JP2000272930A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JP2000272930A
JP2000272930A JP8282899A JP8282899A JP2000272930A JP 2000272930 A JP2000272930 A JP 2000272930A JP 8282899 A JP8282899 A JP 8282899A JP 8282899 A JP8282899 A JP 8282899A JP 2000272930 A JP2000272930 A JP 2000272930A
Authority
JP
Japan
Prior art keywords
optical fiber
soot
fiber preform
starting material
glass fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8282899A
Other languages
Japanese (ja)
Inventor
Masataka Kin
正▲高▼ 金
Hideaki Ito
秀明 伊藤
Yoshio Shimoyama
義夫 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP8282899A priority Critical patent/JP2000272930A/en
Publication of JP2000272930A publication Critical patent/JP2000272930A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely produce a large-sized optical fiber preform not having soot crazing and bubbles at a low cost. SOLUTION: When producing an optical fiber preform by the OVD method, the throughput of a fuel gas blown from the feed gas exhaust nozzle of a burner 3 is controlled so as for a deposited plane temperature to be 950±100 deg.C and the traversing speed of a starting material 2 is controlled so as for the thickness of deposited glass fine-grain to be <=0.3 mm. Consequently, a soot density is made to be 0.8+0.2 g/cm3, which leads to the capability of reliable prevention of soot crazing due to a decrease in the soot density and bubble formation in dehydration and sintering due to an increase in the soot density difference, and a large-sized optical fiber preform can be produced, and what is more, the production cost is lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、OVD(Outside
Vapour-phase Deposition)法により光ファイバ用多孔
質母材を製造するために用いられる光ファイバ母材の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an OVD (Outside
The present invention relates to a method for producing an optical fiber preform used for producing a porous preform for an optical fiber by a vapor-phase deposition method.

【0002】[0002]

【従来の技術】従来より、この種の光ファイバ母材の製
造方法として、棒状の出発材に対し直交する方向からバ
ーナにより原料ガス、燃料ガス、助燃ガス等を噴出させ
つつ、上記出発材とバーナとを上記出発材の長手方向に
相対的に往復移動(トラバース)させながら、上記原料
ガスの酸水素火炎中での加水分解により生じたガラス微
粒子を上記出発材の周囲に対し順次堆積することにより
光ファイバ用多孔質母材を製造する方法が知られている
(例えば、特許2793617号公報、特開平6−16
447号公報、または、特開平9−118539号公報
参照)。
2. Description of the Related Art Heretofore, as a method of manufacturing an optical fiber preform of this type, a raw material gas, a fuel gas, an auxiliary gas and the like have been ejected from a rod-shaped starting material by a burner in a direction perpendicular to the starting material. Glass particles generated by hydrolysis of the raw material gas in an oxyhydrogen flame are sequentially deposited around the starting material while relatively reciprocating (traversing) the burner and the starting material in the longitudinal direction. A method for producing a porous preform for an optical fiber is known (for example, Japanese Patent No. 2793617, Japanese Patent Application Laid-Open No. 6-16).
447 or JP-A-9-118539).

【0003】[0003]

【発明が解決しようとする課題】ところが、図2に示す
ように、ガラス微粒子堆積体(スート)の成長につれて
スートの密度(スート密度)が低下するようになってし
まう。このスート密度の低下は、図3に示すように、堆
積面の温度の低下に起因するものである。すなわち、堆
積面の温度が高い時には焼き締め効果により、ガラス微
粒子がより高密度に付着する一方、堆積面の温度が低く
なれば上記の焼き締め効果が得られないため、ガラス微
粒子が低密度に付着するようになってしまうと考えられ
る。このようにスート密度が低くなれば、スートが割れ
やすくなってしまうという不都合がある。また、スート
の中心部と外周部とのスート密度の差が大きくなるた
め、上記光ファイバ母材を脱水・焼結する際に、内部に
気泡が発生し易くなってしまうという不都合もある。さ
らに、上記スート密度が低下すれば、スートの嵩が増え
ることになるため、製造終了時の光ファイバ母材は比較
的太径のものとなってしまう。この場合、製造設備を大
型化する必要があり、特に脱水・焼結工程に用いるマッ
フル管は定期的に交換する必要があるため、このマッフ
ル管が大型化すれば、その分ランニングコストが増大し
てしまうという不都合もある。
However, as shown in FIG. 2, the soot density (soot density) decreases as the glass fine particle deposit (soot) grows. This decrease in soot density is caused by a decrease in the temperature of the deposition surface, as shown in FIG. In other words, when the temperature of the deposition surface is high, the glass fine particles adhere more densely due to the shrinkage effect, whereas when the temperature of the deposition surface is low, the above-described shrinkage effect cannot be obtained. It is considered that they will adhere. If the soot density is reduced as described above, there is a disadvantage that the soot is easily broken. In addition, since the difference in soot density between the central portion and the outer peripheral portion of the soot becomes large, there is also a disadvantage that bubbles are easily generated inside the optical fiber preform when the optical fiber preform is dehydrated and sintered. Further, when the soot density is reduced, the bulk of the soot increases, so that the optical fiber preform at the end of the production has a relatively large diameter. In this case, it is necessary to increase the size of the manufacturing equipment, and in particular, it is necessary to periodically replace the muffle pipe used in the dewatering and sintering process. There is also the inconvenience of doing so.

【0004】加えて、近年、光ファイバの製造コスト削
減のために、より太径かつ長尺である大型の光ファイバ
母材を製造することが要求されている。ところが、径を
太くすればスート外周部のスート密度がより一層低くな
ってしまい、上記スート割れがより一層頻繁に発生する
おそれがある。また、長尺になれば一回のトラバースに
長時間を要するため、その間の堆積面の温度の低下を招
いてしまい、それに伴いスート密度が低下してしまうと
いう不都合がある。このため、スート中心部と外周部と
の密度差がより一層大きくなり、脱水・焼結の際に気泡
が発生する確率が高くなってしまう。加えて、スート密
度がより一層低くなれば、製造終了時の光ファイバがさ
らに太径となってしまうため、上記製造設備を大型化せ
ざるを得ないという問題もある。その結果、従来の光フ
ァイバ母材の製造方法では、大型の光ファイバ母材を確
実かつ安価に製造することが極めて困難なものとなって
いる。
In addition, in recent years, it has been required to manufacture a large-diameter and long-sized optical fiber preform in order to reduce the manufacturing cost of the optical fiber. However, when the diameter is increased, the soot density at the outer periphery of the soot is further reduced, and the soot crack may occur more frequently. In addition, if the length becomes long, one traverse takes a long time, so that the temperature of the deposition surface during that time is lowered, and the soot density is reduced accordingly. For this reason, the density difference between the central part and the outer peripheral part of the soot is further increased, and the probability of generation of bubbles during dehydration and sintering is increased. In addition, if the soot density is further reduced, the diameter of the optical fiber at the end of the production is further increased, so that there is a problem that the production equipment must be enlarged. As a result, it is extremely difficult to reliably and inexpensively manufacture a large-sized optical fiber preform by the conventional method for producing an optical fiber preform.

【0005】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、スート割れを
起こさない、かつ、脱水・焼結時に気泡が発生しない大
型の光ファイバ母材を確実に、しかも低コストで製造す
ることにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a large optical fiber preform that does not cause soot cracking and does not generate bubbles during dehydration and sintering. Is to be manufactured reliably and at low cost.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、ガラス微粒子堆積層の層厚及び堆積面
の温度を制御することによってスート密度を制御する点
に着目し実験を繰り返した結果、スート密度が最適な値
となる層厚及び温度の設定を見出し、この条件に従えば
スート割れや、脱水・焼結時の気泡の発生が防止された
大型の光ファイバ母材が得られることを確認して本発明
を完成するに至ったものである。
Means for Solving the Problems In order to achieve the above object, the present inventor focused on the point of controlling the soot density by controlling the thickness of the glass fine particle deposition layer and the temperature of the deposition surface. As a result of the repetition, we found the setting of the layer thickness and the temperature at which the soot density became the optimum value.According to these conditions, a large optical fiber preform that prevented soot cracking and bubbles during dehydration and sintering was obtained. The present invention has been completed after confirming that it can be obtained.

【0007】具体的に、本発明は、バーナに設けられた
原料ガス噴出口と出発材とをこの出発材の長手方向に相
対的に往復移動させながら上記原料ガス噴出口から原料
ガス及び燃料ガスを出発材に向かって噴出させ、この原
料ガスの酸水素火炎中での加水分解反応により生じたガ
ラス微粒子を上記出発材の径方向に積層状態に堆積させ
て光ファイバ母材を製造する光ファイバ母材の製造方法
を対象とし、この方法において、上記ガラス微粒子の堆
積層厚さが0.3mm以下となり、かつ、堆積面の温度
が950±100℃となる条件で上記ガラス微粒子を堆
積させて、ガラス微粒子堆積体の密度を0.8±0.2
g/cm3にすることを特定事項とする方法である。こ
こで、ガラス微粒子の堆積層厚さは、例えば原料ガス噴
出口と出発材との往復移動の速度を制御することによっ
て制御するようにすればよい。また、堆積面の温度は、
例えば燃料ガス流量を制御することによって制御するよ
うにすればよい。
Specifically, according to the present invention, the raw material gas and the fuel gas are supplied from the raw material gas injection port while the raw material gas injection port provided in the burner and the starting material are reciprocated relatively in the longitudinal direction of the starting material. An optical fiber for producing an optical fiber preform by causing glass particles generated by a hydrolysis reaction of this raw material gas in an oxyhydrogen flame to be deposited in a radially stacked state on the starting material. The method is directed to a method of manufacturing a base material. In this method, the glass fine particles are deposited under the condition that the thickness of the deposited layer of the glass fine particles is 0.3 mm or less and the temperature of the deposition surface is 950 ± 100 ° C. , The density of the glass particle deposit is 0.8 ± 0.2
g / cm 3 . Here, the thickness of the deposited layer of the glass fine particles may be controlled, for example, by controlling the speed of reciprocating movement between the raw material gas ejection port and the starting material. The temperature of the deposition surface is
For example, the control may be performed by controlling the fuel gas flow rate.

【0008】この場合、ガラス微粒子の堆積層厚さを
0.3mm以下とし、かつ、堆積面の温度を950±1
00℃として上記ガラス微粒子を積層させれば、ガラス
微粒子堆積体(スート)の密度が0.8±0.2g/c
3になり、スートの径方向にスート密度がほぼ一定と
なる。このため、このスート密度が上記スートの外周部
にかけて低下することに起因するスート割れや、スート
密度の差が大きくなることに起因する脱水・焼結時の気
泡の発生が確実に防止される。また、スート密度を比較
的高くすることによりスートの嵩が小さくなり、その結
果、製造終了時の光ファイバ母材の径が比較的細径にな
る。このため、製造設備を大型化に伴うコストの増大が
回避される。しかも、スートの嵩が小さくなることによ
って、少ない熱量で脱水・焼結することが可能となり、
製造コストの低減が図られる。
In this case, the thickness of the deposited layer of the glass fine particles is set to 0.3 mm or less, and the temperature of the deposited surface is 950 ± 1.
When the glass fine particles are laminated at a temperature of 00 ° C., the density of the glass fine particle deposit (soot) is 0.8 ± 0.2 g / c.
m 3 , and the soot density becomes substantially constant in the radial direction of the soot. For this reason, soot cracks caused by the decrease in the soot density toward the outer peripheral portion of the soot and bubbles generated during dehydration and sintering caused by a difference in the soot density are reliably prevented. In addition, by making the soot density relatively high, the bulk of the soot becomes small, and as a result, the diameter of the optical fiber preform at the end of production becomes relatively small. For this reason, an increase in cost due to an increase in the size of the manufacturing equipment is avoided. In addition, by reducing the bulk of the soot, it becomes possible to perform dehydration and sintering with a small amount of heat,
Manufacturing costs can be reduced.

【0009】[0009]

【発明の効果】以上説明したように、本発明における光
ファイバ母材の製造方法によれば、スート割れや気泡発
生のない大型の光ファイバ母材を確実に、かつ、安価に
製造することができる。
As described above, according to the method of manufacturing an optical fiber preform according to the present invention, a large-sized optical fiber preform free of soot cracks and bubbles can be manufactured reliably and at low cost. it can.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、本発明の製造方法を実施するため
の光ファイバ母材の製造装置の一例を示し、1は出発材
2に対し堆積されたガラス微粒子堆積体(スート)、3
は上記出発材2に対し直交する方向から火炎を吹き付け
るバーナ、4は上記スート1を挟んでバーナ3と相対向
する排気管である。
FIG. 1 shows an example of an apparatus for manufacturing an optical fiber preform for carrying out the manufacturing method of the present invention. Reference numeral 1 denotes a glass fine particle deposit (soot) deposited on a starting material 2;
Reference numeral 4 denotes a burner for blowing a flame from a direction orthogonal to the starting material 2, and 4 denotes an exhaust pipe opposed to the burner 3 with the soot 1 interposed therebetween.

【0012】上記出発材2はその両端がそれぞれ把持手
段5により把持され、この両把持手段5,5は出発材2
を把持してその軸X回りに回転させながら軸X方向(同
図の左右方向)に往復移動(トラバース)可能に基台
(図示省略)上に配設されている。また、上記スート1
を含む出発材2と、バーナ3及び排気管4の各先端部と
が反応容器(図示省略)内に収容されている。
Both ends of the starting material 2 are gripped by gripping means 5, and both gripping means 5, 5
Is arranged on a base (not shown) so as to be able to reciprocate (traverse) in the direction of the axis X (the left-right direction in the figure) while rotating around the axis X while gripping. The above suit 1
Are contained in a reaction vessel (not shown).

【0013】上記バーナ3は、原料ガス、燃料ガス、助
燃ガス及びシールガス等が供給されこれらのガスを先端
から噴出させて上記原料ガス中の原料を酸水素火炎中で
加水分解させることによりガラス微粒子を上記出発材2
に対し順次堆積させるものである。
The burner 3 is supplied with a raw material gas, a fuel gas, a combustion supporting gas, a seal gas, and the like, and ejects these gases from the tip to hydrolyze the raw materials in the raw material gas in an oxyhydrogen flame. Starting material 2
Are sequentially deposited.

【0014】上記原料ガスとしてはSiCl4等のケイ
素化合物が用いられる。また、上記シールガスとしては
Ar、燃料ガスとしてはH2、上記助燃ガスとしてはO2
がそれぞれ用いられる。この場合、酸水素火炎中で上記
原料ガスが加水分解され(SiCl4+2H2O→SiO
2+4HCl)、SiO2のガラス微粒子がターゲット
(出発材2及びスート1)に対し堆積されることにな
る。
As the source gas, a silicon compound such as SiCl 4 is used. Ar is used as the seal gas, H 2 is used as the fuel gas, and O 2 is used as the auxiliary gas.
Are respectively used. In this case, the raw material gas is hydrolyzed in an oxyhydrogen flame (SiCl 4 + 2H 2 O → SiO
2 + 4HCl) and SiO 2 glass particles are deposited on the target (starting material 2 and soot 1).

【0015】そして、上記バーナ3には、このバーナ3
に対し少なくとも上記燃料ガスを供給する図示省略の供
給装置が接続されており、この供給装置には上記燃料ガ
スについての流量調整手段(例えばマスフローコントロ
ーラ)が設けられている。そして、この流量調整手段が
図示省略の流量制御手段からの制御信号により作動制御
されて堆積過程に応じた所定流量の原料ガスが供給され
るようになっている。すなわち、上記燃料ガスの流量
は、流量調整手段及び流量制御手段により、スート1の
径方向の成長に対してその流量が直線的に大となるよう
に制御されるようになっている。この燃料ガスの流量制
御は、過去に得られたデータに基づき、径に対する燃料
ガスの流量を予め設定し、その傾きに従って上記燃料ガ
スの流量を調整するようにしている。具体的には、スー
ト1の径を超音波式、レーザ式などの距離測定装置等に
よって測定しながら、この測定値に基づき上記スート1
が所定径まで成長する間に上記燃料ガスの流量を所定の
流量にまで徐々に増加させるようにしている。このよう
に上記燃料ガスの流量をスート1の径に対して所定の傾
きでもって直線的に増加させるようにして、堆積面の温
度を950±100℃となるようにしている。
The burner 3 includes the burner 3
Is connected to a supply device (not shown) for supplying at least the fuel gas. The supply device is provided with flow rate adjusting means (for example, a mass flow controller) for the fuel gas. The flow rate adjusting means is operated and controlled by a control signal from a flow rate control means (not shown) so that a raw material gas having a predetermined flow rate according to the deposition process is supplied. That is, the flow rate of the fuel gas is controlled by the flow rate adjusting means and the flow rate control means so that the flow rate is linearly increased with respect to the radial growth of the soot 1. In this fuel gas flow rate control, the flow rate of the fuel gas with respect to the diameter is set in advance based on the data obtained in the past, and the flow rate of the fuel gas is adjusted according to the gradient. Specifically, while measuring the diameter of the soot 1 by a distance measuring device such as an ultrasonic type or a laser type, the soot 1 is determined based on the measured value.
While the gas grows to a predetermined diameter, the flow rate of the fuel gas is gradually increased to a predetermined flow rate. As described above, the flow rate of the fuel gas is linearly increased at a predetermined inclination with respect to the diameter of the soot 1 so that the temperature of the deposition surface is 950 ± 100 ° C.

【0016】また、上記スート1の径の計測結果に基づ
いて把持手段5,5のトラバース速度を制御する速度制
御手段(図示省略)を備えており、この速度制御手段に
より、上記トラバース速度を制御して、ガラス微粒子の
堆積層厚さを制御するようにしている。すなわち、一回
のトラバースによって堆積されるガラス微粒子堆積層の
層厚が所定値よりも薄すぎるときは、上記トラバースの
速度を遅くする一方、所定値よりも分厚いときは、トラ
バースの速度を速くするようにしている。これにより、
ガラス微粒子堆積層の層厚が0.3mm以下に制御され
るようになっている。
Further, there is provided speed control means (not shown) for controlling the traverse speed of the gripping means 5, 5 based on the measurement result of the diameter of the soot 1, and the speed control means controls the traverse speed. Thus, the thickness of the deposited layer of the glass particles is controlled. That is, when the thickness of the glass particle deposition layer deposited by one traverse is too thin than a predetermined value, the speed of the traverse is reduced, and when the thickness is thicker than the predetermined value, the speed of the traverse is increased. Like that. This allows
The thickness of the glass particle deposition layer is controlled to 0.3 mm or less.

【0017】このように、ガラス微粒子堆積層の層厚を
0.3mm以下にし、堆積面の温度を950±100℃
とすることにより、スート密度が0.8±0.2g/c
3となる。
As described above, the thickness of the glass fine particle deposition layer is set to 0.3 mm or less, and the temperature of the deposition surface is set to 950 ± 100 ° C.
So that the soot density is 0.8 ± 0.2 g / c
m 3 .

【0018】そして、上記の条件であれば、スート密度
の低下に起因するスート割れや、スート密度差が大きく
なることに起因する脱水・焼結時の気泡の発生が防止さ
れ、大型の光ファイバ母材を確実に得られることが実験
により確認できた。
Under the above conditions, soot cracks due to a decrease in soot density and bubbles during dehydration and sintering due to an increase in the soot density difference are prevented. Experiments confirmed that the base material could be obtained reliably.

【0019】また、スート密度を比較的高くすることに
よって、脱水・焼結時の熱量の低減化が図られることが
確認できた。これは、スート密度を高くすればガラス微
粒子堆積体の径が小さくなると共に、スート1の内部に
含まれる空気が少なくなるため、空気が多く含まれる場
合の断熱効果がなく、その分少ない熱量でより短時間に
焼結できるためと考えられる。このため、大型の光ファ
イバ母材を低コストで製造できるようになる。 <他の実施形態>なお、本発明は、上記実施形態に限定
されるものではなく、その他種々の実施形態を包含する
ものでる。すなわち、上記実施形態では、ガラス微粒子
の堆積層の層厚をトラバース速度を制御することによっ
て制御するようにしているが、これに限らず、例えば、
原料ガスの流量または堆積効率を制御することによって
ガラス微粒子の堆積層厚さを0.3mm以下となるよう
にしてもよい。例えば、原料ガスの流量を制御する場合
には、上記ガラス微粒子の堆積層厚さが薄すぎるときに
は、上記原料ガス流量を大とする一方、堆積層厚さが分
厚いときには、上記原料ガス流量を小とすればよい。
It has also been confirmed that by making the soot density relatively high, the amount of heat during dehydration and sintering can be reduced. This is because if the soot density is increased, the diameter of the glass fine particle deposit becomes smaller and the air contained in the soot 1 is reduced, so that there is no heat insulation effect when a large amount of air is contained, and the amount of heat is reduced accordingly. This is probably because sintering can be performed in a shorter time. For this reason, a large optical fiber preform can be manufactured at low cost. <Other Embodiments> Note that the present invention is not limited to the above-described embodiment, but includes various other embodiments. That is, in the above-described embodiment, the layer thickness of the deposited layer of the glass fine particles is controlled by controlling the traverse speed.
By controlling the flow rate or the deposition efficiency of the raw material gas, the thickness of the deposited layer of the glass fine particles may be reduced to 0.3 mm or less. For example, when controlling the flow rate of the raw material gas, the flow rate of the raw material gas is increased when the thickness of the deposited layer of the glass particles is too small, while the flow rate of the raw material gas is reduced when the deposited layer thickness is large. And it is sufficient.

【0020】また、上記実施形態では、燃料ガスの流量
の制御として、この燃料ガスの流量のスート1の径に対
する傾きを予め設定し、この傾きに従って上記燃料ガス
を流量調整しているが、これに限らず、例えば、サーモ
グラフィ等の温度計測手段を用いて堆積面の温度を計測
しながら、この計測値に基づいて堆積面の温度が950
±100℃となるように上記燃料ガス流量の流量調整を
行ってもよい。なお、上記温度計測手段としては、温度
計測点である体積面が、スート1の成長と共に移動する
ことを考慮すれば、非接触式の温度計測手段とすること
が好ましい。
In the above embodiment, as the control of the flow rate of the fuel gas, the gradient of the flow rate of the fuel gas with respect to the diameter of the soot 1 is set in advance, and the flow rate of the fuel gas is adjusted according to the gradient. Not limited to this, for example, while measuring the temperature of the deposition surface using a temperature measuring means such as a thermography, the temperature of the deposition surface is 950 based on the measured value.
The fuel gas flow rate may be adjusted so as to be ± 100 ° C. The temperature measuring means is preferably a non-contact type temperature measuring means, considering that the volume surface, which is a temperature measuring point, moves with the growth of the soot 1.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る母材製造装置の概要を示す平面図
である。
FIG. 1 is a plan view showing an outline of a base material manufacturing apparatus according to the present invention.

【図2】従来の光ファイバ母材の製造方法におけるスー
ト径に対するスート密度の変化を示す図である。
FIG. 2 is a diagram showing a change in soot density with respect to soot diameter in a conventional method for manufacturing an optical fiber preform.

【図3】従来の光ファイバ母材の製造方法におけるスー
ト径に対する堆積面の温度の変化を示す図である。
FIG. 3 is a diagram showing a change in temperature of a deposition surface with respect to a soot diameter in a conventional method of manufacturing an optical fiber preform.

【符号の説明】[Explanation of symbols]

1 スート(ガラス微粒子堆積体) 2 出発材 3 バーナ 1 soot (glass particle deposit) 2 starting material 3 burner

フロントページの続き (72)発明者 下山 義夫 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 4G021 EA03 EB11 EB26 Continued on the front page (72) Inventor Yoshio Shimoyama 4-3 Ikejiri, Itami-shi, Hyogo F-term in Mitsubishi Cable Industries, Ltd. Itami Works (reference) 4G021 EA03 EB11 EB26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 バーナに設けられた原料ガス噴出口と出
発材とをこの出発材の長手方向に相対的に往復移動させ
ながら上記原料ガス噴出口から原料ガス及び燃料ガスを
出発材に向かって噴出させ、この原料ガスの酸水素火炎
中での加水分解反応により生じたガラス微粒子を上記出
発材の径方向に積層状態に堆積させて光ファイバ母材を
製造する光ファイバ母材の製造方法において、 上記ガラス微粒子の堆積層厚さが0.3mm以下とな
り、かつ、堆積面の温度が950±100℃となる条件
で上記ガラス微粒子を堆積させて、ガラス微粒子堆積体
の密度を0.8±0.2g/cm3にすることを特徴と
する光ファイバ母材の製造方法。
1. A source gas jet port provided on a burner and a starting material are reciprocated relatively in the longitudinal direction of the starting material while the source gas and fuel gas are directed toward the starting material from the source gas jet port. In the method for producing an optical fiber preform, the glass material produced by the hydrolysis reaction of the raw material gas in an oxyhydrogen flame is deposited in a radially stacked state of the starting material to produce an optical fiber preform. The glass fine particles are deposited under the condition that the thickness of the deposited layer of the glass fine particles is 0.3 mm or less and the temperature of the deposition surface is 950 ± 100 ° C., and the density of the glass fine particle deposit is 0.8 ± 0.5%. A method for producing an optical fiber preform, wherein the preform is 0.2 g / cm 3 .
【請求項2】 請求項1において、 ガラス微粒子の堆積層厚さを、原料ガス噴出口と出発材
との往復移動の速度を制御することによって制御するこ
とを特徴とする光ファイバ母材の製造方法。
2. An optical fiber preform according to claim 1, wherein the thickness of the deposited layer of the glass fine particles is controlled by controlling the reciprocating speed between the raw material gas ejection port and the starting material. Method.
【請求項3】 請求項1において、 堆積面の温度を、燃料ガス流量を制御することによって
制御することを特徴とする光ファイバ母材の製造方法。
3. The method of manufacturing an optical fiber preform according to claim 1, wherein the temperature of the deposition surface is controlled by controlling a flow rate of a fuel gas.
JP8282899A 1999-03-26 1999-03-26 Production of optical fiber preform Pending JP2000272930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8282899A JP2000272930A (en) 1999-03-26 1999-03-26 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8282899A JP2000272930A (en) 1999-03-26 1999-03-26 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JP2000272930A true JP2000272930A (en) 2000-10-03

Family

ID=13785271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8282899A Pending JP2000272930A (en) 1999-03-26 1999-03-26 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JP2000272930A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090276A1 (en) * 2001-04-27 2002-11-14 Pirelli & C. S.P.A. Method for producing an optical fiber preform
JP2003002681A (en) * 2001-06-18 2003-01-08 Furukawa Electric Co Ltd:The Method and apparatus for producing optical fiber preform
WO2003037808A1 (en) * 2001-10-26 2003-05-08 Heraeus Tenevo Ag Method for producing a tube consisting of quartz glass, tubular semi-finished product consisting of porous quartz glass, and the use of the same
WO2003070652A1 (en) * 2002-02-20 2003-08-28 Fujikura Ltd. Optical glass and method for producing the same
WO2004014812A1 (en) * 2002-08-12 2004-02-19 Lg Cable Ltd. Method and apparatus for manufacturing optical fiber preforms, using the outside vapor deposition process
WO2004035495A1 (en) * 2002-10-17 2004-04-29 Lg Cable Ltd. Method and apparatus for fabricating an optical fiber preform in ovd
WO2006080294A1 (en) * 2005-01-26 2006-08-03 Shin-Etsu Chemical Co., Ltd. Quartz glass preform for optical fiber and process for producing the same
JP2007153678A (en) * 2005-12-06 2007-06-21 Fujikura Ltd Method of producing porous silica glass preform
KR100762611B1 (en) 2006-01-10 2007-10-01 삼성전자주식회사 Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
WO2011108639A1 (en) * 2010-03-03 2011-09-09 株式会社フジクラ Method of manufacture for porous quartz material, method of manufacture for optical fibre pre-form, porous quartz material and optical fibre pre-form
US8516855B2 (en) 2001-04-27 2013-08-27 Prysmian Cavi E Sistemi Energia S.R.L. Method for producing an optical fiber preform

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002090276A1 (en) * 2001-04-27 2002-11-14 Pirelli & C. S.P.A. Method for producing an optical fiber preform
US8516855B2 (en) 2001-04-27 2013-08-27 Prysmian Cavi E Sistemi Energia S.R.L. Method for producing an optical fiber preform
JP2003002681A (en) * 2001-06-18 2003-01-08 Furukawa Electric Co Ltd:The Method and apparatus for producing optical fiber preform
WO2003037808A1 (en) * 2001-10-26 2003-05-08 Heraeus Tenevo Ag Method for producing a tube consisting of quartz glass, tubular semi-finished product consisting of porous quartz glass, and the use of the same
US7437893B2 (en) 2002-02-20 2008-10-21 Fujikura Ltd. Method for producing optical glass
WO2003070652A1 (en) * 2002-02-20 2003-08-28 Fujikura Ltd. Optical glass and method for producing the same
WO2004014812A1 (en) * 2002-08-12 2004-02-19 Lg Cable Ltd. Method and apparatus for manufacturing optical fiber preforms, using the outside vapor deposition process
WO2004035495A1 (en) * 2002-10-17 2004-04-29 Lg Cable Ltd. Method and apparatus for fabricating an optical fiber preform in ovd
KR100507622B1 (en) * 2002-10-17 2005-08-10 엘에스전선 주식회사 Method and apparatus for fabricating an optical fiber preform in OVD
CN100371275C (en) * 2002-10-17 2008-02-27 Lg电线有限公司 Method and apparatus for fabricating an optical fiber preform in ovd process
WO2006080294A1 (en) * 2005-01-26 2006-08-03 Shin-Etsu Chemical Co., Ltd. Quartz glass preform for optical fiber and process for producing the same
JP2007153678A (en) * 2005-12-06 2007-06-21 Fujikura Ltd Method of producing porous silica glass preform
JP4499025B2 (en) * 2005-12-06 2010-07-07 株式会社フジクラ Method for producing quartz glass porous base material
KR100762611B1 (en) 2006-01-10 2007-10-01 삼성전자주식회사 Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
WO2011108639A1 (en) * 2010-03-03 2011-09-09 株式会社フジクラ Method of manufacture for porous quartz material, method of manufacture for optical fibre pre-form, porous quartz material and optical fibre pre-form
CN102741183A (en) * 2010-03-03 2012-10-17 株式会社藤仓 Method of manufacture for porous quartz material, method of manufacture for optical fibre pre-form, porous quartz material and optical fibre pre-form

Similar Documents

Publication Publication Date Title
KR102545712B1 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
CN100371275C (en) Method and apparatus for fabricating an optical fiber preform in ovd process
JP2000272930A (en) Production of optical fiber preform
KR101035467B1 (en) Burner for deposition of optical fiber preform
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
US7437893B2 (en) Method for producing optical glass
EP1736448B1 (en) Manufacturing apparatus for porous glass preform
JP2000272929A (en) Production of optical fiber preform
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP5519145B2 (en) Optical fiber manufacturing method using isothermal, low pressure plasma deposition technology
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
EP2221281A2 (en) Burner for manufacturing porous glass base material, and manufacturing method of porous glass base material
JP5012042B2 (en) Manufacturing method of glass base material
US20050076680A1 (en) Method and apparatus for manufacturing optical fiber preforms using the outside vapor deposition process
KR100630117B1 (en) Optical vapor deposition apparatus for optical preform
KR102569042B1 (en) Method for manufacturing glass fine particle deposit, method for manufacturing glass base material, and glass fine particle deposit
KR102545711B1 (en) Apparatus and method for manufacturing porous glass preform
JPH09118539A (en) Production of optical fiber preform
JPH09124333A (en) Production of preform for optical fiber
JPH1072231A (en) Apparatus for producing optical fiber preform and production thereof
JP4434083B2 (en) Manufacturing apparatus and manufacturing method of glass fine particle deposit
JP2000351634A (en) Production of porous glass preform
JP4506681B2 (en) Manufacturing method of glass base material
JP5136106B2 (en) Method for producing quartz glass
JPH05170475A (en) Production of preform for optical fiber