JPH09246026A - Permanent magnet and its manufacture - Google Patents

Permanent magnet and its manufacture

Info

Publication number
JPH09246026A
JPH09246026A JP8053294A JP5329496A JPH09246026A JP H09246026 A JPH09246026 A JP H09246026A JP 8053294 A JP8053294 A JP 8053294A JP 5329496 A JP5329496 A JP 5329496A JP H09246026 A JPH09246026 A JP H09246026A
Authority
JP
Japan
Prior art keywords
magnet
rich phase
permanent magnet
phase
volume ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8053294A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8053294A priority Critical patent/JPH09246026A/en
Publication of JPH09246026A publication Critical patent/JPH09246026A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PROBLEM TO BE SOLVED: To obtain a magnet excellent in tensile strength and mechanical workability, by making R, Fe, B and M raw material basic ingredient, having R-M rich phase as constitution phase, and setting the volume fraction in a specified range. SOLUTION: This permanent magnet is manufactured by heat treatment after a cast object is subjected to hot processing. The raw material basic ingredients are R (R is rare earth elements whose main ingredients are Pr and Nd), Fe, B and M (M is at least one kind out of Cu, Ga, Si, Al, Sn, In, Ag and Au). The permanent magnet has R-M rich phase as the constitution phase, and the volume fraction of the rich phase is 2-15%. In this permanent magnet, Fe of 1-20% atomic fraction is substituted by at least one kind of element out of Co, Ni and Mn, or Fe of 1-20% is substituted by Co, or atomic fraction of 4-10% to the total amount of R is at least one kind out of Dy and Tb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い引っ張り強度
を持つと共に機械加工性に優れるR−Fe−B系永久磁
石とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-B based permanent magnet having high tensile strength and excellent machinability, and a method for producing the same.

【0002】[0002]

【従来の技術】R−Fe−B系永久磁石はR2Fe14
相を主相とし、非常に高いエネルギー積を有する磁石で
ある。R−Fe−B系永久磁石の中でも20MGOe以
上のエネルギー積を有する磁石は一般的に焼結法により
作製される。しかしR−Fe−B系永久磁石においては
高いエネルギー積が得られるものの機械的強度が低いと
いう欠点を有している。このため、強度における欠点を
克服する方法がいくつか考案されている。特開平5ー4753
2号公報、特開平6-251921号公報、特開平6-251922号公
報には2種類の混合粉末を焼結して作製した高強度のR
−Fe−B系磁石が開示されている。このうち特開平5ー
47532号公報図4には引っ張り強度が30kgf/mm2以上の磁
石についての記述がある。
2. Description of the Related Art R-Fe-B type permanent magnets are R 2 Fe 14 B
It is a magnet having a phase as a main phase and a very high energy product. Among R-Fe-B based permanent magnets, a magnet having an energy product of 20 MGOe or more is generally produced by a sintering method. However, the R-Fe-B based permanent magnet has a drawback that it has a low mechanical strength, although a high energy product can be obtained. For this reason, several methods have been devised to overcome the drawbacks in strength. JP-A-5-4753
No. 2, JP-A-6-251921, and JP-A-6-251922 disclose high-strength R manufactured by sintering two kinds of mixed powders.
A -Fe-B based magnet is disclosed. Of these, JP-A-5-
No. 47532 Publication FIG. 4 describes a magnet having a tensile strength of 30 kgf / mm 2 or more.

【0003】またR−Fe−B系磁石でも、焼結法とは
異なり、鋳造インゴットを熱間加工することによって異
方化する磁石が特開昭64-704号公報などに開示されてい
る。
Also in the R-Fe-B magnet, unlike the sintering method, a magnet which is made anisotropic by hot working a cast ingot is disclosed in Japanese Patent Laid-Open No. 64-704.

【0004】また、Journal of Applid Physics vol.75
No.10 p.6631 には鋳造インゴットを熱間圧延する方法
によって作製されたPr17.2Febal.5.2Cu1.5なる
組成の磁石において、焼結磁石のほぼ3倍の引っ張り強
度が得られることが示されている。
Also, Journal of Applid Physics vol.75
No.10 p.6631 shows that a magnet having a composition of Pr 17.2 Fe bal. B 5.2 Cu 1.5 produced by a method of hot rolling a cast ingot can obtain tensile strength almost three times that of a sintered magnet. It is shown.

【0005】磁気特性は劣るが、機械的強度に優れる永
久磁石としてはMn−Al−C磁石、アルニコ磁石、F
e−Cr−Co磁石などが挙げられる。電波新聞’9
3.6.10号によればMn−Al−C磁石の引っ張り
強度は30kgf/mm2以上とされている。また異方性アル
ニコ磁石の引っ張り強度は代表的なメーカーカタログ値
によれば35〜45kgf/mm2程度である。またMn−A
l−C磁石やFe−Cr−Co磁石は機械加工性に優れ
る磁石としても知られ、用途に応じて二次加工によって
さまざまな形に成形加工できる。
Mn-Al-C magnets, alnico magnets and F magnets are used as permanent magnets having excellent magnetic properties but excellent mechanical strength.
An e-Cr-Co magnet etc. are mentioned. Denpa Shimbun '9
According to No. 3.6.10, the tensile strength of the Mn-Al-C magnet is 30 kgf / mm 2 or more. The tensile strength of an anisotropic alnico magnet is about 35 to 45 kgf / mm 2 according to a typical manufacturer's catalog value. Also Mn-A
The 1-C magnet and the Fe-Cr-Co magnet are also known as magnets having excellent machinability, and can be formed into various shapes by secondary processing depending on the application.

【0006】[0006]

【発明が解決しようとする課題】上述した従来技術は、
以下のような欠点を有している。
The prior art described above is
It has the following disadvantages.

【0007】まず、機械的強度に優れ、かつ機械加工性
も良好なMn−Al−C磁石、Fe−Cr−Co磁石、
アルニコ磁石については、その磁気特性が最大エネルギ
ー積で5〜7MGOe程度と、希土類磁石に比べると非
常に低い値にとどまっている。
First, Mn-Al-C magnets, Fe-Cr-Co magnets, which have excellent mechanical strength and good machinability,
The magnetic characteristics of the alnico magnet have a maximum energy product of about 5 to 7 MGOe, which is a very low value as compared with the rare earth magnet.

【0008】一方、磁気特性の高いR−Fe−B系磁石
においては機械的強度の不足から、次のような欠点が生
じていた。すなわち機械的強度、中でも引っ張り強度の
不足により、高速回転が必要なモーターや、高負荷ある
いは大きな遠心力がかかる用途については利用が制限さ
れていた。
On the other hand, the R-Fe-B type magnet having high magnetic properties has the following drawbacks due to lack of mechanical strength. That is, due to lack of mechanical strength, especially tensile strength, the use is limited for motors that require high-speed rotation and for applications where high load or large centrifugal force is applied.

【0009】こういった背景から、上述したように、混
合粉末を焼結したことにより作製される引っ張り強度の
高いR−Fe−B系磁石が示されているが、このような
磁石においても次のような欠点が存在する。すなわち、
これらの磁石は主相である2-14-1相を形成するための粉
末と、延性を発揮する粒界相を形成するための粉末の2
種の粉末を混合した後に焼結するものであるが、後者の
粉末用の合金は遷移金属の合金であるため非常に展延性
に富むものであり、通常の粉砕工程によって粉末化する
ことが非常に困難であって、特殊な製法を用いてしか作
製できないために、製造コストの上昇を招く。さらに製
法として従来と同様の焼結法を採用しているため磁石中
には不可避的に焼結工程において生ずる空孔が存在する
ことになり、このような空孔によって局所的な強度の劣
化が起こり易くなる。
From such a background, as described above, an R-Fe-B magnet having a high tensile strength produced by sintering a mixed powder is shown. There are drawbacks such as. That is,
These magnets consist of a powder for forming a 2-14-1 phase, which is the main phase, and a powder for forming a grain boundary phase that exhibits ductility.
The seed powder is mixed and then sintered, but the latter alloy for powders is a transition metal alloy, which is extremely ductile, and it is extremely difficult to pulverize it by a normal crushing process. It is difficult to manufacture, and it can be manufactured only by using a special manufacturing method, resulting in an increase in manufacturing cost. Furthermore, since the same sintering method as the conventional method is adopted as a manufacturing method, holes inevitably exist in the magnet during the sintering process, and such holes cause local deterioration of strength. It is easy to happen.

【0010】強度と共に問題となるのが、機械加工した
場合に割れ・欠けが発生することである。一般にR−F
e−B系磁石では加工にともなう結晶粒の脱落が激し
く、加工時にチッピング(欠け落ち)を生じ易い。この
ため製品中にクラックを生じる恐れがあり、表面磁束の
乱れや使用中の破損などの信頼性に劣る。また用途によ
っては(特に小形状のものなど)寸法精度が確保でき
ず、設計とは異なる磁気特性しか得られないことも考え
られる。前述の混合粉末を焼結した磁石においてはこの
ような問題は生じない一方、機械加工性の観点からは次
のような問題がある。すなわち、主相と粒界相における
展延性・靱性に大きな差があるので、切断加工や切削加
工を行う場合には加工具の選定が非常に難しくなる。た
とえば通常のR−Fe−B系磁石を切断するような場合
にはダイヤモンドカッターを用いれば問題なく切断加工
はできるが、粒界相として非常に展延性に富む部分があ
る該混合粉末使用の焼結磁石においてはダイヤモンドカ
ッターでは目づまりをおこして切断が非常に困難とな
る。ネジ切りなどを行う場合にも部分的な加工応力の変
化が大きいため、非常に加工しづらくなる。
A problem with strength is that cracks and chips occur when machined. Generally R-F
In the case of the e-B magnet, the crystal grains are severely removed during the processing, and chipping (chip drop) is likely to occur during the processing. Therefore, cracks may occur in the product, resulting in poor reliability such as disturbance of surface magnetic flux and damage during use. In addition, it is possible that dimensional accuracy cannot be secured (especially for small shapes) depending on the application, and only magnetic characteristics different from the design can be obtained. Such a problem does not occur in the magnet obtained by sintering the mixed powder described above, but has the following problem from the viewpoint of machinability. That is, since there is a large difference in ductility and toughness between the main phase and the grain boundary phase, it becomes very difficult to select a processing tool when performing cutting or cutting. For example, in the case of cutting an ordinary R-Fe-B magnet, a diamond cutter can be used to perform the cutting work without any problem, but a firing using the mixed powder having a portion having a very high spreadability as a grain boundary phase. In a magnet, a diamond cutter causes clogging, which makes cutting very difficult. Even when threading or the like, it is very difficult to machine because the partial processing stress changes greatly.

【0011】上述した特開昭64-704号公報に示されるよ
うな鋳造物を熱間加工する製造方法においては、製造工
程として粉末プロセスを経ないため、従来の焼結磁石で
は不可避的に生じていた磁石中の空孔(ボイド)が形成
されず、また酸素濃度も低いため脆性的な酸化物相も少
なく、局所的に強度を劣化させる欠陥が少ないという本
質的な利点を有している。しかし、磁石組織の構成が適
切でない場合には十分な引っ張り強度が得られない場合
があった。さらに、磁石の取付時の汎用性などを考慮し
た場合、磁石の固定方法としてネジ締めを行うことが考
えられるが、このような場合には、磁石の一部にボルト
などを通すための孔明け加工やネジ切り加工を施すこと
が考えられる。しかし、このような加工によっては加工
時に局部的に応力集中が生じ易いため、割れ・クラック
が非常に入りやすい。このため、磁石組織の構成が適切
でない場合には、こうした加工ができないという問題が
あった。
In the manufacturing method for hot working a casting as disclosed in the above-mentioned Japanese Patent Laid-Open No. 64-704, since a powder process is not performed as a manufacturing process, the conventional sintered magnet unavoidably occurs. Voids in the magnet that were used previously are not formed, and the oxygen concentration is low, so there are few brittle oxide phases, and there are few defects that locally deteriorate strength. . However, if the structure of the magnet structure is not appropriate, sufficient tensile strength may not be obtained. In addition, considering the versatility when installing the magnet, it is possible to tighten the screw as a method of fixing the magnet.In such a case, make a hole for inserting a bolt etc. in a part of the magnet. It is conceivable to perform processing or thread cutting processing. However, due to such processing, stress concentration is likely to occur locally during processing, and thus cracks and cracks are likely to occur. Therefore, there is a problem that such processing cannot be performed when the structure of the magnet structure is not appropriate.

【0012】本発明は、以上の様な従来技術の欠点を解
決するものであり、鋳造・熱間加工法によって製造さ
れ、高い引っ張り強度と機械加工性に優れたR−Fe−
B系永久磁石を提供することを第一の目的としている。
また本発明は、さらに高い引っ張り強度を持つため高回
転モータ、あるいは大きな遠心力がかかるような用途に
使用することができ、かつ機械加工性に優れたR−Fe
−B系永久磁石を提供することを目的としている。さら
に本発明は、高い引っ張り強度と優れた機械加工性に加
えて、信頼性に優れる永久磁石を提供することを目的と
している。また、高い引っ張り強度と優れた機械加工性
に加えて、高保磁力を有する永久磁石を提供することを
目的としており、中でもDyを加えることにより、比較
的安価に高保磁力を有する永久磁石を提供することを目
的としている。さらに本発明は、製品形状に成形するた
めの二次加工工程において、局部応力集中が起こり易く
割れを生じ易い加工を施しても、割れ・欠けが生じない
永久磁石を提供することにある。また本発明は、孔明け
加工あるいはネジ切り加工が可能で、容易な固定や磁束
の微調整に適応する磁石を提供することを目的としてい
る。また本発明は、高い磁気特性を有する領域と機械加
工性に優れる領域とを兼ね備えた永久磁石の製造方法を
提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art, and is manufactured by a casting / hot working method and is excellent in high tensile strength and machinability.
The primary purpose is to provide a B-based permanent magnet.
Further, the present invention has a higher tensile strength, so that it can be used for a high rotation motor or an application in which a large centrifugal force is applied, and R-Fe excellent in machinability
-The purpose is to provide a B-based permanent magnet. A further object of the present invention is to provide a permanent magnet having high reliability in addition to high tensile strength and excellent machinability. Further, in addition to high tensile strength and excellent machinability, it is also intended to provide a permanent magnet having a high coercive force. Above all, Dy is added to provide a permanent magnet having a high coercive force at a relatively low cost. Is intended. Further, the present invention is to provide a permanent magnet which is free from cracking or chipping even when subjected to a process in which local stress concentration is likely to occur and a crack is likely to occur in a secondary processing step for forming into a product shape. Another object of the present invention is to provide a magnet which can be punched or threaded and is adapted for easy fixing and fine adjustment of magnetic flux. Another object of the present invention is to provide a method for manufacturing a permanent magnet having both a region having high magnetic properties and a region excellent in machinability.

【0013】[0013]

【課題を解決するための手段】上記目標を達成するため
に、本発明の永久磁石においては、鋳造物を熱間加工し
た後に熱処理して製造され、R(ただしRはPr,Nd
を主成分とする希土類元素),Fe,B,M(ただしM
はCu,Ga,Si,Al,Sn,In,Ag,Auの
うち少なくとも1種)を原料基本成分とし、構成相とし
てR−Mリッチ相を有し、該R−Mリッチ相の体積率が
2〜15%であることを特徴とする。
In order to achieve the above-mentioned object, in the permanent magnet of the present invention, a casting is hot-worked and then heat-treated to produce R (where R is Pr, Nd).
Rare earth elements containing Fe, B, M (provided that M
Is at least one of Cu, Ga, Si, Al, Sn, In, Ag and Au) and has an RM-rich phase as a constituent phase, and the volume ratio of the RM-rich phase is It is characterized by being 2 to 15%.

【0014】また本発明の永久磁石は、鋳造物を熱間加
工した後に熱処理して製造され、R(ただしRはPr,
Ndを主成分とする希土類元素),Fe,B,M(ただ
しMはCu,Ga,Si,Al,Sn,In,Ag,A
uのうち少なくとも1種)を原料基本成分とし、構成相
としてR−Mリッチ相を有し、該R−Mリッチ相の体積
率が5〜15%であることを特徴とする。
The permanent magnet of the present invention is manufactured by hot-working a cast product and then heat-treating the cast product, wherein R (where R is Pr,
Rare earth element containing Nd as a main component, Fe, B, M (where M is Cu, Ga, Si, Al, Sn, In, Ag, A)
At least one of u) is used as a raw material basic component, an RM-rich phase is included as a constituent phase, and the volume ratio of the RM-rich phase is 5 to 15%.

【0015】また本発明の永久磁石は、前記Feのう
ち、原子比率で1〜20%をCo,Ni、Mnの少なく
とも1種の元素で置換したことを特徴とする。
The permanent magnet of the present invention is characterized in that 1 to 20% of Fe in atomic ratio is replaced with at least one element of Co, Ni and Mn.

【0016】また本発明の永久磁石は、前記Feのう
ち、1〜20%をCoにより置換したことを特徴とす
る。
The permanent magnet of the present invention is characterized in that 1 to 20% of Fe is replaced by Co.

【0017】また本発明の永久磁石は、前記Rのうち、
全R量に対する原子比率で4〜10%がDy、Tbの少
なくとも1種であることを特徴とする。
In the permanent magnet of the present invention, among the R,
It is characterized in that 4 to 10% in atomic ratio based on the total amount of R is at least one of Dy and Tb.

【0018】また本発明の永久磁石は、前記Rのうち、
全R量に対する原子比率で4〜10%がDyであること
を特徴とする。
In the permanent magnet of the present invention, among the R,
It is characterized in that Dy accounts for 4 to 10% in atomic ratio with respect to the total amount of R.

【0019】また本発明の永久磁石は、R(ただしRは
Pr,Ndを主成分とする希土類元素),Feあるいは
一部をCo,Ni,Mnの少なくとも一種で置換したF
e,B,M(ただしMはCu,Ga,Si,Al,S
n,In,Ag,Auのうち少なくとも1種)を原料基
本成分とし、鋳造物を熱間加工後熱処理し、さらに二次
加工により製品形状とされる永久磁石のうち、該二次加
工工程において孔明け加工あるいはネジ切り加工を施さ
れる部分におけるR−Mリッチ相の磁石組織中の体積率
が2〜15%であることを特徴とする。
Further, the permanent magnet of the present invention has R (where R is a rare earth element containing Pr and Nd as main components), Fe or F partially substituted with at least one of Co, Ni and Mn.
e, B, M (where M is Cu, Ga, Si, Al, S
Of at least one of n, In, Ag, and Au) as a raw material basic component, a casting is heat-processed and then heat-treated, and then a permanent magnet is formed into a product shape by secondary processing. It is characterized in that the volume percentage of the RM rich phase in the magnet structure in the portion to be perforated or threaded is 2 to 15%.

【0020】また本発明の永久磁石は、R(ただしRは
Pr,Ndを主成分とする希土類元素),Feあるいは
一部をCo,Ni,Mnの少なくとも一種で置換したF
e,B,M(ただしMはCu,Ga,Si,Al,S
n,In,Ag,Auのうち少なくとも1種)を原料基
本成分とし、鋳造物を熱間加工後熱処理し、さらに二次
加工により製品形状とされる永久磁石のうち、該二次加
工工程において孔明け加工あるいはネジ切り加工を施さ
れる部分におけるR−Mリッチ相の磁石組織中の体積率
が5〜15%であることを特徴とする。
Further, the permanent magnet of the present invention comprises R (where R is a rare earth element containing Pr and Nd as main components), Fe or F partially substituted with at least one of Co, Ni and Mn.
e, B, M (where M is Cu, Ga, Si, Al, S
Of at least one of n, In, Ag, and Au) as a raw material basic component, a casting is heat-processed and then heat-treated, and then a permanent magnet is formed into a product shape by secondary processing. It is characterized in that the volume ratio in the magnet structure of the RM rich phase in the portion to be perforated or threaded is 5 to 15%.

【0021】また本発明の永久磁石の製造方法は、R
(ただしRはPr,Ndを主成分とする希土類元素),
Feあるいは一部をCo,Ni,Mnの少なくとも一種
で置換したFe,B,M(ただしMはCu,Ga,S
i,Al,Sn,In,Ag,Auのうち少なくとも1
種)を原料基本成分とし、鋳造物を熱間加工後熱処理す
る永久磁石の製造方法において、熱間加工工程において
該鋳造物の実質加工度が部分的に異なるような加工を施
し、さらに熱処理することによって、R−Mリッチ相の
体積率が異なる複数の領域から成り立つ磁石を形成する
ことを特徴とする。
The method for producing a permanent magnet according to the present invention is characterized by R
(However, R is a rare earth element whose main component is Pr, Nd),
Fe or Fe, B, M in which a part thereof is replaced with at least one of Co, Ni, Mn (where M is Cu, Ga, S
At least 1 of i, Al, Sn, In, Ag, Au
(Seed) as a raw material basic component, in a method for producing a permanent magnet in which a casting is heat-treated after hot working, the casting is subjected to working such that the actual working degree of the casting is partially different, and further heat-treated. Thus, the magnet is formed of a plurality of regions having different volume ratios of the RM rich phase.

【0022】また本発明の永久磁石の製造方法は、磁石
中においてR−Mリッチ相の体積率の多い領域における
R−Mリッチ相の体積率が2〜15%であることを特徴
とする。
Further, the method for producing a permanent magnet of the present invention is characterized in that the volume ratio of the RM rich phase is 2 to 15% in the region where the volume ratio of the RM rich phase is large in the magnet.

【0023】また本発明の永久磁石の製造方法は、磁石
中においてR−Mリッチ相の体積率の多い領域における
R−Mリッチ相の体積率が5〜15%であることを特徴
とする。
Further, the method for producing a permanent magnet of the present invention is characterized in that the volume ratio of the RM rich phase in the region where the volume ratio of the RM rich phase is high in the magnet is 5 to 15%.

【0024】[0024]

【発明の実施の形態】鋳造物を熱間加工してR−Fe−
B系磁石を製造する方法においては、その製造プロセス
に粉末工程を含まないため、焼結磁石にて形成されるよ
うな空孔が全く見られない。また酸素濃度が少なく酸化
物相が少ない。このため空孔や酸化物などの欠陥を破壊
の起点とするような局所的な強度劣化は起こらず、本質
的に焼結磁石よりも高い強度が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A cast product is hot worked to obtain R-Fe-
In the method of manufacturing the B-based magnet, the manufacturing process does not include the powder step, and therefore no voids formed by the sintered magnet are observed. Also, the oxygen concentration is low and the oxide phase is low. For this reason, local strength deterioration such as defects such as voids and oxides serving as the starting points of fracture does not occur, and essentially higher strength than the sintered magnet can be obtained.

【0025】ここで本発明の製造工程の概略について以
下に順を追って述べる。
The outline of the manufacturing process of the present invention will be described below step by step.

【0026】本発明で記載の「鋳造物」としては、 原料メタルを不活性ガス雰囲気中で誘導加熱により溶
解してから溶湯を金型中へ注湯して作製した鋳造インゴ
ット 原料メタルをと同様に溶解して溶湯を得てから、こ
れを不活性ガス雰囲気中でガスアトマイズ法により噴霧
して作製したアトマイズ粉末などが挙げられる。
The "casting" described in the present invention is the same as the casting ingot raw metal prepared by melting the raw metal by induction heating in an inert gas atmosphere and then pouring the molten metal into a mold. Atomized powder prepared by dissolving the above into a molten metal to obtain a molten metal, and then spraying the molten metal in an inert gas atmosphere by a gas atomizing method.

【0027】次に熱間加工の方法について以下にいくつ
かを挙げる。
Next, some hot working methods will be described below.

【0028】熱間圧延法 特開平02-3904号公報などに開示されているように鋳造
インゴットを金属製カプセル中に封入して、その後熱間
圧延する製法である。ここで鋳造インゴットを金属製カ
プセルに封入するのは、R−Fe−B系合金が非常に酸
化しやすいことと、カプセルを用いない場合には液相
(低融点相)の流出が起こるため、圧延のような歪速度
の大きい加工は不可能であるためである。こうしてカプ
セル中に封入することにより大気中での圧延が可能とな
る。インゴット組織としては柱状晶が発達した組織とな
っていることが望ましく、圧延時の圧下方向は柱状晶の
発達方向に対して垂直となっていることが配向度を向上
させる点で好ましい。熱間加工工程においては磁石は固
相である2-14-1相と液相とが混在した状態になっている
が、この圧延法によればインゴットはカプセル中に封入
されたまま加工されるので、圧延による液相のしみ出し
は、後述するホットプレス法などに比べて非常に少な
い。熱間圧延法は熱間加工方法のうち最も量産性に優れ
る方法であると共に、焼結磁石では困難な大型の磁石を
容易に作製することが可能である。なお鋳造インゴット
の替わりにアトマイズ粉末を使用することもできる。
Hot rolling method As disclosed in Japanese Patent Application Laid-Open No. 02-3904, a casting ingot is enclosed in a metal capsule and then hot rolled. Here, the casting ingot is encapsulated in a metal capsule because the R-Fe-B alloy is very easily oxidized, and when the capsule is not used, the liquid phase (low melting point phase) flows out. This is because processing with a high strain rate such as rolling is impossible. By encapsulating in a capsule in this way, rolling in the atmosphere becomes possible. It is desirable that the ingot structure is a structure in which columnar crystals are developed, and it is preferable that the rolling direction during rolling is perpendicular to the direction in which the columnar crystals are developed in order to improve the degree of orientation. In the hot working process, the magnet is in a mixed state of the solid phase 2-14-1 phase and the liquid phase, but according to this rolling method, the ingot is processed while being encapsulated in the capsule. Therefore, the exudation of the liquid phase due to rolling is very small as compared with the hot pressing method described later. The hot rolling method is the method with the highest mass productivity among the hot working methods, and it is possible to easily produce a large-sized magnet, which is difficult with a sintered magnet. Atomized powder may be used instead of the cast ingot.

【0029】熱間押し出し法 熱間押出による製法も圧延と実質的にはほぼ同じであ
る。鋳造インゴットあるいはガスアトマイズ法により作
製されたアトマイズ粉末を金属製カプセル中に脱気・封
入し、その後高温にて熱間押出を行うが、形状自由度を
考えた場合、押出法を採用するときにはアトマイズ粉末
を使用する方が便利である。アトマイズ粉末を用いた熱
間加工法は特公平04-68361号公報に示されている。また
圧延法とは異なり、後方押出によれば、ラジアル配向し
たリング磁石を直接製造することも可能である。
Hot Extrusion Method The production method by hot extrusion is substantially the same as rolling. Atomizing powder produced by casting ingot or gas atomizing method is degassed / encapsulated in a metal capsule, and then hot extrusion is performed at high temperature.However, considering shape freedom, when using the extrusion method, atomized powder is used. It is more convenient to use. A hot working method using atomized powder is disclosed in Japanese Patent Publication No. 04-68361. Also, unlike the rolling method, it is possible to directly manufacture a ring magnet having a radial orientation by backward extrusion.

【0030】ホットプレス法 鋳造インゴットからサンプルを切り出し、不活性ガス雰
囲気中で加熱しながら、ダイ(金型)によりホットプレ
スする。この時インゴットの組織では柱状晶の発達した
組織となっていることが望ましく、プレス方向は柱状晶
の発達方向と垂直とする事が配向度を向上させる点で好
ましい。ホットプレスではインゴットサンプルの周囲に
カプセルがなく歪速度も小さいため、プレスが進行する
と共に液相は周囲にシミ出す。そのため最終的な磁石組
成と磁石構成相の体積率はこのシミ出した量によって変
化することになる。この点は前述した熱間圧延法、ある
いは熱間押し出し法とは大きく異なっている。実際に磁
石を使用する場合には、このように周囲にシミだした液
相の凝固部分は2-14-1相結晶粒をほとんど含まないため
磁気特性も低く、かつ耐食性も悪いので、除去する。こ
の結果最終的に得られる磁石においては、液相の排出に
よって2-14-1相の濃縮が起こって、2-14-1相の体積率は
多くなる。このため圧延法に比べて高いエネルギー積が
得られる。
Hot Press Method A sample is cut out from a casting ingot and hot pressed by a die while heating in an inert gas atmosphere. At this time, the structure of the ingot is preferably a structure in which columnar crystals are developed, and it is preferable that the pressing direction is perpendicular to the direction in which the columnar crystals are developed in order to improve the degree of orientation. In the hot press, since there is no capsule around the ingot sample and the strain rate is small, the liquid phase appears around the periphery as the press proceeds. Therefore, the final magnet composition and the volume fraction of the magnet constituent phase will change depending on the amount of this stain. This point is greatly different from the hot rolling method or the hot extrusion method described above. When a magnet is actually used, the solidified portion of the liquid phase that has smeared around in this way does not contain 2-14-1 phase crystal grains, so the magnetic properties are low and the corrosion resistance is poor, so remove it. . As a result, in the finally obtained magnet, the 2-14-1 phase is concentrated due to the discharge of the liquid phase, and the volume ratio of the 2-14-1 phase increases. Therefore, a higher energy product can be obtained as compared with the rolling method.

【0031】なお上記いずれの熱間加工法の場合も、そ
の加工温度は600〜1100℃とすることが望まし
い。なぜなら600℃より低い温度では加工時の液相率
が低く、十分な異方性化の効果を得ることができず、1
100℃より高い温度では主相であるR2Fe14B相の
粒径が急激に粗大化し、磁気特性の劣化を招くためであ
る。また圧延のような加工時の歪速度が大きい加工を行
う場合については、熱間加工中の十分な変形能を確保す
るために900〜1100℃の温度範囲で加工を行うこ
とがより好ましい。
In any of the above hot working methods, the working temperature is preferably 600 to 1100 ° C. Because, at a temperature lower than 600 ° C., the liquid phase ratio at the time of processing is low, and a sufficient effect of anisotropy cannot be obtained.
This is because at a temperature higher than 100 ° C., the grain size of the R 2 Fe 14 B phase, which is the main phase, becomes abruptly coarse, which causes deterioration of magnetic properties. Further, in the case of carrying out working such as rolling which has a high strain rate during working, it is more preferred to carry out working in a temperature range of 900 to 1100 ° C. in order to secure sufficient deformability during hot working.

【0032】熱間加工の方法としては以上のような製法
の他にも金属製カプセル中に鋳造物を封入してから熱間
鍛造する方法などもある。
As a hot working method, in addition to the above-described manufacturing method, there is also a method of encapsulating a casting in a metal capsule and then hot forging.

【0033】熱間加工後には熱処理を施す。熱処理の条
件としてはまず800〜1100℃の温度領域で高温熱処理を
行った後、さらに400〜700℃の低温での熱処理を行う、
いわゆる二段熱処理を施すことが好ましい。一段目の高
温熱処理では2-14-1相への包晶反応の完了とαーFeの
拡散・消滅を促進させる。その後の二段目の熱処理にお
いてはR6TM14ーxxで表される相を主相粒間に晶出さ
せて高保磁力を得るものである。また本発明中のR−M
リッチ相もこの二段目の熱処理を経て最終的に形成され
るものである。
After the hot working, heat treatment is applied. As the heat treatment condition, first, high temperature heat treatment is performed in a temperature range of 800 to 1100 ° C, and then heat treatment at a low temperature of 400 to 700 ° C is performed.
It is preferable to perform so-called two-step heat treatment. The first high-temperature heat treatment accelerates the completion of the peritectic reaction to the 2-14-1 phase and the diffusion and disappearance of α-Fe. In the subsequent second heat treatment, the phase represented by R 6 TM 14-x M x is crystallized between the main phase grains to obtain a high coercive force. Further, RM in the present invention
The rich phase is also finally formed through the second heat treatment.

【0034】熱処理工程を経た後は磁石を所望の製品形
状とするために二次加工を施す。ここで「二次加工」と
表現しているのは、前工程である熱間加工工程と区別す
るためであり、あくまで製品形状への成形工程を指す。
二次加工工程は通常の機械加工を行うものであり、簡単
な切断による製品形状の切り出しや研削とともに、ネジ
あるいはボルトを通すための孔明けやネジ切りもこの工
程で行われる。
After passing through the heat treatment step, the magnet is subjected to secondary processing so as to have a desired product shape. The expression "secondary processing" is used here to distinguish it from the hot working step which is the previous step, and refers only to the forming step into the product shape.
The secondary processing step is a normal machining step, and in addition to cutting and grinding the product shape by simple cutting, drilling and thread cutting for passing screws or bolts are also performed in this step.

【0035】つぎに磁石の構成相について述べる。本発
明の鋳造・熱間加工法によるR−Fe−B系永久磁石に
おいては、主相であるR2TM14B相(2-14-1相、但し
TMはFeの他置換元素であるCo,Ni,Mnなどの
他の遷移金属も含まれる略号)と粒界相として区別され
るその他の相が存在する。この粒界相のうち、高い磁気
特性、特に高保磁力を得るためには先述のR6TM14ーx
xで表される相が存在することが必要である。これは
特開平5-315119号公報などに開示されている通りであ
る。そしてこの相の他にR−Mリッチ相が存在する。こ
こでR−Mリッチ相と述べたが、この相は他の相と違っ
て相中におけるFeの含有量が非常に少なく、かつBは
全く含まないか若しくは不純物程度にしか認められず、
そのほとんどがRとMからなる相である。具体的にはF
e(またはFeとMn,Co,Niの混合物)の含有量
は原子比率で10%未満であって、残りがRとMからな
っている。ただしこのR−Mリッチ相のRとMの好まし
い原子比の範囲はR:Mでおよそ95:5〜50:50
である。R:Mの原子比が95:5よりもRリッチな場
合には、耐食性の低下が顕著となり、また50:50よ
りもMリッチの場合には熱間加工時の変形抵抗が大きく
なって割れが発生し易くなる。このR−Mリッチ相は延
性に富む相であり、引っ張り試験後の破断面はディンプ
ル状の延性破面を示す。
Next, the constituent phases of the magnet will be described. In the R-Fe-B system permanent magnet produced by the casting and hot working method of the present invention, the main phase is R 2 TM 14 B phase (2-14-1 phase, where TM is another element substituted for Fe, Co). , Ni, Mn and other transition metals) and other phases that are distinguished as grain boundary phases. Of these grain boundary phases, in order to obtain high magnetic properties, especially high coercive force, the above-mentioned R 6 TM 14-x
It is necessary that there be a phase represented by M x . This is as disclosed in JP-A-5-315119. In addition to this phase, an RM rich phase exists. Although described as an RM-rich phase here, unlike other phases, this phase has a very low Fe content in the phase, and does not contain B at all or is recognized only as impurities.
Most of them are phases composed of R and M. Specifically, F
The content of e (or a mixture of Fe and Mn, Co, Ni) is less than 10% in atomic ratio, and the rest is composed of R and M. However, the preferable atomic ratio range of R and M of this RM rich phase is about 95: 5 to 50:50 in R: M.
It is. When the R: M atomic ratio is R-rich than 95: 5, the corrosion resistance is significantly reduced, and when it is M-rich than 50:50, the deformation resistance during hot working becomes large and cracks occur. Is likely to occur. This RM rich phase is a phase rich in ductility, and the fracture surface after the tensile test shows a dimple-like ductile fracture surface.

【0036】構成相は上記の通りであるが、これらの構
成相を実現させるための組成としては、特開平4-324906
号公報請求項1に示されるような組成範囲とする事が好
ましい。また歪速度の最も大きい圧延加工を行う場合に
は、特開平6-224016号公報請求項1に示されるような組
成域が好ましい。
The constituent phases are as described above, and the composition for realizing these constituent phases is described in JP-A-4-324906.
It is preferable to set the composition range as shown in claim 1 of the gazette. Further, when rolling with the highest strain rate is performed, the composition range as shown in claim 1 of JP-A-6-224016 is preferable.

【0037】次に本発明の構成・効果について主要な項
目の限定理由も含めて詳細に述べる。
Next, the configuration and effects of the present invention will be described in detail including the reasons for limiting the main items.

【0038】先述したように、磁石構成相のうちR−M
リッチ相は延性的な挙動をしめし、このため磁石の引っ
張り強度を向上させる効果がある。しかしこのようなR
−Mリッチ相が存在していても、その体積率が少ない場
合は高い引っ張り強度を得ることは困難であり、またあ
まり多すぎると磁気特性が低下してしまう。なお本発明
における各相の体積率は、光学顕微鏡により撮影した組
織写真について画像処理を行い、その面積率を何点かの
ロットについて算出して、これを体積率としたものであ
る。こうして測定した面積率と体積率が基本的に等しい
との判断は、「計量形態学」(牧島他共訳、52〜55ペー
ジ、内田老鶴圃)に記述されている原理によるものであ
る。こうして測定したR−Mリッチ相の体積率が2%未
満の場合は、10kgf/mm2以下の引っ張り強度しか得られ
ず、通常の焼結磁石と同等の値しか得られない。さらに
ネジ切り加工を行った場合にR−Mリッチ相の体積率が
2%未満では、ネジ山がチッピングしてかけてしまう率
が急激に高くなってしまうなど、機械加工性が劣化す
る。また体積率が15%を越えた場合は高強度化の効果
はなくなる反面、磁気特性の低下を招いてしまう。具体
的には最大エネルギー積で25MGOeを確保できなく
なってしまう。
As mentioned above, RM among the constituent phases of the magnet
The rich phase exhibits a ductile behavior, which has the effect of improving the tensile strength of the magnet. But such R
Even if the -M rich phase is present, it is difficult to obtain high tensile strength if the volume ratio is small, and if it is too large, the magnetic properties deteriorate. The volume ratio of each phase in the present invention is a volume ratio calculated by performing image processing on a structure photograph taken by an optical microscope and calculating the area ratio of several lots. The judgment that the area ratio and the volume ratio measured in this way are basically equal is based on the principle described in "Metric morphology" (Makishima et al., Co-translation, pages 52-55, Uchida old crane field). When the volume ratio of the RM rich phase measured in this manner is less than 2%, only a tensile strength of 10 kgf / mm 2 or less is obtained, and a value equivalent to that of a normal sintered magnet is obtained. Further, when the volume ratio of the RM rich phase is less than 2% when the thread cutting process is performed, the machinability is deteriorated such that the rate of chipping of the screw thread is rapidly increased. On the other hand, when the volume ratio exceeds 15%, the effect of increasing the strength is lost, but the magnetic characteristics are deteriorated. Specifically, 25 MGOe cannot be secured at the maximum energy product.

【0039】さらに好ましくは、R−Mリッチ相の体積
率を5〜15%とすることが望ましい。5%以上のR−
Mリッチ相を有することにより、引っ張り強度は25kg
f/mm2を越える値が得られる。25kgf/mm2以上の引っ張
り強度が得られれば、たとえば超伝導フライホイールな
どの用途への展開が可能となる。超伝導フライホイール
とは、一種の電力貯蔵装置で、超伝導体と磁石との作用
により弾み車(フライホイール)を回転させて電力貯蔵
を行うものであり、一分間に数万回転の高速回転が必要
である。また重量も非常に重いため大きな遠心力がかか
ることになり、使用される磁石には25kgf/mm2以上の強
度が要求される。また5%以上のR−Mリッチ相を有す
ることによりチッピングがほとんど見られなくなるた
め、非常に小さくかつ寸法精度の要求される用途に適す
る磁石を得ることができる。具体的にはウォッチ用のロ
ータ磁石などが挙げられる。ロータ磁石は5円玉形状を
しているが、その内周を加工する際に、通常のR−Fe
−B系磁石ではその円周上に沿って主相結晶粒の欠落が
顕著になり、所望の寸法精度が得られなくなってしま
う。一方、本発明の磁石によればそのようなチッピング
は起こらず、寸法精度の高いロータ磁石が得られる。
More preferably, the volume ratio of the RM rich phase is set to 5 to 15%. R- of 5% or more
25kg tensile strength due to having M-rich phase
Values over f / mm 2 can be obtained. If a tensile strength of 25 kgf / mm 2 or more is obtained, it can be applied to applications such as superconducting flywheels. A superconducting flywheel is a kind of electric power storage device that rotates a flywheel by the action of a superconductor and a magnet to store electric power. is necessary. Also, since the weight is very heavy, a large centrifugal force is applied, and the magnet used is required to have a strength of 25 kgf / mm 2 or more. Since chipping is hardly seen by having an RM rich phase of 5% or more, it is possible to obtain a magnet which is very small and is suitable for applications requiring dimensional accuracy. Specific examples include a rotor magnet for a watch. The rotor magnet is shaped like a 5-yen coin.
In the −B type magnet, the main phase crystal grains are significantly lost along the circumference, and the desired dimensional accuracy cannot be obtained. On the other hand, according to the magnet of the present invention, such chipping does not occur and a rotor magnet with high dimensional accuracy can be obtained.

【0040】またFeの一部をCo,Ni,Mnにより
置換することにより、高い引っ張り強度と優れた機械加
工性に加えて、温度特性とくに磁束密度の温度係数に優
れる永久磁石を得ることができる。ただし原子比率でF
eの1%未満の置換では、添加による明かな効果は見ら
れず、一方原子比率でFeの20%を越える置換量にお
いては保磁力の著しい低下を招くため好ましくない。ま
たこれら3種の元素の内最も効果のある元素はCoであ
り、Coのみで置換した場合でも効果が得られる。また
耐食性にも効果が見られる。
Further, by substituting a part of Fe with Co, Ni, and Mn, it is possible to obtain a permanent magnet excellent in temperature characteristics, particularly in temperature coefficient of magnetic flux density, in addition to high tensile strength and excellent machinability. . However, in atomic ratio F
When the content of e is less than 1%, no obvious effect due to the addition is observed. On the other hand, when the content of Fe exceeds 20% in terms of atomic ratio, the coercive force is significantly reduced, which is not preferable. The most effective element of these three elements is Co, and the effect can be obtained even when only Co is substituted. It also has an effect on corrosion resistance.

【0041】さらに高保磁力を得るために、全R量に対
する原子比率で4〜10%をDy,Tbの内の少なくと
も一種とする事が望ましい。4%以上の添加では20kO
e 以上の保磁力を得ることができる。しかし全R量に対
する原子比率が10%を越えると、鋳造組織における主
相結晶粒径の粗大化を招き、保磁力が逆に劣化してしま
うとともに、熱間加工時の配向も妨げられるため低い磁
気特性しか得られなくなる。またDyはTbより廉価で
あるが、同様の高保磁力化の効果を得ることができるた
め、Dyのみを添加すれば比較的低コストで高保磁力の
磁石を得ることができる。
In order to obtain a higher coercive force, it is desirable that at least one of Dy and Tb is 4 to 10% in atomic ratio with respect to the total amount of R. 20kO when added more than 4%
A coercive force of e or more can be obtained. However, if the atomic ratio with respect to the total amount of R exceeds 10%, the grain size of the main phase crystal grains in the cast structure is coarsened, the coercive force is deteriorated, and the orientation during hot working is also hindered, which is low. Only magnetic properties can be obtained. Although Dy is cheaper than Tb, a similar effect of increasing the coercive force can be obtained. Therefore, if only Dy is added, a magnet with a high coercive force can be obtained at a relatively low cost.

【0042】また実際の磁石の使用時に磁石を固定する
方法としては、接着剤の使用や焼きばめによる嵌合部へ
の固定などが挙げられる。しかし用途によってはこれら
の固定方法がとれない場合がある。たとえば超大型モー
タ用の磁石を固定する場合や、環境上接着剤が使用でき
ない場合などである。こうした用途において磁石を固定
するには、磁石をネジ締めによって固定する方法が好ま
しい。さらに、ネジをつけることによって磁束発生部分
のギャップを調整し易くなるため、組立後の微調整が必
要なMRIなどの用途ではネジつきの磁石を使用するこ
とが好ましい。このようなことから磁石に直接孔明け加
工やネジ切り加工が容易にできれば非常に有効である。
Further, as a method for fixing the magnet when the magnet is actually used, use of an adhesive or fixing to the fitting portion by shrink fitting can be mentioned. However, depending on the application, these fixing methods may not be possible. For example, when fixing a magnet for a super-large motor, or when an adhesive cannot be used in the environment. In order to fix the magnet in such an application, a method of fixing the magnet by screwing is preferable. Further, since it is easy to adjust the gap of the magnetic flux generating portion by attaching the screw, it is preferable to use the screwed magnet in the application such as MRI which requires fine adjustment after assembly. For this reason, it would be extremely effective if the magnet could be directly drilled or threaded.

【0043】しかしこうした用途の場合、磁石全体とし
ての強度・機械加工性はそれほど必要でない場合も多く
ある。そこで孔明け加工やネジ切り加工あるいはさらい
加工を施す部分のみを機械加工性の良好な組織とすれば
十分である。これは、孔明け加工やネジ切り加工では加
工トルクが高くなると共に、孔の周上のエッジ部分やネ
ジ山など応力集中が起こり易く破壊しやすい部分が形成
されるが、そうした加工を行わない部分では割れ・欠け
の起こり易い部分はあまり無いためである。
However, in such applications, the strength and machinability of the magnet as a whole are not often required. Therefore, it suffices if only the portion to be perforated, threaded or wiped has a structure with good machinability. This is because the drilling or threading process increases the processing torque, and the edges of the hole and the thread, which are likely to cause stress concentration and break, are formed. This is because there are not many areas where cracks and chips easily occur.

【0044】すなわち孔明け加工やネジ切り加工を行う
部分においてのみ、適切なR−Mリッチ相の体積率を有
していれば十分である。なぜならばR−Mリッチ相は非
磁性相であり、磁石特性を考慮すると必要以上に存在す
るのは好ましくないので、上述のような加工を施す部分
以外ではR-Mリッチ相の体積率は少なくてよい。
That is, it is sufficient to have an appropriate volume ratio of the RM rich phase only in the portion where the drilling or threading is performed. This is because the RM-rich phase is a non-magnetic phase, and it is not preferable that the RM-rich phase be present more than necessary in consideration of the magnet characteristics. Therefore, the volume ratio of the RM-rich phase is small except for the portion to be processed as described above. You may

【0045】鋳造・熱間加工法によってR−Mリッチ相
の体積率が異なる複数の領域からなる磁石を作るには熱
間加工工程における液相の流動を利用する方法が考えら
れる。上述したように熱間加工時の磁石組織は、固相で
ある2-14-1相と液相で形成される。このため熱間加工時
に部分的に実質加工度が異なる加工を施した場合には、
高加工度の領域から低加工度の領域に液相が流動し易く
なる。
A method of utilizing the flow of the liquid phase in the hot working step is conceivable for producing a magnet composed of a plurality of regions having different volume ratios of the RM rich phase by the casting / hot working method. As described above, the magnet structure during hot working is formed of the solid phase 2-14-1 phase and the liquid phase. For this reason, when hot-working is partially performed with different degrees of workability,
The liquid phase easily flows from the high workability region to the low workability region.

【0046】ここで本発明中の「実質加工度」とは、熱
間加工時の圧下方向を上下方向にとった時の加工後のサ
ンプル高さの最初のサンプル高さからの高さ減少率と見
ることができる。図1には、後述する実施例4における
ホットプレス前後でのサンプルの断面図を示したが、こ
の図で説明すると、加工する前のサンプルの高さから見
て加工後のサンプルのA位置とB位置では、A位置の方
が高さの減少率が高く、すなわち実質加工度が高くなっ
ている。このため熱間加工した直後の磁石組織として
は、実質加工度が高かった部分では磁石組織中の主相体
積率が高く液相体積率が低くなり、逆に実質加工度が低
かった部分では主相体積率が低く液相体積率が高くな
る。R−Mリッチ相は熱処理することによって液相から
晶出する相であるため、熱間加工後熱処理した後の磁石
組織においては低加工度だった領域にR−Mリッチ相が
多く存在することになる。
Here, the "substantial workability" in the present invention means the reduction rate of the sample height after working from the initial sample height when the reduction direction during hot working is taken in the vertical direction. Can be seen. FIG. 1 shows a cross-sectional view of the sample before and after hot pressing in Example 4 described later. Explaining this figure, the A position of the sample after processing viewed from the height of the sample before processing and At the B position, the height reduction rate is higher at the A position, that is, the actual workability is higher. For this reason, as the magnet structure immediately after hot working, the volume fraction of the main phase in the magnet structure is high and the volume fraction of the liquid phase is low in the portion where the substantial workability is high, and conversely in the portion where the substantial workability is low. The phase volume ratio is low and the liquid phase volume ratio is high. Since the RM-rich phase is a phase that crystallizes from the liquid phase by heat treatment, there are many RM-rich phases in the region with low workability in the magnet structure after heat treatment after hot working. become.

【0047】より具体的な製造方法としては次のような
方法が考えられる。
The following method can be considered as a more specific manufacturing method.

【0048】その一つは、ホットプレスする際に部分的
にプレス時の加工度が異なるようなプレスを行うことで
ある。より具体的には、すでに図1で示したように先端
が円弧状や半球状または凸形状の金型(ダイ)を使用し
てホットプレスを行う。こうすると金型の突出部分にお
いては高い加工度が得られるが、周辺部では実質加工度
が低くなる。また金型に傾斜をつけておく方法でも同様
の効果が得られる。このような製法によればホットプレ
ス時に液相の流動が周辺部へ優先的に起こるため、周辺
部のR−Mリッチ相の体積率は増す。これによって周辺
部の強度および機械加工性は向上すると共に、それ以外
の部分では主相体積率が増加することによって磁気特性
が向上する。
One of them is to carry out hot pressing such that the workability at the time of pressing partially differs. More specifically, hot pressing is performed using a die (die) having an arcuate shape, a hemispherical shape, or a convex shape as shown in FIG. In this way, a high workability is obtained in the protruding portion of the die, but the workability is substantially reduced in the peripheral portion. The same effect can be obtained by inclining the mold. According to such a manufacturing method, the flow of the liquid phase preferentially occurs in the peripheral portion during hot pressing, so that the volume ratio of the RM-rich phase in the peripheral portion increases. As a result, the strength and machinability of the peripheral portion are improved, and the magnetic properties are improved by increasing the volume fraction of the main phase in other portions.

【0049】熱間圧延法においても、圧延時に液相が選
択的に流動し易い機構を設ければ、部位によってR−M
リッチ相の体積率が変動するような磁石を作ることがで
きる。より具体的には、全圧延材に対して加工を行わ
ず、途中で圧延を停止してから冷却し、仕上がりの圧延
材の厚さが部分的に異なる圧延材を得る。このような方
法を取れば、仕上がり厚みの厚い部分においてR−Mリ
ッチ相の体積率が厚みの薄い部分の体積率よりも多くな
っているような材料を得ることができる。
Even in the hot rolling method, if a mechanism that allows the liquid phase to selectively flow easily during rolling is provided, RM depending on the part
It is possible to make a magnet in which the volume ratio of the rich phase varies. More specifically, the whole rolled material is not processed, the rolling is stopped in the middle, and then the rolled material is cooled to obtain a rolled material in which the thickness of the finished rolled material is partially different. By using such a method, it is possible to obtain a material in which the volume ratio of the RM rich phase in the thick finished portion is higher than that in the thin portion.

【0050】また、複数の製法を組み合わせることによ
っても同様の磁石を得ることができる。たとえば通常の
熱間圧延工程で作製した磁石圧延材から切り出したサン
プルを、ホットプレスによって実質加工度に差を付けた
加工を施す事によってもR−Mリッチ相の体積率が異な
る複数の領域からなる磁石を得ることができる。
A similar magnet can be obtained by combining a plurality of manufacturing methods. For example, a sample cut out from a magnet rolling material produced in a normal hot rolling step is processed by hot pressing with a difference in actual working degree to obtain a plurality of regions having different volume ratios of the RM rich phase. Can be obtained.

【0051】さらに具体的な本発明の内容を下記実施例
にて述べる。
Further specific contents of the present invention will be described in the following examples.

【0052】(実施例1)表1に示す各組成の合金をA
rガス雰囲気中で高周波誘導炉にて溶解し、水冷銅金型
中に鋳造して、厚さ20mm×幅200mm×高さ20
0mmの板状インゴットを各合金につき3枚づつ作製し
た。各インゴットにおいては鋳壁面からインゴットの厚
み方向中央部に向かって柱状晶の発達した鋳造組織とな
っていた。各インゴットの表面酸化膜を除去した後、3
枚のインゴットを重ねて厚さ60mm(20mm×3
枚)×幅200mm×高さ200mmのインゴットブロ
ックとし、このインゴットブロックを低炭素鋼(SS4
1)製のカプセルに脱気し封入した。このカプセルを9
50℃の大気炉中ににて加熱した後、圧延を行った。圧
延の際、鋳造組織における柱状晶の発達方向と垂直な方
向に圧下方向が一致するように加工を行った。圧延は全
6パスで行い、最終到達加工度をおよそ75%(インゴ
ット高さ200mm→約50mm)とした。圧延後徐冷
したのち、カプセルから内部の磁石圧延材を取り出し
た。得られた磁石圧延材についてAr雰囲気中にて10
25℃×20h+550℃×4hの二段熱処理を施し
た。
(Example 1) Alloys of each composition shown in Table 1 were
It is melted in a high frequency induction furnace in an r gas atmosphere, cast in a water-cooled copper mold, and has a thickness of 20 mm, a width of 200 mm, and a height of 20.
Three 0 mm plate-shaped ingots were prepared for each alloy. Each ingot had a cast structure in which columnar crystals developed from the casting wall surface toward the center in the thickness direction of the ingot. After removing the surface oxide film of each ingot, 3
60mm thick (20mm × 3
Sheet) × width 200 mm × height 200 mm, and this ingot block is made of low carbon steel (SS4
It was deaerated and enclosed in a capsule made in 1). 9 capsules
After heating in an atmospheric furnace at 50 ° C., rolling was performed. During rolling, processing was carried out so that the rolling direction coincided with the direction perpendicular to the columnar crystal growth direction in the cast structure. Rolling was performed in all 6 passes, and the final workability was set to about 75% (ingot height 200 mm → about 50 mm). After rolling and slow cooling, the rolled magnetic material inside the capsule was taken out. About the obtained rolled magnet material, 10 in Ar atmosphere
A two-step heat treatment of 25 ° C. × 20 h + 550 ° C. × 4 h was performed.

【0053】熱処理後、各磁石圧延材から一辺約10m
mの立方体形状のサンプルを5〜10個採取して鏡面研
磨した後に、各サンプルについて数カ所の位置での顕微
鏡像に関してコントラストの違いを利用して画像処理す
ることによってR−Mリッチ相の面積比率を求め、その
平均値を体積率とした。ただし、磁石圧延材の表面付近
は圧延時におけるSS41製カプセルとの融着や、液相
のしみ出しなどが見られ、不均一な組織となりやすいた
め、サンプルの採取位置からは除外した。こうして得ら
れたR−Mリッチ相体積率の測定結果を表1に併せて示
す。
After heat treatment, one side from each rolled magnet material is about 10 m.
The area ratio of the RM-rich phase was obtained by collecting 5 to 10 cubic-shaped samples of m and mirror-polishing them, and then performing image processing using the contrast difference on the microscope images at several positions for each sample. Was calculated and the average value was defined as the volume ratio. However, in the vicinity of the surface of the rolled magnet material, fusion with SS41 capsules during rolling, exudation of liquid phase, etc. were observed, and a non-uniform structure is likely to occur, so it was excluded from the sample collection position. The measurement results of the RM rich phase volume ratio thus obtained are also shown in Table 1.

【0054】また同一の磁石圧延材から引っ張り試験片
を成形し、万能試験機により引っ張り試験を行なった。
このときの引っ張り応力方向は圧延方向と同方向とし
た。試験は各磁石圧延材につき5ロットの試験片につい
て行った。こうして得られた引っ張り強度とR−Mリッ
チ相の体積率との関係を図2に示す。
Tensile test pieces were formed from the same rolled magnet material and subjected to a tensile test by a universal testing machine.
At this time, the tensile stress direction was the same as the rolling direction. The test was performed on 5 lots of test pieces for each rolled magnet material. The relationship between the tensile strength thus obtained and the volume ratio of the RM rich phase is shown in FIG.

【0055】[0055]

【表1】 [Table 1]

【0056】また同一の磁石圧延材からサンプルをそれ
ぞれ切り出し、直流自記磁束計により最大印加磁場25
kOeとして磁気特性を測定した。得られた最大エネルギ
ー積((BH)max )の値とR−Mリッチ相の体積率の関係
を併せて図2に示す。
Samples were cut out from the same magnet rolling material, and the maximum applied magnetic field of 25
The magnetic properties were measured as kOe. The relationship between the value of the obtained maximum energy product ((BH) max) and the volume ratio of the RM rich phase is also shown in FIG.

【0057】図から明らかなようにR−Mリッチ相の体
積率が2%以上のときに、10kgf/mm2以上の引っ張り
強度が得られた。さらにR−Mリッチ相が5%以上では
25kgf/mm2以上の引っ張り強度が得られた。一方、R
−Mリッチ相の体積率が15%より多い場合には最大エ
ネルギー積は25MGOeを下回る値となった。
As is clear from the figure, when the volume ratio of the RM rich phase was 2% or more, the tensile strength of 10 kgf / mm 2 or more was obtained. Further, when the RM rich phase was 5% or more, a tensile strength of 25 kgf / mm 2 or more was obtained. On the other hand, R
When the volume ratio of the -M rich phase was more than 15%, the maximum energy product was less than 25 MGOe.

【0058】さらに各磁石圧延材から、一辺30mmの
立方体ブロックを切り出し、そのブロックに対してM5
×0.8のネジ穴をネジきり加工して作製した。加工後
それぞれのサンプルについてネジ山に発生しているチッ
ピング(欠け)発生箇所を目視により調査した。その発
生数とR−Mリッチ相の体積率の関係を図3に示す。
Further, a cube block having a side of 30 mm was cut out from each rolled magnet material, and M5 was cut from the cube block.
It was produced by threading a 0.8 x screw hole. After processing, each sample was visually inspected for the location of chipping (chip) occurring in the thread. The relationship between the number of occurrences and the volume ratio of the RM rich phase is shown in FIG.

【0059】図から明らかなようにR−Mリッチ相の体
積率が2%未満の場合には、チッピングの発生箇所が非
常に多い。これに対して5%以上の体積率では、チッピ
ングの発生率はほぼ0となり、優れた加工性を確保する
ことができた。
As is clear from the figure, when the volume ratio of the RM rich phase is less than 2%, there are very many places where chipping occurs. On the other hand, at a volume ratio of 5% or more, the occurrence rate of chipping was almost 0, and excellent workability could be secured.

【0060】(実施例2)表2で示される各組成の合金
を実施例1と同様な方法で溶解・鋳造し、厚さ20mm
×幅200mm×高さ200mmの板状インゴットを各
合金につき3枚づつ作製した。さらに実施例1と同様な
方法で熱間圧延および熱処理を行った。
(Example 2) Alloys having the respective compositions shown in Table 2 were melted and cast in the same manner as in Example 1 to have a thickness of 20 mm.
Three plate-like ingots each having a width of 200 mm and a height of 200 mm were prepared for each alloy, three sheets each. Further, hot rolling and heat treatment were performed in the same manner as in Example 1.

【0061】[0061]

【表2】 [Table 2]

【0062】得られた磁石圧延材からサンプルを切り出
し、実施例1と同様な方法で画像処理によりR−Mリッ
チ相の体積率を測定した。また高温測定用の温度可変ユ
ニットを磁極部分に装着した直流自記磁束計により、1
00℃における減磁曲線を求めて、その結果から、室温
から100℃の範囲でのBrの温度係数(α)を算出し
た。
A sample was cut out from the obtained rolled magnet material, and the volume ratio of the RM rich phase was measured by image processing in the same manner as in Example 1. In addition, a DC self-recording magnetometer equipped with a temperature variable unit for high temperature measurement on the magnetic pole part
The demagnetization curve at 00 ° C. was obtained, and the temperature coefficient (α) of Br in the range of room temperature to 100 ° C. was calculated from the result.

【0063】これらの測定結果を表3に示すThe results of these measurements are shown in Table 3.

【0064】[0064]

【表3】 [Table 3]

【0065】表から明らかなように、R−Mリッチ相の
体積率が本発明の範囲にあると共に、Feに対するCo
の置換量が1%以上である場合には、引っ張り強度が高
く、かつ温度特性に優れた磁石を得ることができた。一
方、Coの置換量がFeに対して20%を越える場合に
は、保磁力が10kOe未満の低い値しか得られなかっ
た。
As is clear from the table, the volume ratio of the RM rich phase is within the range of the present invention, and Co to Fe is
When the substitution amount of 1 was 1% or more, a magnet having high tensile strength and excellent temperature characteristics could be obtained. On the other hand, when the substitution amount of Co exceeds 20% with respect to Fe, the coercive force is only as low as less than 10 kOe.

【0066】(実施例3)表3で示される各組成の合金
を実施例1と同様な方法で溶解・鋳造し、厚さ20mm
×幅200mm×高さ200mmの板状インゴットを各
合金について3枚づつ作製した。さらに実施例1と同様
な方法で熱間圧延および熱処理を行った。得られた磁石
圧延材からサンプルを切り出し、実施例1と同様な方法
でR−Mリッチ相の体積率の測定、引っ張り試験、磁気
特性の評価を行った。測定の結果得られたR−Mリッチ
相の体積率、保磁力(iHc)および引っ張り強度を表
3に併せて示す。
(Example 3) Alloys having the respective compositions shown in Table 3 were melted and cast in the same manner as in Example 1 to have a thickness of 20 mm.
Three plate-shaped ingots each having a width of 200 mm and a height of 200 mm were prepared for each alloy in three pieces. Further, hot rolling and heat treatment were performed in the same manner as in Example 1. A sample was cut out from the obtained rolled magnet material, and the volume ratio of the RM rich phase, the tensile test, and the evaluation of magnetic properties were performed in the same manner as in Example 1. Table 3 also shows the volume ratio, the coercive force (iHc), and the tensile strength of the RM rich phase obtained as a result of the measurement.

【0067】[0067]

【表4】 [Table 4]

【0068】[0068]

【表5】 [Table 5]

【0069】表から明らかなように、DyまたはDyと
Tbの合計が全R量に対する原子比で4%〜10%の範
囲にあり、かつR−Mリッチ相の体積率が本発明の範囲
にあれば、20kOe以上の高保磁力と高い引っ張り強度
を有する磁石を得ることができる。
As is clear from the table, Dy or the sum of Dy and Tb is in the range of 4% to 10% in atomic ratio with respect to the total amount of R, and the volume ratio of the RM rich phase is in the range of the present invention. If so, a magnet having a high coercive force of 20 kOe or more and a high tensile strength can be obtained.

【0070】(実施例4)Pr17.2Fe76.1B5.5Ga1.2なる
組成の合金を高周波誘導溶解炉にて溶解してから水冷銅
金型中に鋳造して直径25mm×高さ60mmの円柱状
のインゴットを作製した。鋳造組織は柱状晶組織が鋳壁
面からインゴットの中心に向かって放射状に発達した組
織となっていた。このインゴットから高さ30mmのサ
ンプルを切り出し、Arガス雰囲気中1000℃でホッ
トプレスを施した。プレス時の圧下方向は柱状晶組織発
達方向に垂直な方向(高さが減少する方向)とした。こ
の時のプレス挙動の概観図を図4に示す。図に示されて
いるように、プレスの際の上部ダイ(金型)の形状は、
先端が球面状となっているものを使用した。ダイ先端の
半径(アール)は40mmとした。ホットプレスは歪速
度約10-3-1で、ダイの中心の直下にあたるサンプル
部分の実質加工度が85%となるまで連続的にプレスを
行った。
Example 4 An alloy having a composition of Pr 17.2 Fe 76.1 B 5.5 Ga 1.2 was melted in a high-frequency induction melting furnace and then cast in a water-cooled copper mold to form a cylindrical column having a diameter of 25 mm and a height of 60 mm. An ingot was prepared. The cast structure was a structure in which the columnar crystal structure developed radially from the cast wall surface toward the center of the ingot. A sample having a height of 30 mm was cut out from this ingot, and hot pressed at 1000 ° C. in an Ar gas atmosphere. The pressing direction during pressing was the direction perpendicular to the columnar crystal structure development direction (direction in which the height decreases). An outline view of the press behavior at this time is shown in FIG. As shown in the figure, the shape of the upper die (mold) during pressing is
The one with a spherical tip was used. The radius (R) of the die tip was 40 mm. Hot pressing was carried out continuously at a strain rate of about 10 -3 s -1 until the actual working ratio of the sample portion immediately below the center of the die reached 85%.

【0071】こうして作製されたホットプレス材のプレ
ス直後に得られる組織の模式図を図5に示す。ダイにア
ールがついているために、インゴットサンプルの中心部
に比べて、外周部の方が実質的にプレスによる加工度が
低くなっている。このためプレス中に、液相は実質加工
度の高い中心部分から実質加工度の低い周辺部分へ流動
し易くなり、図5に示すように中心部では液相の体積率
は低く、周辺部では液相の体積率が多い組織となってい
た。さらに最外周部は過剰な液相がシミ出すため、主相
結晶粒がほとんど存在せず、液相のみからなる部分が存
在している。最外周部の主相結晶粒をほとんど含まない
低融点相のみの部分を除去した後、ホットプレス材をA
r雰囲気中で1025℃×20h+500℃×2hの二
段熱処理を施し、磁石材を得た。このようにして得られ
た磁石材をA材(本発明)とする。
FIG. 5 shows a schematic diagram of the structure obtained immediately after pressing the hot-pressed material thus produced. Due to the radius of the die, the outer peripheral portion is substantially less workable by pressing than the central portion of the ingot sample. Therefore, during pressing, the liquid phase easily flows from the central portion with a high substantial workability to the peripheral portion with a low substantial workability, and as shown in FIG. 5, the liquid phase volume ratio is low in the central portion and the peripheral portion is low in the peripheral portion. The structure had a large volume ratio of the liquid phase. Further, since the excess liquid phase is spotted at the outermost peripheral portion, the main phase crystal grains are scarcely present, and a portion consisting of only the liquid phase is present. After removing the portion of the outermost peripheral phase containing only the low melting point phase containing almost no main phase crystal grains, the hot pressed material was A
A two-step heat treatment of 1025 ° C. × 20 h + 500 ° C. × 2 h was performed in an r atmosphere to obtain a magnet material. The magnet material thus obtained is referred to as material A (present invention).

【0072】また同条件で作製したインゴットから、同
形状のサンプルを切り出し、先端が平面のダイ(金型)
によってホットプレスを行った。ホットプレスはArガ
ス雰囲気中1000℃で総加工度が85%のプレスを行
った。この時のプレス挙動の概観図を図6に示す。また
得られたホットプレス材のプレス直後の組織の模式図を
図7に示す。最外周部には、A材と同様に、過剰な液相
がシミだして主相結晶粒がほとんど存在しない部分が見
られた。一方、他の部分では先端が平面のダイを使用し
ているためにサンプルの実質加工度の部分的な差異はA
材に比べて非常に小さく、このため液相の体積率もほぼ
均一となっている。こうして作製したサンプルにArガ
ス雰囲気中で1025℃×20h+500℃×2hの二
段熱処理を施した。このようにして得られた磁石材をB
材(比較例)とする。
A sample having the same shape was cut out from an ingot manufactured under the same conditions, and a die having a flat tip was formed.
Hot pressed by. The hot press was performed in an Ar gas atmosphere at 1000 ° C. with a total working ratio of 85%. FIG. 6 shows a general view of the pressing behavior at this time. A schematic diagram of the structure of the obtained hot-pressed material immediately after pressing is shown in FIG. 7. In the outermost peripheral portion, as in the case of the material A, a portion in which the excessive liquid phase was spotted and the main phase crystal grains were almost absent was observed. On the other hand, in other parts, since the die with a flat tip is used, the partial difference in the actual working degree of the sample is A
It is much smaller than the material, and the volume ratio of the liquid phase is almost uniform. The sample thus produced was subjected to a two-step heat treatment at 1025 ° C. × 20 h + 500 ° C. × 2 h in an Ar gas atmosphere. The magnetic material thus obtained is
The material (comparative example).

【0073】A材、B材のそれぞれから切断・研削によ
り、厚み4mmで直径が20mmの円盤状サンプルを作
製した。これらのサンプルについて、円の中心を通ると
共に、面法線方向がプレス方向と垂直となるような断面
を切り出し、鏡面研磨を行った。この断面上で1mm間
隔の各位置について、金属組織を画像処理した結果か
ら、それぞれの位置におけるR−Mリッチ相の体積率を
測定した。その結果得られた観察位置とR−Mリッチ相
の体積率との関係を図8に示す。なお図の横軸の観察位
置はサンプルの中心部を原点(0)とし、そこから外周
に向かって1mm間隔で観察したものである。
A disk-shaped sample having a thickness of 4 mm and a diameter of 20 mm was prepared by cutting and grinding each of the materials A and B. With respect to these samples, a cross section was cut out so as to pass through the center of the circle and the surface normal direction was perpendicular to the press direction, and mirror-polished. The volume ratio of the RM rich phase at each position was measured from the result of image processing of the metal structure at each position at 1 mm intervals on this cross section. The relationship between the observation position obtained as a result and the volume ratio of the RM rich phase is shown in FIG. The observation position on the abscissa of the drawing is that observed at 1 mm intervals from the center of the sample to the origin (0) toward the outer periphery.

【0074】比較例であるB材ではサンプルの中心から
外周にかけてのすべての部分でR−Mリッチ相の体積率
が2%未満となっている。一方、本発明によるA材で、
は中心付近のR−Mリッチ相の体積率は比較例のA材と
同様に2%未満でかつB材よりも低い体積率となってい
た。逆にA材では外周にいくに従ってR−Mリッチ相の
体積率は多くなっており、中心より5mm以上の外周部
においては2%以上のR−Mリッチ相が存在していた。
In the material B as a comparative example, the volume ratio of the RM rich phase is less than 2% at all portions from the center to the outer periphery of the sample. On the other hand, in the A material according to the present invention,
The volume ratio of the RM rich phase in the vicinity of the center was less than 2% like the material A of the comparative example and lower than that of the material B. On the contrary, in the material A, the volume ratio of the RM-rich phase increased toward the outer periphery, and 2% or more of the RM-rich phase was present in the outer peripheral portion 5 mm or more from the center.

【0075】次にA,B両材について、その中心部と外
周部にいずれも直径3mmの孔明け加工を超硬ドリルに
よっておこなった。具体的には孔の中心を円の中心位置
と一致させて作製した孔を中心部の孔とし、円の中心か
ら約7mmのところに開けた孔を外周部の孔とした。こ
のような加工を行った際のそれぞれの部分での加工状況
を表6に示す。
Next, for both materials A and B, a hole having a diameter of 3 mm was drilled in both the central portion and the outer peripheral portion thereof with a cemented carbide drill. Specifically, the hole formed by aligning the center of the hole with the center position of the circle was defined as the central hole, and the hole formed approximately 7 mm from the center of the circle was defined as the outer peripheral hole. Table 6 shows the processing status of each part when such processing is performed.

【0076】[0076]

【表6】 [Table 6]

【0077】表から明らかなようにR−Mリッチ相の体
積率が中心部、外周部ともに少ないB材についてはどち
らの部分も孔明け加工は困難で、孔の周囲から割れが発
生した。これに対してA材では、中心部を加工した場合
にはB材と同様に割れが発生したが、R−Mリッチ相の
体積率が多い外周部においては割れも欠けも発生せず、
良好な加工ができた。
As is clear from the table, for the B material having a small volume ratio of the RM rich phase in both the central portion and the outer peripheral portion, it was difficult to form the holes in both portions, and cracks were generated from the periphery of the holes. On the other hand, in the case of the material A, when the central portion was processed, cracks occurred as in the case of the material B, but neither cracks nor chips occurred in the outer peripheral portion where the volume ratio of the RM rich phase was high,
Good processing was possible.

【0078】さらにA材の中心部と外周部から、それぞ
れサンプルを切り出してVSMにより磁気特性を測定し
た。なお測定に際しては反磁場補正を行った。その結果
中心部のサンプルでは38MGOe、外周部のサンプル
では29MGOeの値が得られた。すなわち本発明によ
れば、内部と外周部でR−Mリッチ相の体積率が異なっ
ている材料を提供することができ、加工を施し易い部分
を外周部に持つと共に、中心部では磁気特性の高い材料
が得られた。
Further, samples were cut out from the central portion and the outer peripheral portion of the material A, and the magnetic characteristics were measured by VSM. In the measurement, demagnetizing field was corrected. As a result, a value of 38 MGOe was obtained for the central sample, and a value of 29 MGOe was obtained for the peripheral sample. That is, according to the present invention, it is possible to provide a material in which the volume ratio of the RM-rich phase is different between the inner portion and the outer peripheral portion, and the outer peripheral portion has a portion that is easily processed, and the central portion has a magnetic characteristic A high material was obtained.

【0079】[0079]

【発明の効果】叙上の如く本発明のようにR,Fe,
B,Mを原料基本成分とし、構成相としてR−Mリッチ
相を持ち、かつその体積率が適正な範囲にあれば、高い
引っ張り強度を持つと共に、機械加工性に優れる磁石を
得ることができる。またネジ切り加工や孔明け加工を施
しても割れ・欠けを生じないため、従来に比べて非常に
容易な磁石の固定方法を採用することが可能となる。さ
らに熱間加工時に実質加工度に部分的な差をつけるよう
な加工を行う方法を採用することにより、高い磁気特性
を実現しながら機械加工性の良好な領域を具備した磁石
を提供する事ができる。
As described above, according to the present invention, R, Fe,
If B and M are the basic components of the raw material, the RM rich phase is the constituent phase, and the volume ratio thereof is in the proper range, a magnet having high tensile strength and excellent machinability can be obtained. . Further, since no cracking or chipping occurs even if the threading process or the drilling process is performed, it is possible to adopt a magnet fixing method which is much easier than the conventional method. Furthermore, by adopting a method of performing processing that causes a partial difference in the actual processing degree during hot working, it is possible to provide a magnet with a region with good machinability while achieving high magnetic characteristics. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実質加工度の概念を示す概略図。 (a)ホットプレス前のインゴットサンプルの断面図。 (b)ホットプレス後のサンプル断面図。FIG. 1 is a schematic view showing the concept of substantial working degree of the present invention. (A) A sectional view of an ingot sample before hot pressing. (B) A sample cross-sectional view after hot pressing.

【図2】 R−Mリッチ相体積率と最大エネルギー積、
引っ張り強度の関係図。
FIG. 2 RM rich phase volume fraction and maximum energy product,
A relational diagram of tensile strength.

【図3】 R−Mリッチ相体積率と欠け発生数の関係
図。
FIG. 3 is a diagram showing the relationship between the volume ratio of the RM rich phase and the number of occurrences of chipping.

【図4】 本発明のホットプレス挙動を示す概略図。 (a)ホットプレス前の概略図。 (b)ホットプレス直後の概略図。FIG. 4 is a schematic diagram showing the hot pressing behavior of the present invention. (A) Schematic before hot pressing. (B) Schematic immediately after hot pressing.

【図5】 本発明のホットプレス直後の金属組織を表す
概略図。
FIG. 5 is a schematic view showing a metal structure immediately after hot pressing according to the present invention.

【図6】 従来例のホットプレス挙動を示す概略図。 (a)ホットプレス前の概略図。 (b)ホットプレス直後の概略図。FIG. 6 is a schematic view showing a hot pressing behavior of a conventional example. (A) Schematic before hot pressing. (B) Schematic immediately after hot pressing.

【図7】 従来例のホットプレス直後の金属組織を表す
概略図。
FIG. 7 is a schematic view showing a metal structure of a conventional example immediately after hot pressing.

【図8】 本発明のA材におけるサンプル観察位置とR
−Mリッチ相体積率の関係図。
FIG. 8 is a sample observation position and R in the A material of the present invention.
-M rich phase volume ratio relationship diagram.

【符号の説明】[Explanation of symbols]

1、2、7 磁石サンプル 3、8 上部ダイ(金型) 4、9 下部ダイ(金型) 5、10 主相(2-14-1相)結晶粒 6、11 液相 1, 2, 7 Magnet sample 3, 8 Upper die (die) 4, 9 Lower die (die) 5, 10 Main phase (2-14-1 phase) crystal grains 6, 11 Liquid phase

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 鋳造物を熱間加工した後に熱処理して製
造され、R(ただしRはPr,Ndを主成分とする希土
類元素),Fe,B,M(ただしMはCu,Ga,S
i,Al,Sn,In,Ag,Auのうち少なくとも1
種)を原料基本成分とし、構成相としてR−Mリッチ相
を有し、該R−Mリッチ相の体積率が2〜15%である
ことを特徴とする永久磁石。
1. A hot-worked cast product is heat-treated and then produced. R (where R is a rare earth element containing Pr and Nd as main components), Fe, B and M (where M is Cu, Ga and S).
At least 1 of i, Al, Sn, In, Ag, Au
(1) a raw material basic component, an RM-rich phase as a constituent phase, and a volume ratio of the RM-rich phase is 2 to 15%.
【請求項2】 鋳造物を熱間加工した後に熱処理して製
造され、R(ただしRはPr,Ndを主成分とする希土
類元素),Fe,B,M(ただしMはCu,Ga,S
i,Al,Sn,In,Ag,Auのうち少なくとも1
種)を原料基本成分とし、構成相としてR−Mリッチ相
を有し、該R−Mリッチ相の体積率が5〜15%である
ことを特徴とする永久磁石。
2. A cast product produced by hot working and then heat treatment, wherein R (where R is a rare earth element containing Pr and Nd as main components), Fe, B and M (where M is Cu, Ga and S).
At least 1 of i, Al, Sn, In, Ag, Au
(Seed) as a raw material basic component, having an RM-rich phase as a constituent phase, wherein the volume ratio of the RM-rich phase is 5 to 15%.
【請求項3】 前記Feのうち、原子比率で1〜20%
をCo,Ni、Mnの少なくとも1種の元素で置換した
ことを特徴とする請求項1ないし2いずれか1項に記載
の永久磁石。
3. The atomic ratio of Fe is 1 to 20%.
3. The permanent magnet according to claim 1, wherein is replaced with at least one element of Co, Ni and Mn.
【請求項4】 前記Feのうち、原子比率で1〜20%
をCoにより置換したことを特徴とする請求項1ないし
2いずれか1項に記載の永久磁石。
4. Of Fe, the atomic ratio is 1 to 20%.
3. The permanent magnet according to claim 1, wherein Co is replaced by Co.
【請求項5】 前記Rのうち、全R量に対する原子比率
で4〜10%がDy、Tbの少なくとも1種であること
を特徴とする請求項1ないし4いずれか1項に記載の永
久磁石。
5. The permanent magnet according to any one of claims 1 to 4, wherein 4 to 10% of the R in atomic ratio to the total amount of R is at least one of Dy and Tb. .
【請求項6】 前記Rのうち、全R量に対する原子比率
で4〜10%がDyであることを特徴とする請求項1な
いし4いずれか1項に記載の永久磁石。
6. The permanent magnet according to claim 1, wherein 4 to 10% of the R is an atomic ratio with respect to the total amount of R is Dy.
【請求項7】 R(ただしRはPr,Ndを主成分とす
る希土類元素),Feあるいは一部をCo,Ni,Mn
の少なくとも一種で置換したFe,B,M(ただしMは
Cu,Ga,Si,Al,Sn,In,Ag,Auのう
ち少なくとも1種)を原料基本成分とし、鋳造物を熱間
加工後熱処理し、さらに二次加工により製品形状とされ
る永久磁石のうち、該二次加工工程において孔明け加工
あるいはネジ切り加工を施される部分におけるR−Mリ
ッチ相の磁石組織中の体積率が2〜15%であることを
特徴とする永久磁石。
7. R (where R is a rare earth element containing Pr, Nd as a main component), Fe or a part of Co, Ni, Mn
Fe, B, M (where M is at least one of Cu, Ga, Si, Al, Sn, In, Ag, Au) substituted with at least one of the above is used as a raw material basic component, and the cast product is heat-treated after hot working. Further, in the permanent magnet formed into the product shape by the secondary processing, the volume ratio of the RM-rich phase in the magnet structure in the portion to be perforated or threaded in the secondary processing step is 2 Permanent magnet, characterized by being ~ 15%.
【請求項8】 R(ただしRはPr,Ndを主成分とす
る希土類元素),Feあるいは一部をCo,Ni,Mn
の少なくとも一種で置換したFe,B,M(ただしMは
Cu,Ga,Si,Al,Sn,In,Ag,Auのう
ち少なくとも1種)を原料基本成分とし、鋳造物を熱間
加工後熱処理し、さらに二次加工により製品形状とされ
る永久磁石のうち、該二次加工工程において孔明け加工
あるいはネジ切り加工を施される部分におけるR−Mリ
ッチ相の磁石組織中の体積率が5〜15%であることを
特徴とする永久磁石。
8. R (where R is a rare earth element containing Pr, Nd as a main component), Fe or a part thereof is Co, Ni, Mn.
Fe, B, M (where M is at least one of Cu, Ga, Si, Al, Sn, In, Ag, Au) substituted with at least one of the above is used as a raw material basic component, and the cast product is heat-treated after hot working. Further, in the permanent magnet formed into the product shape by the secondary processing, the volume ratio of the RM-rich phase in the magnet structure in the portion to be perforated or threaded in the secondary processing step is 5%. Permanent magnet, characterized by being ~ 15%.
【請求項9】 R(ただしRはPr,Ndを主成分とす
る希土類元素),Feあるいは一部をCo,Ni,Mn
の少なくとも一種で置換したFe,B,M(ただしMは
Cu,Ga,Si,Al,Sn,In,Ag,Auのう
ち少なくとも1種)を原料基本成分とし、鋳造物を熱間
加工後熱処理する永久磁石の製造方法において、熱間加
工工程において該鋳造物の実質加工度が部分的に異なる
ような加工を施し、さらに熱処理することによって、R
−Mリッチ相の体積率が異なる複数の領域から成り立つ
磁石を形成することを特徴とする永久磁石の製造方法。
9. R (where R is a rare earth element containing Pr, Nd as a main component), Fe or a part of Co, Ni, Mn.
Fe, B, M (where M is at least one of Cu, Ga, Si, Al, Sn, In, Ag, Au) substituted with at least one of the above is used as a raw material basic component, and the cast product is heat-treated after hot working. In the method for producing a permanent magnet according to claim 1, R is obtained by subjecting the casting to working in which a substantial working degree is partially different in the hot working step, and further performing heat treatment.
-A method for producing a permanent magnet, which comprises forming a magnet composed of a plurality of regions having different M-rich phase volume ratios.
【請求項10】 磁石中においてR−Mリッチ相の体積
率の多い領域におけるR−Mリッチ相の体積率が2〜1
5%であることを特徴とする請求項11記載の永久磁石
の製造方法。
10. The volume ratio of the RM-rich phase in the region where the volume ratio of the RM-rich phase is high in the magnet is 2-1.
It is 5%, The manufacturing method of the permanent magnet of Claim 11 characterized by the above-mentioned.
【請求項11】 磁石中においてR−Mリッチ相の体積
率の多い領域におけるR−Mリッチ相の体積率が5〜1
5%であることを特徴とする請求項11記載の永久磁石
の製造方法。
11. The volume ratio of the RM-rich phase in the region where the volume ratio of the RM-rich phase is large in the magnet is 5 to 1.
It is 5%, The manufacturing method of the permanent magnet of Claim 11 characterized by the above-mentioned.
JP8053294A 1996-03-11 1996-03-11 Permanent magnet and its manufacture Pending JPH09246026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8053294A JPH09246026A (en) 1996-03-11 1996-03-11 Permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8053294A JPH09246026A (en) 1996-03-11 1996-03-11 Permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH09246026A true JPH09246026A (en) 1997-09-19

Family

ID=12938715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8053294A Pending JPH09246026A (en) 1996-03-11 1996-03-11 Permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH09246026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394992B1 (en) * 2001-04-02 2003-08-19 한국과학기술연구원 Fabricating Method of NdFeB Type Sintered Magnet
JP2007089244A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Process for producing radial magnetic anisotropy multipolar magnet
JP2011035001A (en) * 2009-07-29 2011-02-17 Ulvac Japan Ltd Method for manufacturing permanent magnet
CN103268798A (en) * 2013-06-03 2013-08-28 宁波金科磁业有限公司 Preparation method of sintered neodymium iron boron permanent magnet materials formed trhough protection of carbon dioxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394992B1 (en) * 2001-04-02 2003-08-19 한국과학기술연구원 Fabricating Method of NdFeB Type Sintered Magnet
JP2007089244A (en) * 2005-09-20 2007-04-05 Matsushita Electric Ind Co Ltd Process for producing radial magnetic anisotropy multipolar magnet
JP4622767B2 (en) * 2005-09-20 2011-02-02 パナソニック株式会社 Manufacturing method of radial magnetic anisotropic multipole magnet
JP2011035001A (en) * 2009-07-29 2011-02-17 Ulvac Japan Ltd Method for manufacturing permanent magnet
CN103268798A (en) * 2013-06-03 2013-08-28 宁波金科磁业有限公司 Preparation method of sintered neodymium iron boron permanent magnet materials formed trhough protection of carbon dioxide
CN103268798B (en) * 2013-06-03 2015-10-14 宁波金科磁业有限公司 The preparation method of the sintered Nd-Fe-B permanent magnetic material that carbon-dioxide protecting is shaping

Similar Documents

Publication Publication Date Title
CN101640087B (en) Rare earth magnet and production process thereof
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
EP0509628B1 (en) Magnetostrictive alloys and method of manufacturing thereof
JP3242818B2 (en) Alloy for rare earth magnet and method for producing the same
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JPH09246026A (en) Permanent magnet and its manufacture
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JPH06302417A (en) Permanent magnet and its manufacture
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP2018113333A (en) Method for manufacturing rare earth magnet
JP2003334643A (en) Method for manufacturing rare earth alloy, alloy lump for r-t-b magnet, r-t-b magnet, r-t-b bonded magnet, alloy lump for r-t-b exchangeable spring magnet, r-t-b exchangeable spring magnet and r-t-b exchangeable spring bonded magnet
JP2002367846A (en) Method for manufacturing radial or polar anisotropic sintered magnet
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JPH06244046A (en) Manufacture of permanent magnet
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JP4133315B2 (en) Rare earth magnet manufacturing method, rare earth magnet raw material alloy and powder
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPH03267346A (en) Alloying of low level additive to heat treated nd-fe-b magnet
JPH06260359A (en) Production of rare-earth element permanent magnet
JP2019207954A (en) Rare earth permanent magnet