供給するガス流量を調整することで、ガラス微粒子のターゲット棒への堆積効率を向上できることを見出した。 As a result of various studies for the purpose of further improving the deposition efficiency of glass fine particles on a target rod in the production of a porous quartz base material, the present inventors have found that the HCl concentration and the Cl 2 concentration in the exhaust gas. It was found that the deposition efficiency of the glass particles on the target rod can be improved by adjusting the gas flow rate supplied to the burner so that the above relationship is within a certain range.

具体的には、排気ガス中のHCl濃度をA、Cl濃度をBとした場合、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係、すなわち100分率換算でAが95%以上となるように、バーナに供給するガス流量を調整するのが望ましい。その場合、堆積効率が55%を超えて、ガラス微粒子の堆積速度も速くなる。一方、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)<0.95(100分率換算でAが95%未満)であると、結果として堆積効率が低下してしまう。 Specifically, when the HCl concentration in the exhaust gas is A and the Cl 2 concentration is B, the ratio of A to the total of A and B [A / (A + B)] is A / (A + B) ≧ 0. It is desirable to adjust the flow rate of the gas supplied to the burner so that the relationship of 95, that is, A is 95% or more in terms of 100-minute conversion. In that case, the deposition efficiency exceeds 55%, and the deposition rate of the glass particulates also increases. On the other hand, if the ratio of A to the total of A and B [A / (A + B)] is A / (A + B) <0.95 (A is less than 95% in terms of 100 fraction), the deposition efficiency results. Will fall.

ガラス原料ガスの反応は、以下に示すような加水分解と酸化反応が同時に起こっていると考えられている。
SiCl + 2HO → SiO + 4HCl (加水分解反応)
SiCl + O → SiO + 2Cl (酸化反応)
In the reaction of the glass raw material gas, it is considered that the following hydrolysis and oxidation reaction occur simultaneously.
SiCl 4 + 2H 2 O → SiO 2 + 4HCl (hydrolysis reaction)
SiCl 4 + O 2 → SiO 2 + 2Cl 2 (oxidation reaction)

酸水素火炎中でガラス微粒子の合成を行う場合、より低い温度で微粒子を合成できる加水分解反応が主反応であると考えられている。そのため、排気ガス中に検出されるガス濃度は、HCl濃度>Cl濃度となるのが一般的である。ただし、ガラス原料ガスであるSiClの反応率が低下し、SiClが未反応のまま排気されると、結果として副生成物として生成されるHClとClの量も少なくなる。ここで上述した反応式のmol比を考慮すると、排気ガス中のHCl濃度がCl濃度と比較し相対的に低下する(SiCl1molに対し、HClが4mol又はClが2mol生成するため)。 When glass fine particles are synthesized in an oxyhydrogen flame, a hydrolysis reaction capable of synthesizing fine particles at a lower temperature is considered to be a main reaction. Therefore, the gas concentration detected in the exhaust gas is generally HCl concentration> Cl 2 concentration. However, when the reaction rate of SiCl 4 which is a glass raw material gas is reduced and SiCl 4 is exhausted without being reacted, the amount of HCl and Cl 2 produced as by-products is also reduced as a result. Here, considering the molar ratio of the above reaction formula, the HCl concentration in the exhaust gas is relatively lower than the Cl 2 concentration (because 4 mol of HCl or 2 mol of Cl 2 is generated with respect to 1 mol of SiCl 4 ). .

具体的には、排気ガス中のHCl濃度をA、Cl濃度をBとした場合、AとBの合計に占めるAの割合[A/(A+B)]が低下する。つまりガラス原料ガスの反応率の低下が、[A/(A+B)]の値と相関があるため、排気ガス濃度を分析することにより、反応率の増減を把握することが可能となる。
ガラス原料ガスの反応率の低下は、堆積効率と関係があるため、結果として石英多孔質母材の堆積速度が低下し、製造時間が長くなり、生産効率が悪化してしまう。
Specifically, when the HCl concentration in the exhaust gas is A and the Cl 2 concentration is B, the ratio of A to the total of A and B [A / (A + B)] decreases. That is, since the decrease in the reaction rate of the glass raw material gas has a correlation with the value of [A / (A + B)], it is possible to grasp the increase or decrease in the reaction rate by analyzing the exhaust gas concentration.
The reduction in the reaction rate of the glass raw material gas is related to the deposition efficiency. As a result, the deposition rate of the quartz porous base material is lowered, the manufacturing time is increased, and the production efficiency is deteriorated.

なお、バーナに供給するガス流量の具体的な調整方法は、水素ガス流量を増加する、供給する水素ガスと酸素ガスの比を調整するなど、使用するバーナの構造に合わせた調整を行えばよい。   In addition, the specific adjustment method of the gas flow rate supplied to a burner should just adjust to the structure of the burner to be used, such as increasing the hydrogen gas flow rate, adjusting the ratio of supplied hydrogen gas and oxygen gas, etc. .

図1は、本発明の石英多孔質母材の製造装置の一実施形態を示す構成図である。本実施形態の石英多孔質母材製造装置1は、排気口3付きのチャンバ2内に、ターゲット棒5の両端を保持し周方向に回転させる保持部材であるチャック7,8と、これらのチャック7,8に保持されたターゲット棒5の長手方向に沿って移動可能に設けられたバーナ9と、このバーナ9にガラス原料ガス、水素ガス、酸素ガス及びArなどのシールガスをそれぞれ供給するガス供給装置11〜14と、チャンバ2の排気口3に接続され、該排気口3から排出される排気ガス中のHCl濃度とCl濃度を測定する排ガス分析装置15とを有している。 FIG. 1 is a configuration diagram showing an embodiment of a quartz porous base material manufacturing apparatus according to the present invention. The quartz porous base material manufacturing apparatus 1 of the present embodiment includes chucks 7 and 8 that are holding members that hold both ends of a target bar 5 in a chamber 2 with an exhaust port 3 and rotate in the circumferential direction, and these chucks. A burner 9 movably provided along the longitudinal direction of the target bar 5 held by 7 and 8, and a gas for supplying a glass source gas, hydrogen gas, oxygen gas and Ar or other sealing gas to the burner 9 It has supply apparatuses 11 to 14 and an exhaust gas analyzer 15 that is connected to the exhaust port 3 of the chamber 2 and measures the HCl concentration and the Cl 2 concentration in the exhaust gas discharged from the exhaust port 3.

この石英多孔質母材製造装置1は、排ガス分析装置15によって測定された排気ガス中のHCl濃度をA、Cl濃度をBとした場合に、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、水素ガス供給装置11、酸素ガス供給装置12、ガラス原料ガス供給装置13、シールガス供給装置14の各供給ガス量を制御できるように構成されている。この排気ガス中のAとBの測定及びA/(A+B)≧0.95とするためのガス供給量の調整は、同一条件で同じ石英多孔質母材を製造する場合には、一度設定すれば同一条件のまま、同じ石英多孔質母材を製造することができるし、排気ガス中のA,Bを製造中に継続して測定し、その測定結果に基づいてそれぞれのガス供給装置11〜14によるガス供給量を適宜調整することもできる。 The quartz porous base material manufacturing apparatus 1 is configured such that when the HCl concentration in the exhaust gas measured by the exhaust gas analyzer 15 is A and the Cl 2 concentration is B, the ratio of A to the total of A and B [A / (A + B)] is in a relationship of A / (A + B) ≧ 0.95, each supply of the hydrogen gas supply device 11, the oxygen gas supply device 12, the glass raw material gas supply device 13, and the seal gas supply device 14 The gas amount can be controlled. The measurement of A and B in the exhaust gas and the adjustment of the gas supply amount for A / (A + B) ≧ 0.95 should be set once when the same quartz porous base material is manufactured under the same conditions. For example, the same porous quartz base material can be produced under the same conditions, and A and B in the exhaust gas are continuously measured during the production, and the gas supply devices 11 to 11 are measured based on the measurement results. 14 can be adjusted as appropriate.

この石英多孔質母材製造装置1において、排ガス分析装置15で測定された排気ガス中の前記AとBのデータを入力し、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるようにそれぞれのガス供給装置11〜14の各供給ガス量を自動制御する制御部16を設けてもよい。   In this quartz porous base material manufacturing apparatus 1, the data of A and B in the exhaust gas measured by the exhaust gas analyzer 15 are input, and the ratio of A to the total of A and B [A / (A + B)] However, you may provide the control part 16 which controls automatically each supply gas amount of each gas supply apparatus 11-14 so that it may become a relationship of A / (A + B)> = 0.95.

この石英多孔質母材製造装置1を用いて、ターゲット棒5の表面にガラス微粒子を堆積させて石英多孔質体6を形成し、石英多孔質母材4を製造するには、チャンバ2内のチャック7,8間にターゲット棒5を固定し、その後ターゲット棒5を回転させると共に、それぞれのガス供給装置11〜14からバーナ9にガラス原料ガス、水素ガス、酸素ガス及びシールガスをそれぞれ供給してバーナ9を点火する。   In order to manufacture the quartz porous base material 4 by depositing glass fine particles on the surface of the target rod 5 to form the quartz porous base material 4 using the quartz porous base material manufacturing apparatus 1, The target bar 5 is fixed between the chucks 7 and 8, and then the target bar 5 is rotated, and glass source gas, hydrogen gas, oxygen gas and seal gas are supplied to the burner 9 from the respective gas supply devices 11 to 14. To ignite the burner 9.

バーナ9から噴出した酸水素火炎10内では、ガラス原料ガスであるSiClが火炎中での加水分解反応及び酸化反応(主として加水分解反応)によってシリカ(SiO)からなるガラス微粒子、HCl及びClが生成する。生成したガラス微粒子は、ターゲット棒5の表面に付着、堆積する。一方、HCl及びClは、チャンバ2の排気口3からチャンバ2外に排出される。 In the oxyhydrogen flame 10 ejected from the burner 9, the glass raw material gas SiCl 4 is made of silica particles (SiO 2 ), HCl and Cl by the hydrolysis reaction and oxidation reaction (mainly hydrolysis reaction) in the flame. 2 is generated. The generated glass particles adhere to and accumulate on the surface of the target bar 5. On the other hand, HCl and Cl 2 are discharged out of the chamber 2 through the exhaust port 3 of the chamber 2.

バーナ9をターゲット棒5の長手方向に移動させながら、ターゲット棒5表面へのガラス微粒子の堆積を継続することで、ターゲット棒5の外周に所望の厚さの石英多孔質体6が堆積し、石英多孔質母材4が製造される。その後、バーナ9へのガス供給を停止して酸水素火炎10を消し、チャンバ2から石英多孔質母材4を取り出す。製造された石英多孔質母材4は、ガラス透明化工程を行い、光ファイバ製造用の母材などに用いられる。   While moving the burner 9 in the longitudinal direction of the target bar 5, by continuing the deposition of glass particles on the surface of the target bar 5, a quartz porous body 6 having a desired thickness is deposited on the outer periphery of the target bar 5, A quartz porous base material 4 is manufactured. Thereafter, the gas supply to the burner 9 is stopped, the oxyhydrogen flame 10 is turned off, and the quartz porous base material 4 is taken out from the chamber 2. The manufactured quartz porous base material 4 is subjected to a glass clarification process and used as a base material for optical fiber manufacturing.

ガラス原料ガスとしてSiClガス流量7.5SLM、水素ガス流量40〜100SLM、酸素ガス流量15〜40SLM、シールガスとしてアルゴンガス流量1SLMの条件で各ガスをバーナに供給し、ターゲット棒に向けて酸水素火炎を噴出させ、ガラス微粒子を生成させた。外径φ35mmの円棒状石英ガラスからなるターゲット棒を用い、その表面に経時的にガラス微粒子を堆積させ、φ230×1800mmの石英多孔質母材を製造した。この母材製造中、チャンバの排気口から排気ガスをサンプリングし、排気ガス中のHCl濃度(A)及びCl濃度(B)を測定し、AとBの合計に占めるAの割合[A/(A+B)]を計算し、%に換算した。 Each gas is supplied to the burner under the conditions of SiCl 4 gas flow rate 7.5 SLM, hydrogen gas flow rate 40-100 SLM, oxygen gas flow rate 15-40 SLM as glass source gas, and argon gas flow rate 1 SLM as seal gas, and acid toward the target rod A hydrogen flame was ejected to produce glass particles. Using a target rod made of a rod-shaped quartz glass having an outer diameter of φ35 mm, glass fine particles were deposited over time on the surface thereof to produce a porous quartz base material of φ230 × 1800 mm. During the production of the base material, the exhaust gas is sampled from the exhaust port of the chamber, the HCl concentration (A) and the Cl 2 concentration (B) in the exhaust gas are measured, and the ratio of A to the total of A and B [A / (A + B)] was calculated and converted to%.

製造終了後、平均堆積効率を算出した。平均堆積効率の計算方法は、実際に堆積した石英多孔質体質量を、製造に使用したSiClガスから理論的に生成するSiO量で割った値であり、それを%に換算した。 After completion of production, the average deposition efficiency was calculated. The calculation method of the average deposition efficiency was a value obtained by dividing the mass of the actually deposited quartz porous body by the amount of SiO 2 theoretically generated from the SiCl 4 gas used for production, and was converted to%.

水素ガス流量、酸素ガス流量を適宜変更し、同様な方法で石英多孔質母材を10本製造し、前記と同様にして、堆積効率[%]の算出と、A/(A+B)[%]の算出を実施した。   10 quartz porous base materials were manufactured by changing the hydrogen gas flow rate and oxygen gas flow rate as appropriate, and the deposition efficiency [%] was calculated and A / (A + B) [%] in the same manner as described above. Was calculated.

図1は、石英多孔質母材の10回の製造における堆積効率%と排気ガス中のAとBの合計に占めるAの割合A/(A+B)%の関係を示すグラフである。
図1に示すように、A/(A+B)≧95%の場合、堆積効率が55%を超えており、優れた堆積効率で石英多孔質母材を製造できることがわかる。一方、、A/(A+B)が95%未満であると、堆積効率は低下してしまう。従って、排気ガス中のAとBの合計に占めるAの割合が95%以上となるように各供給ガス量を制御しながらガラス微粒子の堆積を行って石英多孔質母材を得ることによって、ガラス微粒子のターゲット棒への堆積効率をより向上させることができることが実証された。
FIG. 1 is a graph showing the relationship between the deposition efficiency% and the ratio A / (A + B)% in the total of A and B in the exhaust gas in 10 times production of the quartz porous base material.
As shown in FIG. 1, when A / (A + B) ≧ 95%, the deposition efficiency exceeds 55%, and it can be seen that a quartz porous base material can be manufactured with excellent deposition efficiency. On the other hand, when A / (A + B) is less than 95%, the deposition efficiency decreases. Therefore, glass fine particles are deposited while controlling the amount of each supply gas so that the ratio of A in the total of A and B in the exhaust gas is 95% or more, thereby obtaining a porous glass preform. It was demonstrated that the deposition efficiency of fine particles on the target rod can be further improved.

本発明の石英多孔質母材の製造装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the manufacturing apparatus of the quartz porous base material of this invention. 実施例の実験結果を示すグラフである。It is a graph which shows the experimental result of an Example.

符号の説明Explanation of symbols

1…石英多孔質母材製造装置、2…チャンバ、3…排気口、4…石英多孔質母材、5…ターゲット、6…石英多孔質体、7,8…チャック(保持部材)、9…バーナ、10…酸水素火炎、11…水素ガス供給装置、12…酸素ガス供給装置、13…ガラス原料ガス供給装置、14…シールガス供給装置、15…排ガス分析装置、16…制御部。
DESCRIPTION OF SYMBOLS 1 ... Quartz porous base material manufacturing apparatus, 2 ... Chamber, 3 ... Exhaust port, 4 ... Quartz porous base material, 5 ... Target, 6 ... Quartz porous body, 7, 8 ... Chuck (holding member), 9 ... Burner, 10 ... oxyhydrogen flame, 11 ... hydrogen gas supply device, 12 ... oxygen gas supply device, 13 ... glass raw material gas supply device, 14 ... seal gas supply device, 15 ... exhaust gas analyzer, 16 ... control unit.

Claims (6)

チャンバ内に設けられたバーナに、少なくともガラス原料ガスと水素ガスと酸素ガスを供給し、バーナから噴出する酸水素火炎中でガラス微粒子を生成させ、生成させたガラス微粒子を回転するターゲット棒の表面に堆積させて石英多孔質母材を製造する方法において、チャンバからの排気ガス中のHCl濃度をA、Cl濃度をBとした場合に、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、各供給ガス量を制御しながらガラス微粒子の堆積を行って石英多孔質母材を得ることを特徴とする石英多孔質母材の製造方法。 The surface of the target rod that rotates at least the glass raw material gas, hydrogen gas, and oxygen gas supplied to the burner provided in the chamber, generates glass particles in an oxyhydrogen flame ejected from the burner, and rotates the generated glass particles In the method for producing a quartz porous base material by depositing A, the ratio of A in the total of A and B [A / B, where HCl concentration in the exhaust gas from the chamber is A and Cl 2 concentration is B, (A + B)] has a relationship of A / (A + B) ≧ 0.95, and the quartz porous material is obtained by depositing glass fine particles while controlling the amount of each supply gas. A method for producing a porous base material. ガラス微粒子の堆積効率を55%以上としてガラス微粒子の堆積を行うことを特徴とする請求項1に記載の石英多孔質母材の製造方法。   2. The method for producing a quartz porous base material according to claim 1, wherein the glass fine particles are deposited with a glass fine particle deposition efficiency of 55% or more. チャンバからの排気ガス中の前記AとBを測定し、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、各供給ガス量を自動制御しながらガラス微粒子の堆積を行うことを特徴とする請求項1又は2に記載の石英多孔質母材の製造方法。   The A and B in the exhaust gas from the chamber are measured, and the ratio of A to the total of A and B [A / (A + B)] has a relationship of A / (A + B) ≧ 0.95. 3. The method for producing a quartz porous base material according to claim 1, wherein the glass fine particles are deposited while automatically controlling the amount of each supply gas. 排気口付きのチャンバ内に、ターゲット棒の両端を保持し周方向に回転させる保持部材と、該保持部材に保持されたターゲット棒の長手方向に沿って移動可能に設けられたバーナと、該バーナに少なくともガラス原料ガスと水素ガスと酸素ガスを供給するガス供給装置とを有する石英多孔質母材の製造装置において、
前記チャンバの排気口に、該排気口から排出される排気ガス中のHCl濃度とCl濃度を測定する排ガス分析装置が接続されていることを特徴とする石英多孔質母材の製造装置。
A holding member that holds both ends of the target rod in a chamber with an exhaust port and rotates in the circumferential direction, a burner provided movably along the longitudinal direction of the target rod held by the holding member, and the burner In the quartz porous base material manufacturing apparatus having at least a glass raw material gas, a hydrogen gas, and a gas supply device for supplying oxygen gas,
An exhaust gas analyzer for measuring HCl concentration and Cl 2 concentration in exhaust gas exhausted from the exhaust port is connected to the exhaust port of the chamber.
前記排ガス分析装置によって測定された排気ガス中のHCl濃度をA、Cl濃度をBとした場合に、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように、前記ガス供給装置の各供給ガス量を制御可能に構成されていることを特徴とする請求項4に記載の石英多孔質母材の製造装置。 When the HCl concentration in the exhaust gas measured by the exhaust gas analyzer is A and the Cl 2 concentration is B, the ratio of A to the total of A and B [A / (A + B)] is A / (A + B 5) The apparatus for producing a porous quartz base material according to claim 4, wherein each supply gas amount of the gas supply apparatus is controllable so as to satisfy a relationship of ≧ 0.95. 前記排ガス分析装置で測定された排気ガス中の前記AとBのデータを入力し、AとBの合計に占めるAの割合[A/(A+B)]が、A/(A+B)≧0.95の関係となるように前記ガス供給装置の各供給ガス量を制御する制御部を有することを特徴とする請求項4又は5に記載の石英多孔質母材の製造装置。
The data of A and B in the exhaust gas measured by the exhaust gas analyzer is input, and the ratio of A to the total of A and B [A / (A + B)] is A / (A + B) ≧ 0.95 6. The quartz porous base material manufacturing apparatus according to claim 4, further comprising a control unit configured to control each supply gas amount of the gas supply device so as to satisfy the following relationship.
JP2005161333A 2005-06-01 2005-06-01 Method and apparatus for manufacturing quartz porous base material Active JP4343146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161333A JP4343146B2 (en) 2005-06-01 2005-06-01 Method and apparatus for manufacturing quartz porous base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161333A JP4343146B2 (en) 2005-06-01 2005-06-01 Method and apparatus for manufacturing quartz porous base material

Publications (2)

Publication Number Publication Date
JP2006335595A JP2006335595A (en) 2006-12-14
JP4343146B2 true JP4343146B2 (en) 2009-10-14

Family

ID=37556459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161333A Active JP4343146B2 (en) 2005-06-01 2005-06-01 Method and apparatus for manufacturing quartz porous base material

Country Status (1)

Country Link
JP (1) JP4343146B2 (en)

Also Published As

Publication number Publication date
JP2006335595A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JP4343146B2 (en) Method and apparatus for manufacturing quartz porous base material
JP5678467B2 (en) Glass base material manufacturing method
JP2005075682A (en) Method of manufacturing porous glass preform
EP2287119B1 (en) Method of manufacturing optical fiber preform using plasma torch
JP2003226545A (en) Method for manufacturing optical fiber preform and device for manufacturing optical fiber preform
JP4236990B2 (en) Method for producing porous preform for optical fiber
JP5087929B2 (en) Method for producing glass particulate deposit
JP2013043804A (en) Method for manufacturing glass fine particle deposited body
JP5092226B2 (en) Method for producing glass particulate deposit
JP4252871B2 (en) Optical fiber preform manufacturing method
JP2006096608A (en) Method for producing glass preform
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JP4581749B2 (en) Method for adjusting refractive index of porous glass and method for producing transparent glass
JPH092830A (en) Production device for glass preform
JP2003040623A (en) Method for producing fine glass particle heap
JP4404214B2 (en) Manufacturing method of glass preform for optical fiber
JP2004262719A (en) Method of manufacturing fluorine added glass article
JP2004099342A (en) Method and apparatus for manufacturing glass member
JP2003267744A (en) Method for producing optical fiber glass preform
JP2523154B2 (en) Method for manufacturing glass particulate deposit
JPH05155630A (en) Production of silica porous base material
JP2000001328A (en) Production of optical fiber preform
JP2004307235A (en) Method of manufacturing glass preform for optical fiber
JP2005145723A (en) Method for manufacturing quartz porous preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4343146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250