JPH09246554A - Manufacture of thin-film transistor and liquid-crystal display device - Google Patents

Manufacture of thin-film transistor and liquid-crystal display device

Info

Publication number
JPH09246554A
JPH09246554A JP4526496A JP4526496A JPH09246554A JP H09246554 A JPH09246554 A JP H09246554A JP 4526496 A JP4526496 A JP 4526496A JP 4526496 A JP4526496 A JP 4526496A JP H09246554 A JPH09246554 A JP H09246554A
Authority
JP
Japan
Prior art keywords
thin film
resist
light
metal thin
silicon thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4526496A
Other languages
Japanese (ja)
Inventor
Tatsuo Yoshioka
達男 吉岡
Hiroshi Tsutsu
博司 筒
Tetsuya Kawamura
哲也 川村
Shigeki Maekawa
茂樹 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4526496A priority Critical patent/JPH09246554A/en
Publication of JPH09246554A publication Critical patent/JPH09246554A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a semiconductor thin film and a metal thin film for light- shielding by using one mask and to form a light-shielding layer and a semiconductor layer in a self-aligned manner by a method wherein a polycrystalline silicon thin film is coated with a resist, an exposure operation and a developing operation are performed from the rear of a substrate and the polycrystalline silicon thin film is patterned by the resist which forms a pattern. SOLUTION: A metal thin film 102 is deposited on a glass substrate 101, and it is patterned to be a prescribed shape. An oxide silicon thin film 103 is deposited on the metal thin film 102. In addition, an amorphous silicon thin film 104 is deposited. The amorphous silicon thin film 104 is melted and crystallized by using an excimer laser 106, and a polycrystal silicon thin film 105 is formed. It is coated with a resist 107, the resist 107 is exposed by ultraviolet rays 108 from the rear of the glass substrate 101. Toy making use of the resist 107 as a mask, the polycrystalline thin film 105 is etched, and the resist 107 is removed. Then, a semiconductor thin film and a metal thin film for light- shielding are formed by using one mask, and a light-shielding layer and a semiconductor layer can be formed in a self-aligned manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置などに
応用される薄膜トランジスタの製造方法と、この薄膜ト
ランジスタを用いた液晶表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor applied to a semiconductor device and the like, and a liquid crystal display device using the thin film transistor.

【0002】[0002]

【従来の技術】従来の液晶表示装置には、逆スタガ型非
晶質シリコン薄膜トランジスタがよく用いられている。
この逆スタガ構造は、ガラス基板の上に先ずゲート配線
を形成するため、ガラス基板の側から光が入射しても半
導体薄膜に光が直接に入射することがない。
2. Description of the Related Art Inverted stagger type amorphous silicon thin film transistors are often used in conventional liquid crystal display devices.
In this inverted staggered structure, since the gate wiring is first formed on the glass substrate, the light does not directly enter the semiconductor thin film even when the light enters from the glass substrate side.

【0003】また、ポリシリコン薄膜トランジスタの場
合コプレナ型が主流であるが、コプレナ構造のためガラ
ス基板と半導体層の間に遮光用の金属薄膜を形成する。
また、金属薄膜を形成した後に半導体薄膜を形成する際
にはそれぞれのマスクでパターンを形成する。
In the case of a polysilicon thin film transistor, a coplanar type is mainly used, but a metal thin film for light shielding is formed between a glass substrate and a semiconductor layer because of the coplanar structure.
When forming a semiconductor thin film after forming a metal thin film, a pattern is formed with each mask.

【0004】[0004]

【発明が解決しようとする課題】多結晶シリコンを用い
た薄膜トランジスタは、自己整合型のドーピング領域を
形成しやすいゲート電極が半導体薄膜の上側に位置する
コプレナ構造がよく用いられる。
A thin film transistor using polycrystalline silicon often has a coplanar structure in which a gate electrode that easily forms a self-aligned doping region is located above a semiconductor thin film.

【0005】この場合、ガラス基板の上に半導体薄膜は
直接に形成されるため、光に関して直接に影響を受ける
ことになる。そのためコプレナ構造の多結晶シリコン薄
膜トランジスタを液晶表示装置に用いる場合(特に強い
光を入射する投射型液晶表示装置の場合)には、光電流
による画質の劣化が生じるという問題が生じる。
In this case, since the semiconductor thin film is directly formed on the glass substrate, it is directly affected by light. Therefore, when a polycrystalline silicon thin film transistor having a coplanar structure is used in a liquid crystal display device (especially in the case of a projection type liquid crystal display device in which strong light is incident), there arises a problem that image quality is deteriorated by photocurrent.

【0006】また、前記課題を解決するために金属薄膜
をガラス基板の上に所定の形状に形成し、その後に半導
体薄膜を形成することによりガラス基板の側からの遮光
を実現できるが、半導体薄膜より遮光用の金属薄膜が大
きくなる場合、上部のゲート配線およびソース・ドレイ
ン配線との容量成分が生じて液晶表示装置の画質に問題
となる場合がある。
In order to solve the above problems, a metal thin film is formed on a glass substrate in a predetermined shape, and then a semiconductor thin film is formed, so that light can be shielded from the glass substrate side. When the light-shielding metal thin film becomes larger, a capacitance component with the upper gate wiring and source / drain wiring may occur, which may cause a problem in the image quality of the liquid crystal display device.

【0007】[0007]

【課題を解決するための手段】コプレナ型の多結晶シリ
コン薄膜トランジスタを液晶表示装置に用いる場合、ガ
ラス基板の上に金属薄膜を形成した後、絶縁膜を介して
半導体薄膜を形成する。また、ガラス基板の上に形成し
た金属薄膜をマスクにしてガラス基板の裏面から半導体
層の上のレジストのパターニングを行う。
When a coplanar type polycrystalline silicon thin film transistor is used in a liquid crystal display device, a metal thin film is formed on a glass substrate and then a semiconductor thin film is formed via an insulating film. Further, the resist on the semiconductor layer is patterned from the back surface of the glass substrate using the metal thin film formed on the glass substrate as a mask.

【0008】ガラス基板の上に金属薄膜を形成し遮光層
とすることによりガラス基板の側からの半導体薄膜への
光の入射を阻止することが可能となり、強い光を入射し
ても画質の劣化を生じることがない。また、金属薄膜を
マスクにしてガラス基板の裏面から半導体層の上のレジ
ストをパターニングすることにより自己整合的に半導体
薄膜のパターニングを行うことができ、ゲート配線およ
びソース・ドレイン配線と遮光薄膜との容量成分の問題
をなくすことができる。
By forming a metal thin film on the glass substrate to form a light-shielding layer, it becomes possible to prevent light from entering the semiconductor thin film from the glass substrate side, and image quality deteriorates even when strong light enters. Does not occur. In addition, the semiconductor thin film can be patterned in a self-aligning manner by patterning the resist on the semiconductor layer from the back surface of the glass substrate using the metal thin film as a mask. The problem of capacitive component can be eliminated.

【0009】[0009]

【発明の実施の形態】以下、本発明の薄膜トランジスタ
の製造方法を具体的な実施例に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for manufacturing a thin film transistor according to the present invention will be described based on specific examples.

【0010】〔実施例1〕図1の(a)に示すように、
ガラス基板101に金属薄膜102を堆積し所定の形状
にパターニングを行う。その際、金属薄膜はCr、T
i、Ta、Al、Al合金、NiまたはWを 30 〜 200
nmの膜厚で堆積する。
Example 1 As shown in FIG. 1 (a),
A metal thin film 102 is deposited on the glass substrate 101 and patterned into a predetermined shape. At that time, the metal thin film is made of Cr, T
i, Ta, Al, Al alloy, Ni or W 30 to 200
deposited to a thickness of nm.

【0011】次に図1の(b)に示すように、金属薄膜
102の上に酸化シリコン薄膜103を 100〜 1000 n
m堆積する。その際、酸化シリコン薄膜の代わりに酸化
タンタル薄膜、窒化シリコン薄膜、酸化シリコン薄膜と
窒化シリコン薄膜2層、酸化シリコン薄膜と酸化タンタ
ル薄膜2層または酸化タンタル薄膜と窒化シリコン薄膜
2層などの構成でもよい。さらに図1の(b)に示すよ
うに、プラズマCVD法により非晶質シリコン薄膜10
4を堆積する。その際、堆積方法としてはLP−CVD
法、スパッタ法を用いてもよい。
Next, as shown in FIG. 1B, a silicon oxide thin film 103 is formed on the metal thin film 102 in an amount of 100 to 1000 n.
m. At that time, instead of the silicon oxide thin film, a structure such as a tantalum oxide thin film, a silicon nitride thin film, a silicon oxide thin film and a silicon nitride thin film 2 layers, a silicon oxide thin film and a tantalum oxide thin film 2 layers, or a tantalum oxide thin film and a silicon nitride thin film 2 layers may be used. Good. Further, as shown in FIG. 1B, the amorphous silicon thin film 10 is formed by the plasma CVD method.
4 is deposited. At that time, the deposition method is LP-CVD.
Method or sputtering method may be used.

【0012】次に図1の(c)に示すように、エキシマ
レーザー106を用いて非晶質シリコン薄膜を溶融・結
晶化を行い、多結晶シリコン薄膜105を形成する。エ
キシマレーザーとしてはXeCl、KrFもしくはAr
Fなどを用いる。また、多結晶シリコン薄膜の形成方法
として固層成長を用いてもよい。
Next, as shown in FIG. 1C, the amorphous silicon thin film is melted and crystallized by using an excimer laser 106 to form a polycrystalline silicon thin film 105. XeCl, KrF or Ar as the excimer laser
F or the like is used. Further, solid layer growth may be used as a method for forming a polycrystalline silicon thin film.

【0013】次に図1の(d)に示すように、多結晶シ
リコン薄膜の上にレジスト107を塗布し、ガラス基板
101の裏面から紫外光108によりレジスト107を
露光する。図1の(e)はレジストを露光後に現像した
ものである。
Next, as shown in FIG. 1D, a resist 107 is applied on the polycrystalline silicon thin film, and the resist 107 is exposed from the back surface of the glass substrate 101 by ultraviolet light 108. FIG. 1E shows the resist developed after exposure.

【0014】次に図1の(f)に示すように、レジスト
107をマスクにして多結晶シリコン105をエッチン
グする。次に図1の(g)に示すように、レジスト10
7を除去すると自己整合で半導体薄膜の形成ができる。
Next, as shown in FIG. 1F, the polycrystalline silicon 105 is etched using the resist 107 as a mask. Next, as shown in FIG.
When 7 is removed, a semiconductor thin film can be formed by self-alignment.

【0015】ここで、非晶質シリコン薄膜をエキシマレ
ーザー106で溶融・結晶化する際に、溶融時の突沸を
避けるため、非晶質シリコン薄膜中の水素を一部脱離さ
せるために 350〜 500℃の温度で基板101を加熱処理
する工程を行う場合もある。処理時間は 10 〜 180分程
度で、処理雰囲気は、真空中、窒素雰囲気中、酸素雰囲
気中または大気中などである。
Here, when the amorphous silicon thin film is melted and crystallized by the excimer laser 106, 350- In some cases, the step of heat-treating the substrate 101 at a temperature of 500 ° C. may be performed. The processing time is about 10 to 180 minutes, and the processing atmosphere is vacuum, nitrogen atmosphere, oxygen atmosphere or air.

【0016】〔実施例2〕図2は本発明により作製した
薄膜トランジスタを示す。ガラス基板201の上には、
遮光用金属薄膜として遮光層202が形成されている。
その上部に絶縁層として酸化シリコン薄膜203を堆積
する。さらに非晶質シリコン薄膜を堆積し、膜中の水素
の一部を脱離させるための熱処理を行う。その後に前記
の非晶質シリコン薄膜を多結晶シリコン薄膜にするた
め、エキシマレーザーを非晶質シリコン薄膜に照射す
る。
Example 2 FIG. 2 shows a thin film transistor manufactured according to the present invention. On the glass substrate 201,
A light shielding layer 202 is formed as a light shielding metal thin film.
A silicon oxide thin film 203 is deposited on top of it as an insulating layer. Further, an amorphous silicon thin film is deposited, and heat treatment is performed to remove part of hydrogen in the film. After that, in order to make the amorphous silicon thin film into a polycrystalline silicon thin film, the amorphous silicon thin film is irradiated with an excimer laser.

【0017】次にゲート絶縁膜205を堆積し、ゲート
電極206の形成を行う。続いてソース・ドレイン領域
204にドーピングを行い、第1の層間絶縁膜207を
堆積する。次にITOを画素電極209として形成し、
第2の層間絶縁膜208を堆積する。続いてコンタクト
ホールを形成した後、ソース・ドレイン電極210を形
成し、保護膜211を堆積する。最後に画素部を開口し
て薄膜トランジスタが完成する。
Next, a gate insulating film 205 is deposited and a gate electrode 206 is formed. Then, the source / drain regions 204 are doped to deposit a first interlayer insulating film 207. Next, ITO is formed as the pixel electrode 209,
A second interlayer insulating film 208 is deposited. Subsequently, after forming contact holes, source / drain electrodes 210 are formed and a protective film 211 is deposited. Finally, the pixel portion is opened to complete the thin film transistor.

【0018】この薄膜トランジスタを液晶表示装置に用
いることにより、アレイ基板側から投射光212を照射
しても半導体のチャネル領域204’に光は照射されず
に、光電流の発生を防ぐことができる。
By using this thin film transistor in a liquid crystal display device, even if the projection light 212 is irradiated from the array substrate side, the semiconductor channel region 204 'is not irradiated with light and the generation of photocurrent can be prevented.

【0019】[0019]

【発明の効果】以上のように本発明によると、マスク1
枚で半導体薄膜と半導体薄膜下層の遮光用の金属薄膜の
形成が可能となり、さらに遮光層と半導体層を自己整合
的に作製することが可能となる。
As described above, according to the present invention, the mask 1
The semiconductor thin film and the metal thin film for shielding the lower layer of the semiconductor thin film can be formed by one sheet, and the light shielding layer and the semiconductor layer can be manufactured in a self-aligned manner.

【0020】また、前記薄膜トランジスタを用いた液晶
表示装置は、ガラス基板の裏面より光を照射しても半導
体薄膜に直接に照射されることがなく、従って、光電流
の発生を防止することができる。そのため、オフ電流を
低く抑えることができ、良好な画質を得ることが可能と
なる。
Further, in the liquid crystal display device using the thin film transistor, even if light is irradiated from the back surface of the glass substrate, the semiconductor thin film is not directly irradiated, so that the generation of photocurrent can be prevented. . Therefore, the off current can be suppressed to a low level, and good image quality can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による金属薄膜と半導体薄膜の自己整合
的な製造方法の断面図
FIG. 1 is a cross-sectional view of a self-aligned manufacturing method of a metal thin film and a semiconductor thin film according to the present invention.

【図2】本発明により製造された薄膜トランジスタの断
面図
FIG. 2 is a cross-sectional view of a thin film transistor manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

101 ガラス基板 102 遮光用金属薄膜 103 絶縁性薄膜 104 非晶質シリコン薄膜 105 多結晶シリコン薄膜 106 エキシマレーザー 107 レジスト 108 紫外光 201 ガラス基板 202 遮光用金属薄膜 203 酸化シリコン 204 ソース・ドレイン領域 204’ チャネル領域 205 ゲート絶縁膜 206 ゲート電極 207 第1の層間絶縁膜 208 第2の層間絶縁膜 209 画素電極 210 ソース・ドレイン電極 211 保護膜 212 投射光 101 glass substrate 102 light-shielding metal thin film 103 insulating thin film 104 amorphous silicon thin film 105 polycrystalline silicon thin film 106 excimer laser 107 resist 108 ultraviolet light 201 glass substrate 202 light-shielding metal thin film 203 silicon oxide 204 source / drain region 204 'channel Region 205 Gate insulating film 206 Gate electrode 207 First interlayer insulating film 208 Second interlayer insulating film 209 Pixel electrode 210 Source / drain electrode 211 Protective film 212 Projected light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 茂樹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeki Maekawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】透光性基板の上に金属薄膜を所定の形状に
形成する第1の工程と、 前記金属薄膜の上に絶縁性薄膜を堆積する第2の工程
と、 前記絶縁性薄膜の上に非晶質シリコン薄膜を堆積する第
3の工程と、 前記非晶質シリコン薄膜を多結晶シリコン薄膜にする第
4の工程と、 前記多結晶シリコン薄膜の上にレジストを塗布し基板裏
面から露光し現像する第5の工程と、 パターンを形成した前記レジストで多結晶シリコン薄膜
をパターニングする第6の工程とを少なくとも有する薄
膜トランジスタの製造方法。
1. A first step of forming a metal thin film in a predetermined shape on a transparent substrate, a second step of depositing an insulating thin film on the metal thin film, and a step of depositing the insulating thin film. A third step of depositing an amorphous silicon thin film thereon, a fourth step of converting the amorphous silicon thin film into a polycrystalline silicon thin film, and a resist applied on the polycrystalline silicon thin film to form a back surface of the substrate. A method of manufacturing a thin film transistor, comprising at least a fifth step of exposing and developing, and a sixth step of patterning a polycrystalline silicon thin film with the patterned resist.
【請求項2】 第3の工程において多結晶シリコン薄膜
を堆積し、第4の工程をなくした請求項1に記載の薄膜
トランジスタの製造方法。
2. The method of manufacturing a thin film transistor according to claim 1, wherein a polycrystalline silicon thin film is deposited in the third step, and the fourth step is eliminated.
【請求項3】透光性基板の上に所定の形状に形成された
金属薄膜と、 前記金属薄膜の上に堆積された絶縁性薄膜と、 前記絶縁性薄膜の上に前記金属薄膜と同一形状で形成さ
れた半導体薄膜を有する薄膜トランジスタとを設けた液
晶表示装置。
3. A metal thin film formed in a predetermined shape on a transparent substrate, an insulating thin film deposited on the metal thin film, and the same shape as the metal thin film on the insulating thin film. A liquid crystal display device provided with a thin film transistor having a semiconductor thin film formed in.
【請求項4】透光性基板の上に所定の形状に形成された
金属薄膜と、 前記金属薄膜の上に堆積された絶縁性薄膜と、 前記絶縁性薄膜の上に前記金属薄膜を覆うように形成さ
れた半導体薄膜を有する薄膜トランジスタとを設けた液
晶表示装置。
4. A metal thin film formed in a predetermined shape on a translucent substrate, an insulating thin film deposited on the metal thin film, and a metal thin film covering the insulating thin film. And a thin film transistor having a semiconductor thin film formed on the liquid crystal display device.
【請求項5】 前記半導体層が多結晶シリコン薄膜であ
ることを特徴をする請求項3〜4に記載の液晶表示装
置。
5. The liquid crystal display device according to claim 3, wherein the semiconductor layer is a polycrystalline silicon thin film.
JP4526496A 1996-03-04 1996-03-04 Manufacture of thin-film transistor and liquid-crystal display device Pending JPH09246554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4526496A JPH09246554A (en) 1996-03-04 1996-03-04 Manufacture of thin-film transistor and liquid-crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4526496A JPH09246554A (en) 1996-03-04 1996-03-04 Manufacture of thin-film transistor and liquid-crystal display device

Publications (1)

Publication Number Publication Date
JPH09246554A true JPH09246554A (en) 1997-09-19

Family

ID=12714447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4526496A Pending JPH09246554A (en) 1996-03-04 1996-03-04 Manufacture of thin-film transistor and liquid-crystal display device

Country Status (1)

Country Link
JP (1) JPH09246554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984492A2 (en) * 1998-08-31 2000-03-08 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising organic resin and process for producing semiconductor device
JP2002343970A (en) * 2001-05-10 2002-11-29 Koninkl Philips Electronics Nv Method for manufacturing thin film transistor, thin film transistor manufactured by using the method, and liquid crystal display panel
CN104900710A (en) * 2015-06-08 2015-09-09 京东方科技集团股份有限公司 Thin film transistor and preparation method thereof, and array substrate
CN112542386A (en) * 2020-11-03 2021-03-23 北海惠科光电技术有限公司 Method and apparatus for manufacturing display panel and thin film transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984492A2 (en) * 1998-08-31 2000-03-08 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising organic resin and process for producing semiconductor device
EP0984492A3 (en) * 1998-08-31 2000-05-17 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising organic resin and process for producing semiconductor device
JP2002343970A (en) * 2001-05-10 2002-11-29 Koninkl Philips Electronics Nv Method for manufacturing thin film transistor, thin film transistor manufactured by using the method, and liquid crystal display panel
CN104900710A (en) * 2015-06-08 2015-09-09 京东方科技集团股份有限公司 Thin film transistor and preparation method thereof, and array substrate
CN112542386A (en) * 2020-11-03 2021-03-23 北海惠科光电技术有限公司 Method and apparatus for manufacturing display panel and thin film transistor

Similar Documents

Publication Publication Date Title
KR100659921B1 (en) Semiconductor device and the fabricating method therefor
US6359320B1 (en) Thin-film transistor with lightly-doped drain
US5585647A (en) Integrated circuit device having an insulating substrate, and a liquid crystal display device having an insulating substrate
EP0797844A2 (en) Electronic device manufacture
JPH01241862A (en) Manufacture of display device
JP3296975B2 (en) Thin film transistor and method of manufacturing the same
JPH0964364A (en) Manufacture of semiconductor device
JPS6132471A (en) Thin film transistor
JP4785258B2 (en) Semiconductor device and manufacturing method thereof
JPS6113670A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JPH09246554A (en) Manufacture of thin-film transistor and liquid-crystal display device
JPH0855993A (en) Thin film transistor
JP3175390B2 (en) Thin film transistor and method of manufacturing the same
JPH07120806B2 (en) Method of manufacturing thin film field effect transistor
JPH0691105B2 (en) Method of manufacturing thin film transistor
JPH07142737A (en) Manufacture of thin-film transistor
JPH0411226A (en) Manufacture of display device
JP2694912B2 (en) Active matrix substrate manufacturing method
JPH05206166A (en) Thin film transistor
JP3331642B2 (en) Method for manufacturing thin film transistor
KR100254924B1 (en) Method of fabricating image display device
JPH01236655A (en) Thin film field-effect transistor and manufacture thereof
JPH07193252A (en) Thin film transistor and its manufacture
JPH0562996A (en) Manufacture of thin film transistor
JP3192807B2 (en) Method for manufacturing thin film transistor