JPH09220592A - Unaerobic treatment apparatus - Google Patents

Unaerobic treatment apparatus

Info

Publication number
JPH09220592A
JPH09220592A JP2961796A JP2961796A JPH09220592A JP H09220592 A JPH09220592 A JP H09220592A JP 2961796 A JP2961796 A JP 2961796A JP 2961796 A JP2961796 A JP 2961796A JP H09220592 A JPH09220592 A JP H09220592A
Authority
JP
Japan
Prior art keywords
liquid
sludge
tank
treated
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2961796A
Other languages
Japanese (ja)
Inventor
Nobuhiro Oda
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2961796A priority Critical patent/JPH09220592A/en
Publication of JPH09220592A publication Critical patent/JPH09220592A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an unaerobic treatment apparatus efficiently taking out sludge even if granular sludge floats to restore the sedimentation properties thereof to return sludge to a reaction part and keeping the concn. of sludge in a tank high to highly efficiently treat a liquid to be treated and circulating a large amt. of the liquid in the tank without increasing the load of a solid- liquid separation part to keep a sludge blanket. SOLUTION: In an unaerobic reaction tank 1 having a reaction part 3 in which a sludge blanket 2 composed of granular sludge containing unaerobic bacteria is formed and having an inflow part 4 of a liquid to be treated provided to the bottom part thereof and having solid-gas-liquid separation members 6a, 6b arranged to the upper part of the reaction part so as to separate a gas collecting part 7 and a solid-liquid separation part 8, the taking-out part 9 taking out the liquid containing floating sludge in a tank from the upper part of the gas collecting part 7 is provided and the sludge in the liquid taken out of the tank is supplied to the inflow part 4 along with the liquid to be treated while crushed by a pump P.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機性排液をUAS
B(上向流スラッジブランケット)法により嫌気性処理
するための嫌気性処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic wastewater
The present invention relates to an anaerobic treatment apparatus for performing anaerobic treatment by the B (upflow sludge blanket) method.

【0002】[0002]

【従来の技術】有機性排液の嫌気性処理方法として、高
密度で沈降性の大きいグラニュール状汚泥を形成し、溶
解性BODを含む有機性排液を上向流通液してスラッジ
ブランケットを形成した状態で接触させて高負荷高速処
理を行うUASB法が採用されている。この方法は消化
速度の遅い固形有機物を分離して別途処理し、消化速度
の速い溶解性有機物のみを、嫌気性微生物密度の高いグ
ラニュール状汚泥を用いる嫌気性処理によって高負荷で
高速処理する方法であり、旧来の嫌気性処理とは区別さ
れている。
2. Description of the Related Art As a method of anaerobic treatment of organic waste liquid, a granular sludge having a high density and a large sedimentation property is formed, and an organic waste liquid containing soluble BOD is upwardly flowed to form a sludge blanket. The UASB method is employed in which the high-load and high-speed processing is performed by bringing them into contact with each other in the formed state. This method separates solid organic matter with slow digestion rate and treats it separately, and treats only soluble organic matter with fast digestion rate at high speed with high load by anaerobic treatment using granulated sludge with high anaerobic microorganism density. And is distinguished from the traditional anaerobic treatment.

【0003】旧来の嫌気性消化法は固形有機物および溶
解性有機物を含む有機性排液をそのまま消化槽に投入し
て嫌気性消化を行う方法であり、固形有機物を可溶化す
る工程で長時間を要するため、全体として20〜40日
という長い滞留時間が必要で、大型の処理装置が必要に
なる。これに対してUASB法は活性の高い嫌気性微生
物が集積された沈降性の大きいグラニユール状汚泥を用
いるため、高流速の場合でも固液分離性を良好にして多
量の汚泥を槽内に保持し、槽内汚泥濃度を高く維持して
高処理効率で嫌気性処理を行うことができ、小型の装置
を用いて効率よく処理を行うことができる。
The conventional anaerobic digestion method is a method in which an organic effluent containing a solid organic matter and a soluble organic matter is directly introduced into a digestion tank to perform anaerobic digestion, and a long time is required in the step of solubilizing the solid organic matter. Therefore, a long residence time of 20 to 40 days is required as a whole, and a large processing device is required. On the other hand, the UASB method uses granule-like sludge in which highly active anaerobic microorganisms are accumulated and has a large settling property. Therefore, even at high flow rates, solid-liquid separation is improved and a large amount of sludge is retained in the tank. The anaerobic treatment can be performed with high treatment efficiency while maintaining a high sludge concentration in the tank, and the treatment can be efficiently performed using a small device.

【0004】嫌気性消化法では汚泥は微細で軽質である
ため、生成ガスが付着することによって浮上して液面で
スカムを形成するが、攪拌によってスカムを破砕して汚
泥とガスを分離すると、汚泥は沈降してスカムの生成は
防止される。これに対しUASB法では、造粒化された
沈降性の良好な汚泥を用いるため、通常は嫌気性消化法
のように汚泥が消化ガスとともに浮上してスカムを形成
することはなく、従ってスカムを破砕して反応部に戻す
ような操作を行う必要はなく、運転操作も簡単であると
されている。
[0004] In the anaerobic digestion method, sludge is fine and light, so that the produced gas adheres and floats to form scum on the liquid surface. When the scum is crushed by stirring to separate the sludge and the gas, Sludge settles and scum formation is prevented. On the other hand, in the UASB method, since the sludge that is granulated and has a good sedimentation property is used, the sludge usually does not float up with the digested gas to form scum unlike the anaerobic digestion method, and therefore scum is not generated. It is said that there is no need to perform the operation of crushing and returning to the reaction section, and the operation operation is simple.

【0005】しかしながらUASB法式の嫌気性処理装
置の中には、特にBOD負荷量として10kg/m3
d以上の高負荷処理を行っている装置では、グラニュー
ル状汚泥が浮上してスカムとなり、その浮上汚泥が処理
水に流出して嫌気性反応槽内の汚泥保持量が減少する現
象が見られる。この汚泥の浮上や流出が生じると、処理
が不十分となり、UASB方式の特色である高負荷運転
が困難となるほか、UASB方式の後処理である活性汚
泥処理装置に嫌気性汚泥が流入して曝気槽のDOを大幅
に低下させ、活性汚泥処理装置の処理性能を減少させる
ことになる。
However, among the UASB type anaerobic treatment apparatuses, a BOD load of 10 kg / m 3 ·
In a device performing high-load treatment of d or more, a phenomenon in which the granular sludge floats up to form scum, and the floating sludge flows out into the treated water and the sludge retention amount in the anaerobic reaction tank decreases . If this sludge floats or flows out, the treatment becomes insufficient, making it difficult to perform high-load operation, which is a feature of the UASB system, and anaerobic sludge flows into the activated sludge treatment device, which is the post-treatment of the UASB system. The DO of the aeration tank is significantly reduced, and the treatment performance of the activated sludge treatment device is reduced.

【0006】上記の汚泥の浮上は、現象的には従来の嫌
気性消化法におけるスカムの浮上と似ているが、スカム
のように付着したガスに随伴して浮上するのとは異な
り、粒状化汚泥自体の比重が小さくなるためであり、従
来のスカムブレーカのように外部に付着したガスを除去
するだけでは、沈降性は回復しない。
The above-mentioned sludge flotation is similar in phenomenon to that of the scum in the conventional anaerobic digestion method, but unlike the flocculation with the adhering gas like scum, it is granulated. This is because the specific gravity of the sludge itself becomes small, and just by removing the gas adhering to the outside like a conventional scum breaker, the sedimentation property cannot be recovered.

【0007】ところでUASB方式の嫌気性反応槽内に
浮上しているグラニュール状汚泥の多くは、そのグラニ
ュール状汚泥の内部に嫌気性反応で発生したガスが内蔵
され、汚泥の比重が軽くなっている例が多い。そこでガ
スを内包しているグラニュール状汚泥を破砕することに
より内包状態のガスを放出し、本来のグラニュール状汚
泥の存在形態であるブランケットを形成させることが可
能となる。そのためUASB方式の嫌気性処理装置にお
いて、反応槽内に浮上したグラニュール状汚泥を適宜反
応槽外へ排出し、その排出汚泥を破砕可能なポンプやミ
キサー、ホモジナイザーなどを用いて破砕し内部の気泡
を露出させた状態で反応槽内に返送する試みがなされて
いる(例えば特開平6−182382号)。
By the way, most of the granulated sludge floating in the UASB type anaerobic reaction tank contains the gas generated by the anaerobic reaction inside the granulated sludge, and the specific gravity of the sludge becomes light. There are many examples. Then, by crushing the granulated sludge enclosing the gas, the encapsulated gas can be released to form a blanket, which is the original existing form of the granulated sludge. Therefore, in a UASB-type anaerobic treatment device, the granular sludge floating in the reaction tank is appropriately discharged to the outside of the reaction tank, and the discharged sludge is crushed using a crushable pump, mixer, homogenizer, etc. Attempts have been made to return the film to the reaction tank in an exposed state (for example, JP-A-6-182382).

【0008】[0008]

【発明が解決しようとする課題】しかし、汚泥の破砕の
ためのみに新たな設備を設けることはコスト高につなが
る。一方、UASB方式ではスラッジブランケットを形
成するために、被処理液を所定の流速で上向流通液する
必要があるが、通常被処理液を通液するだけではスラツ
ジブランケットを形成可能な上向流速を得ることは困難
である。このため処理液を循環することが行われるが、
大量の処理液の循環は固液分離部の負荷を増大させるこ
とになり、コスト高につながる。
However, providing new equipment only for crushing sludge leads to high cost. On the other hand, in the UASB method, in order to form a sludge blanket, it is necessary to upwardly flow the liquid to be treated at a predetermined flow rate, but normally it is possible to form a sludge blanket by simply passing the liquid to be treated. It is difficult to obtain the flow velocity. Therefore, the treatment liquid is circulated,
The circulation of a large amount of treatment liquid increases the load on the solid-liquid separation unit, which leads to high cost.

【0009】本発明の目的は、UASB法における上記
のような問題点を解決し、グラニュール状汚泥が浮上し
た場合でも、汚泥を効率よく取出し沈降性を回復させて
反応部に戻し、これにより槽内汚泥濃度を高く維持して
高処理効率で処理を行うとともに、固液分離部の負荷を
増大させることなく大量の槽内液を循環させてスラッジ
ブランケットを維持することが可能な嫌気性処理装置を
提供することである。
The object of the present invention is to solve the above-mentioned problems in the UASB method, and even when the granulated sludge floats up, the sludge is efficiently taken out and the sedimentation property is recovered and returned to the reaction section. Anaerobic treatment that can maintain sludge concentration in the tank with high treatment efficiency and can maintain sludge blanket by circulating large amount of tank liquid without increasing load on solid-liquid separation unit. It is to provide a device.

【0010】[0010]

【課題を解決するための手段】本発明は、次の嫌気性処
理装置である。 (1)内部に嫌気性微生物を含むグラニュール状汚泥か
らなるスラッジブランケットを形成した反応部を有し、
底部に被処理液流入部を有する嫌気性反応槽と、前記反
応部の上部に集ガス部および固液分離部を分離するよう
に配置された固気液分離部材と、前記集ガス部の上部か
ら浮上汚泥を含む槽内液を取出す槽内液取出部と、前記
槽内液取出部から取出された槽内液中の汚泥を破砕しな
がら、槽内液を被処理液とともに被処理液流入部に給液
する給液部と、前記固液分離部から処理液を取出す処理
液取出部とを備えていることを特徴とする嫌気性処理装
置。 (2)給液部が被処理液および槽内液を吸入して給液す
るポンプを含む上記(1)記載の嫌気性処理装置。 (3)給液部が被処理液の送液圧により槽内液を吸入す
るエゼクタを含む上記(1)記載の嫌気性処理装置。
The present invention is the following anaerobic treatment apparatus. (1) It has a reaction part in which a sludge blanket made of granulated sludge containing anaerobic microorganisms is formed.
An anaerobic reaction tank having a to-be-treated liquid inflow portion at the bottom, a solid-gas liquid separation member arranged above the reaction portion so as to separate a gas collection portion and a solid-liquid separation portion, and an upper portion of the gas collection portion. While crushing the in-tank liquid extraction part that extracts the in-tank liquid containing floating sludge and the sludge in the in-tank liquid extracted from the in-tank liquid extraction part, the in-tank liquid flows into the to-be-treated liquid together with the to-be-treated liquid An anaerobic treatment apparatus comprising: a liquid supply unit that supplies liquid to the unit; and a treatment liquid extraction unit that extracts the treatment liquid from the solid-liquid separation unit. (2) The anaerobic treatment apparatus according to (1) above, wherein the liquid supply unit includes a pump that sucks and supplies the liquid to be treated and the liquid in the tank. (3) The anaerobic treatment apparatus according to the above (1), wherein the liquid supply unit includes an ejector that sucks the liquid in the tank by the liquid feeding pressure of the liquid to be treated.

【0011】UASB法におけるグラニュール状汚泥の
成長過程は明確ではないが、粒径0.1mm付近の微小
な無機性のSSの表面やカルシウムやマグネシウムを含
んだスケール成分の表面に嫌気性微生物が付着し、その
微少なSSやスケールを核としながら年輪状に新たな嫌
気性微生物が増殖、付着し、数か月間以上を要して粒径
0.5〜1mmのグラニュール状汚泥に成長するとされ
ている。成長したグラニュール状汚泥は反応槽内の水流
やガスの発生に伴う流動により破砕され、破砕された微
小な粒子や破片が核となって、次のグラニュール状汚泥
が成長するとされている。
Although the growth process of granulated sludge in the UASB method is not clear, anaerobic microorganisms are present on the surface of fine inorganic SS having a particle size of about 0.1 mm and the surface of scale components containing calcium and magnesium. When attached, new anaerobic microorganisms grow and attach in an annual ring shape with the minute SS and scale as the nucleus, and when it takes several months or more to grow into granular sludge with a particle size of 0.5 to 1 mm. Has been done. It is said that the grown granular sludge is crushed by the flow of water and gas generated in the reaction tank, and the crushed fine particles and fragments serve as nuclei to grow the next granular sludge.

【0012】成長したグラニュール状汚泥の破砕が生じ
ない場合、または破砕される割合や程度が少ない場合は
汚泥が成長を続け、粒径が1mm以上となるに従い、グ
ラニュール状汚泥の内部の嫌気性微生物や有機性のSS
成分が自己分解する。そして自己分解した後は空洞とな
り、その空洞にメタン生成反応で発生したガスが蓄積さ
れ、内包されたガスによりグラニュール状汚泥の比重が
小さくなり、その結果グラニュール状汚泥は浮上し、流
出すると考えられる。
When crushing of the grown granular sludge does not occur, or when the crushing rate or degree is small, the sludge continues to grow, and as the particle size becomes 1 mm or more, the anaerobic inside of the granular sludge becomes Microbial and organic SS
The components self-decompose. Then, after self-decomposition, it becomes hollow, and the gas generated by the methanogenic reaction is accumulated in the hollow, and the specific gravity of the granulated sludge is reduced by the enclosed gas, and as a result, the granular sludge floats up and flows out. Conceivable.

【0013】UASB法における負荷量が低い場合は、
グラニュール状汚泥の成長と、成長した汚泥の破砕され
る割合が均衡しており、そのため大粒径に成長してガス
を内包しているグラニュール状汚泥の存在割合が少な
く、汚泥の浮上および流出現象が顕著ではない。これに
対し、BOD負荷として10〜15kg/m3・dの高
負荷で処理を行うと、グラニュール状汚泥の成長割合
が、破砕される割合より大幅に高くなり、汚泥の浮上お
よび流出現象が多くなる。従ってUASB方式が高負荷
運転を行う場合、汚泥中に比重の重いスケール成分や無
機性SSが絶えず供給されない限り、グラニュール状汚
泥の浮上現象が発生する。
When the load amount in the UASB method is low,
The growth of granulated sludge and the rate of crushing of the grown sludge are balanced, so the proportion of granulated sludge that grows to a large particle size and contains gas is small, and the sludge floats and The outflow phenomenon is not remarkable. On the other hand, when the treatment is carried out at a high BOD load of 10 to 15 kg / m 3 · d, the growth rate of granulated sludge is significantly higher than the rate of crushing, and sludge floating and runoff phenomena occur. Will increase. Therefore, when the UASB system performs a high load operation, the floating phenomenon of the granulated sludge occurs unless the scale component having a high specific gravity and the inorganic SS are constantly supplied into the sludge.

【0014】このため本発明では、槽内液を取出して浮
上汚泥を効率よく適度に破砕し、これにより浮上汚泥の
平均粒径を小さくすると同時に、内部の空洞化部を外面
に露出させて沈降性を回復し、これを反応部に戻すこと
により槽内汚泥濃度を高く維持するように構成される。
この際、循環する槽内液を被処理液とともに被処理液流
入部に給液することにより、スラッジブランケットの形
成に必要な上向流速を確保し、かつ固液分離部の負荷を
小さくするようにされている。
Therefore, in the present invention, the liquid in the tank is taken out and the floating sludge is efficiently and moderately crushed to thereby reduce the average particle size of the floating sludge, and at the same time, the cavitation inside is exposed to the outer surface to settle. The sludge concentration in the tank is maintained high by recovering the property and returning it to the reaction section.
At this time, by supplying the circulating liquid in the tank together with the liquid to be treated into the liquid inflowing portion, the upward flow velocity necessary for forming the sludge blanket is secured and the load on the solid-liquid separation portion is reduced. Has been

【0015】このような槽内液の循環と被処理液の供給
に用いられる給液部としては、槽内液を吸入して中に含
まれる汚泥を破砕し、これを被処理液とともに被処理液
流入部に給液できるものであればよく、例えばポンプ、
エゼクタのように機械的な混合、送液を行える装置を含
むものが好ましい。
The liquid supply section used for circulating the liquid in the tank and supplying the liquid to be treated is sucked into the liquid in the tank to crush the sludge contained therein, and the sludge is treated together with the liquid to be treated. Anything that can supply liquid to the liquid inflow part, such as a pump,
It is preferable to include a device such as an ejector that can perform mechanical mixing and liquid feeding.

【0016】ポンプの場合、タービンポンプなどの如
く、液が内部を通過する際汚泥を破砕するように汚泥破
砕機構を持つものが好ましく、この槽内液および被処理
液を吸入して混合するとともに汚泥を破砕し、その状態
で被処理液流入部に給液できるように配置される。この
とき被処理液の流量変動に対応して槽内液の吸入量を調
整し、全体として定量送液できるようにするのが好まし
い。
In the case of a pump, it is preferable that the pump has a sludge crushing mechanism so as to crush the sludge when the liquid passes through it, such as a turbine pump, and the liquid in the tank and the liquid to be treated are sucked and mixed. The sludge is arranged so that it can be crushed and supplied to the inflow part of the liquid to be treated in that state. At this time, it is preferable to adjust the suction amount of the liquid in the tank according to the fluctuation of the flow rate of the liquid to be treated so that the liquid can be quantitatively fed as a whole.

【0017】エゼクタの場合、被処理液の送液圧を利用
して槽内液取出部から槽内液を吸入し、この吸入操作お
よび被処理液との混合操作の際に汚泥を破砕するように
構成される。このエゼクタは反応槽内に設置し、液面部
付近から槽内液を吸引して汚泥を破砕し、被処理液とと
もに被処理液流入部へ給液するように配置することがで
きる。
In the case of the ejector, the liquid in the tank is sucked from the in-tank liquid taking-out portion by utilizing the liquid feeding pressure of the liquid to be treated, and the sludge is crushed during the suction operation and the mixing operation with the liquid to be treated. Is composed of. This ejector can be installed in the reaction tank so that the liquid in the tank is sucked from the vicinity of the liquid surface to smash the sludge, and the sludge is supplied together with the liquid to be treated to the inflow portion of the liquid to be treated.

【0018】[0018]

【作用】本発明の嫌気性処理装置を用いた嫌気性処理方
法は、まず嫌気性微生物の自己造粒性を利用して粒状化
した嫌気性微生物を含むグラニュール状汚泥を嫌気性反
応槽の反応部に投入し、底部に設けられた被処理液流入
部から有機性排液を導入し、上向流で通液してスラッジ
ブランケットを形成し、嫌気性下に接触させる。これに
より排液中の溶解性有機物は嫌気性微生物の作用により
酸生成工程、メタン生成工程を経て、メタンおよび二酸
化炭素に分解される。
In the method for anaerobic treatment using the anaerobic treatment apparatus of the present invention, first, the granulated sludge containing anaerobic microorganisms granulated by utilizing the self-granulating property of the anaerobic microorganisms is stored in the anaerobic reaction tank. It is charged into the reaction part, and the organic drainage is introduced from the treated liquid inflow part provided in the bottom part, and is passed in the upward flow to form a sludge blanket, which is contacted under anaerobic conditions. Thereby, the soluble organic matter in the wastewater is decomposed into methane and carbon dioxide by the action of the anaerobic microorganism through the acid generation step and the methane generation step.

【0019】グラニュール状汚泥は密度が高く沈降性に
優れるため、排液を上向流で通液することにより均一な
スラッジブランケットが形成され、反応部内に保持され
る。スラッジブランケットを通過した排液は固気液分離
部材を通って固液分離部に入り、ここで固液分離され
て、分離液は処理液取出部から処理液として取出され
る。分離した汚泥は沈降して連通路から反応部に戻る。
反応部で発生するメタン等のガスは反応部を上昇する
が、固気液分離部材に遮られて固液分離部には流入せ
ず、集ガス部から取出される。
Since the granulated sludge has a high density and an excellent settling property, a uniform sludge blanket is formed by passing the waste liquid in an upward flow and retained in the reaction section. The effluent that has passed through the sludge blanket passes through the solid-gas separation member and enters the solid-liquid separation section, where it is subjected to solid-liquid separation, and the separated liquid is taken out as a processing liquid from the processing liquid taking-out section. The separated sludge settles and returns to the reaction section from the communication passage.
Gas such as methane generated in the reaction part rises in the reaction part, but is blocked by the solid-gas separation member and does not flow into the solid-liquid separation part, but is taken out from the gas collection part.

【0020】比較的負荷が低い場合の正常な運転状態で
はグラニュール状汚泥の浮上はなく、固液分離部に流入
した汚泥はそのまま沈降して反応部に戻るが、高負荷で
運転する場合、あるいは長期間にわたって運転を継続す
る場合には、グラニュール状汚泥の見かけの比重が小さ
くなって浮上し、集ガス部の液面に浮上するようにな
る。
Under normal operating conditions when the load is relatively low, the granular sludge does not float up, and the sludge that has flowed into the solid-liquid separation section settles as it is and returns to the reaction section, but when operating under high load, Alternatively, when the operation is continued for a long period of time, the apparent specific gravity of the granulated sludge becomes small and floats, and floats on the liquid surface of the gas collection part.

【0021】本発明では、集ガス部で浮上した浮上汚泥
を槽内液取出部から槽内液とともに取出し、給液部にお
いて破砕しながら被処理液とともに被処理液流入部に給
液することにより、上向流速を確保してスラッジブラン
ケットを維持し、またこれにより破砕した汚泥を反応部
に戻して効率よく嫌気性反応を行う。浮上汚泥は内部に
空洞化部が形成されているので、この空洞化部が表面に
露出するように破砕すると、グラニュール状汚泥は元の
比重の大きい状態に戻り、沈降性が回復する。このとき
の破砕の程度は、破砕汚泥の大部分が粒径0.2〜1m
m、好ましくは0.3〜0.7mmとなる程度とするの
が適当である。破砕汚泥の粒径が0.2mm未満になる
と、処理液とともに流出しやすく、また1mmを超える
場合は空洞化部が露出せず、沈降性が回復しない場合が
多いので好ましくない。
In the present invention, the floating sludge that has floated up in the gas collecting section is taken out together with the in-tank liquid from the in-tank liquid taking-out section, and is crushed in the liquid feeding section while being fed together with the liquid to be treated into the liquid inflowing portion to be treated. , The sludge blanket is maintained by ensuring the upward flow velocity, and the crushed sludge is returned to the reaction section by this to efficiently perform the anaerobic reaction. Since the floating sludge has a hollow portion formed inside, when the hollow sludge is crushed so that the hollow portion is exposed on the surface, the granulated sludge returns to its original state of high specific gravity and the sedimentation property is restored. Regarding the degree of crushing at this time, most of the crushed sludge has a particle size of 0.2 to 1 m.
m, preferably 0.3 to 0.7 mm. If the particle size of the crushed sludge is less than 0.2 mm, it tends to flow out together with the treatment liquid, and if it exceeds 1 mm, the hollow portion is not exposed and the sedimentation property is not recovered in many cases, which is not preferable.

【0022】汚泥の破砕機構を持ったポンプで破砕する
場合は、渦巻方式や異物破砕機構を持つ特殊なポンプを
用いて、破砕程度を予め確認しておき、適切な破砕状況
に適合する回転数や通液量で運転するのが好ましい。適
切な破砕状況は、破砕汚泥の粒径を測定して確認し、調
整することができる。
When crushing with a pump having a sludge crushing mechanism, a special pump having a vortex system or a foreign matter crushing mechanism is used to check the crushing degree in advance, and the rotation speed suitable for the appropriate crushing situation. It is preferable to operate at a flow rate of or. The appropriate crushing situation can be confirmed and adjusted by measuring the particle size of the crushed sludge.

【0023】このような浮上汚泥の破砕を行わないで処
理を続けると、浮上汚泥は処理水とともに流出し、汚泥
量が減少して、処理効率も低下するが、汚泥を破砕して
反応部に戻すことにより、槽内汚泥濃度(槽内汚泥量/
反応部容量)は高く維持される。槽内汚泥濃度は100
00mg/l以上に保持することができる。また上向流
速を確保するために処理液を循環すると、固液分離部の
負荷が増大するため、大型の固気液分離部材を用いて固
液分離部を大型にする必要があり、コスト高になるが、
集ガス部から槽内液を取出して循環することにより、液
の循環に際して浮上汚泥の破砕を行うことができ、固液
分離部の大型化は必要でなくなる。
When the treatment is continued without crushing the floating sludge as described above, the floating sludge flows out together with the treated water, and the sludge amount decreases and the treatment efficiency decreases, but the sludge is crushed to the reaction section. By returning, sludge concentration in tank (amount of sludge in tank /
Reaction volume) is kept high. Sludge concentration in the tank is 100
It can be maintained at 00 mg / l or more. In addition, if the processing liquid is circulated in order to secure the upward flow velocity, the load on the solid-liquid separation unit increases, so it is necessary to use a large solid-gas separation member to enlarge the solid-liquid separation unit, which results in high cost. But
By taking out the liquid in the tank from the gas collecting part and circulating it, the floating sludge can be crushed when the liquid is circulated, and it is not necessary to increase the size of the solid-liquid separation part.

【0024】本発明で処理対象となる有機性排液は、溶
解性有機物を含む排液であり、若干の固形有機物を含ん
でいてもよい。多量の固形有機物を含む場合は、予め固
液分離により固形有機物を除去したものを処理に供す
る。嫌気性反応槽における排液の上向流速は、0.5〜
2m/hr、好ましくは1〜1.5m/hr、滞留時間
は4〜48時間、好ましくは6〜24時間程度が適当で
ある。
The organic drainage liquid to be treated in the present invention is a drainage liquid containing a soluble organic substance, and may contain a small amount of solid organic substance. When a large amount of solid organic matter is contained, the solid organic matter removed in advance by solid-liquid separation is subjected to treatment. The upward flow velocity of the drainage in the anaerobic reaction tank is 0.5 to
2 m / hr, preferably 1 to 1.5 m / hr, and a residence time of 4 to 48 hours, preferably 6 to 24 hours are suitable.

【0025】本発明はUASB法による高負荷嫌気性処
理装置に適用されるが、UASB装置の運転温度には依
存するものではなく、処理可能な温度が20℃から45
℃の間である中温処理であっても、45℃以上に処理可
能な温度領域がある高温処理であっても適用可能であ
る。
Although the present invention is applied to a high load anaerobic treatment apparatus by the UASB method, it does not depend on the operating temperature of the UASB apparatus, and the treatable temperature is from 20 ° C to 45 ° C.
The present invention can be applied to either the intermediate temperature treatment which is between 0 ° C or the high temperature treatment which has a temperature range capable of being treated at 45 ° C or higher.

【0026】[0026]

【発明の実施の形態】以下、本発明を図面の実施の形態
により説明する。図1は実施形態のUASB方式の嫌気
性処理装置の系統図であり、給液部としてポンプを用い
る例を示す。図1において、1は嫌気性反応槽であっ
て、直方体状の容器からなり、内部にグラニュール汚泥
からなるスラッジブランケット2を形成した反応部3を
有し、底部に設けられた被処理液流入部4が被処理液供
給路5に連絡している。反応部3の上部には板状部材が
対向して傾斜状に配置された固気液分離部材6a、6b
によって、集ガス部7および固液分離部8が区画されて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to embodiments of the drawings. FIG. 1 is a system diagram of a UASB type anaerobic treatment apparatus of an embodiment, and shows an example in which a pump is used as a liquid supply unit. In FIG. 1, reference numeral 1 denotes an anaerobic reaction tank, which is composed of a rectangular parallelepiped-shaped container, has a reaction section 3 in which a sludge blanket 2 made of granulated sludge is formed, and has an inflow of a liquid to be treated provided at the bottom. The section 4 communicates with the liquid supply path 5 to be treated. Solid-gas liquid separation members 6a and 6b, in which plate-like members are arranged in an inclined shape so as to face each other on the upper portion of the reaction section 3.
The gas collection part 7 and the solid-liquid separation part 8 are partitioned by.

【0027】集ガス部7の上部液面付近には、浮上汚泥
を含む槽内液を取出させるように、ロート状の槽内液取
出部9が設けられ、槽内液取出路10に連絡している。
固液分離部8にはオーバーフロー状の処理液取出部11
が設けられ、処理液取出路2に連絡している。また集ガ
ス部7および固液分離部8の上部にはガス室13が形成
され、ガス取出路14に連絡している。
A funnel-shaped in-tank liquid take-out portion 9 is provided near the upper liquid surface of the gas collecting portion 7 so as to take out the in-tank liquid containing floating sludge, and is connected to the in-tank liquid take-out passage 10. ing.
The solid-liquid separation unit 8 has an overflow-shaped processing liquid extraction unit 11
Is provided and communicates with the processing liquid outlet passage 2. Further, a gas chamber 13 is formed above the gas collecting portion 7 and the solid-liquid separating portion 8 and communicates with the gas extraction passage 14.

【0028】15は酸生成槽であって、排液導入路16
から溶解性有機物を含有する排液を導入して嫌気状態に
維持し、有機酸発酵を行うように構成されている。酸生
成槽15と嫌気性反応槽1間を接続する被処理液供給路
5には炭酸ガス除去槽17、流量計18、ポンプP、流
量計19が設けられている。炭酸ガス除去槽17は底部
に散気部21を有し、給気路22に連絡している。槽内
液取出路10は調節弁23を有し、ポンプPの吸入側に
接続している。制御装置25は流量計18、19の信号
に基づき調節弁23の開度を制御するように構成されて
いる。
Reference numeral 15 is an acid production tank, which is a drainage introducing passage 16
Is introduced to maintain an anaerobic state by introducing a waste liquid containing a soluble organic substance and perform organic acid fermentation. A carbon dioxide gas removal tank 17, a flow meter 18, a pump P, and a flow meter 19 are provided in the treated liquid supply path 5 that connects the acid production tank 15 and the anaerobic reaction tank 1. The carbon dioxide gas removal tank 17 has an air diffuser 21 at the bottom and is connected to the air supply passage 22. The in-tank liquid extraction passage 10 has a control valve 23, and is connected to the suction side of the pump P. The control device 25 is configured to control the opening degree of the control valve 23 based on the signals of the flow meters 18 and 19.

【0029】上記の嫌気性処理装置による嫌気性処理方
法は、排液導入路16から溶解性有機物を含有する排液
を酸生成槽15に導入して嫌気状態に維持し、酸生成菌
の作用により溶解性有機物を有機酸に転換する。原排液
中に若干のSS成分が含まれる場合はここで嫌気的に可
溶化される。酸生成槽15で有機酸発酵した排液を炭酸
ガス除去槽17に導入し、給気路22から空気を供給し
て散気部21で散気することにより炭酸ガスを除去され
る。
In the anaerobic treatment method using the above anaerobic treatment apparatus, the effluent containing the soluble organic matter is introduced from the effluent introduction path 16 into the acid production tank 15 to maintain the anaerobic state, and the action of the acid-producing bacteria is performed. To convert the soluble organic matter to organic acid. When some SS components are contained in the raw effluent, they are anaerobically solubilized here. The carbon dioxide gas is removed by introducing the effluent that has undergone organic acid fermentation in the acid production tank 15 into the carbon dioxide gas removal tank 17, supplying air from the air supply passage 22 and performing air diffusion by the air diffuser 21.

【0030】こうして得られる被処理液は流量計18、
19で流量を測定しながらポンプPにより被処理液供給
路5から被処理液流入部4を通して嫌気性反応槽1の下
部に導入され、上向流でスラッジブランケット2を通過
する際、嫌気性下にグラニュール汚泥と接触し、これよ
りグラニュール汚泥に含まれる嫌気性微生物、特にメタ
ン生成菌の作用により嫌気的に分解されて、メタンと炭
酸ガスに転換する。嫌気性処理を受けた反応液は固気液
分離部材6a、6bにおいてガスと固体と液体とが分離
される。
The liquid to be treated thus obtained is a flow meter 18,
While measuring the flow rate at 19, a pump P is introduced into the lower part of the anaerobic reaction tank 1 from the liquid to be treated supply line 5 through the liquid to be treated inflow portion 4, and when passing through the sludge blanket 2 in an upward flow, the anaerobic Contact with the granule sludge, which is anaerobically decomposed by the action of anaerobic microorganisms contained in the granule sludge, especially methanogens, and converted into methane and carbon dioxide. The reaction liquid which has undergone the anaerobic treatment is separated into gas, solid and liquid in the solid-gas separation members 6a and 6b.

【0031】ここで分離した固体は汚泥としてスラッジ
ブランケット3に沈降し、ガスは集ガス部7からガス室
13に上昇し、ガス取出路14から取出される。また分
離した液体は固液分離部8に入って沈降分離によりさら
に固液分離され、ここで分離された固形分は反応部3に
戻り、分離液は処理液として処理液取出部11からオー
バーフローして処理液取出路12に取出される。
The solid separated here is settled on the sludge blanket 3 as sludge, and the gas rises from the gas collecting section 7 to the gas chamber 13 and is taken out from the gas taking-out passage 14. The separated liquid enters the solid-liquid separation unit 8 and is further solid-liquid separated by settling separation. The solid content separated here returns to the reaction unit 3, and the separated liquid overflows as a processing liquid from the processing liquid extraction unit 11. And is taken out to the processing liquid take-out path 12.

【0032】上記の処理中、槽内液取出部9から集ガス
部上部の槽内液が槽内液取出路10に取出され、調節弁
23を通って被処理液供給路5の被処理液と合流してポ
ンプPにより混合されて被処理液流入部4に給液され、
スラッジブランケット2の形成に必要な上昇流速を確保
する。このとき流量計18、19の流量信号の入力によ
り、制御装置25は被処理液供給路5の流量が一定とな
るように調節弁23の開度を制御する。このような槽内
液の循環は固液分離部8を経由することなく行われるの
で、固液分離部の負荷は増大せず、処理液の水質に影響
しない。
During the above processing, the in-tank liquid at the upper part of the gas collection portion is taken out from the in-tank liquid taking-out portion 9 into the in-tank liquid taking-out passage 10, passes through the control valve 23, and the to-be-treated liquid in the to-be-treated liquid supply passage 5 is discharged. And is mixed by the pump P and supplied to the liquid to be treated inflow portion 4,
The rising flow velocity required for forming the sludge blanket 2 is secured. At this time, the control device 25 controls the opening degree of the control valve 23 so that the flow rate of the liquid to be treated supply 5 becomes constant by inputting the flow rate signals of the flow meters 18 and 19. Since the circulation of the liquid in the tank is performed without passing through the solid-liquid separation unit 8, the load on the solid-liquid separation unit does not increase and does not affect the water quality of the treatment liquid.

【0033】通常の運転状態では、グラニュール汚泥は
重質であるため液面に浮上することはなく、この場合は
槽内液のみが循環するが、高負荷運転等によりグラニュ
ール汚泥が軽量化して液面に浮上する。この場合浮上す
る汚泥は固気液分離部材6a、6bがあるため、固液分
離部8への流入を阻止されて集ガス部7に浮上する。浮
上汚泥は槽内液とともに槽内液取出部9から取出され、
被処理液と混合されてポンプPにより送液される過程で
破砕される。これにより内部の空洞部が露出して元の比
重の大きい状態に戻り、沈降性を回復して反応部3に循
環し、高効率で処理が行われる。槽内液の循環に際して
ガスを循環させると、スラッジブランケット2の流動性
が改善され、汚泥の偏在が防止される。
Under normal operating conditions, the granulated sludge is heavy and does not float on the liquid surface. In this case, only the liquid in the tank circulates. Rise to the liquid surface. In this case, the floating sludge is prevented from flowing into the solid-liquid separating section 8 and floats to the gas collecting section 7 because of the solid-liquid separating members 6a and 6b. The floating sludge is taken out from the in-tank liquid extraction section 9 together with the in-tank liquid,
It is crushed in the process of being mixed with the liquid to be treated and being sent by the pump P. As a result, the internal cavity is exposed and returned to the original state of high specific gravity, the sedimentation property is recovered, and the cavities are circulated to the reaction section 3 for highly efficient treatment. When the gas is circulated when the liquid in the tank is circulated, the fluidity of the sludge blanket 2 is improved and uneven distribution of sludge is prevented.

【0034】上記の装置において、被処理液流量100
0m3/日、嫌気性反応槽負荷10kg−BOD/m3
日、上向流速2m/hr、水深4mとし、BOD濃度が
4000、8000および12000mg/lの被処理
液を処理する場合の仕様は表1に示される。
In the above apparatus, the flow rate of the liquid to be treated is 100
0 m 3 / day, anaerobic reaction tank load 10 kg-BOD / m 3 ·
Table 1 shows the specifications for treating the liquid to be treated having an upward flow velocity of 2 m / hr, a water depth of 4 m, and BOD concentrations of 4000, 8000, and 12000 mg / l.

【0035】[0035]

【表1】 [Table 1]

【0036】図1のような槽内液ではなく、従来法のよ
うに処理液を循環する場合は、表1の上向流量が固液分
離部負荷流量になる。従って図1のように槽内液を循環
することにより、表1の例では従来法の1/4.8、1
/9.6、1/14.4の固液分離部負荷ですむことが
わかる。
When the treatment liquid is circulated as in the conventional method instead of the liquid in the tank as shown in FIG. 1, the upward flow rate of Table 1 becomes the solid-liquid separation section load flow rate. Therefore, by circulating the liquid in the tank as shown in FIG.
It can be seen that a solid-liquid separation section load of /9.6 and 1 / 144.4 is sufficient.

【0037】図2は他の実施形態を示し、(a)は全体
の系統図、(b)は一部の拡大断面図であり、給液部と
してエゼクタを用いる例を示す。図2において、エゼク
タ26は被処理液供給路5の途中に設けられて、嫌気性
反応槽1の集ガス部7の液面付近に配置されており、そ
の吸入口26aは槽内液取出部9として液面付近に開口
し、液面付近の浮上汚泥27を槽内液28とともに吸入
し、被処理液流入部4に供給するように構成されてい
る。被処理液供給路5はポンプPを介して酸生成槽15
に連絡している。他の構成は図1と同様である。
FIG. 2 shows another embodiment, (a) is an overall system diagram, (b) is a partially enlarged sectional view, and shows an example in which an ejector is used as a liquid supply section. In FIG. 2, the ejector 26 is provided in the middle of the liquid supply path 5 to be treated, and is arranged near the liquid surface of the gas collection part 7 of the anaerobic reaction tank 1, and its suction port 26a is a liquid extraction part in the tank. 9 is opened near the liquid surface, and the floating sludge 27 near the liquid surface is sucked together with the in-tank liquid 28 and supplied to the liquid to be treated inflow portion 4. The liquid to be treated supply path 5 is provided with an acid generation tank 15 via a pump P.
Have been contacted. Other configurations are the same as those in FIG.

【0038】上記の構成において、ポンプPにより被処
理液供給路5から被処理液を供給すると、被処理液がエ
ゼクタ26を通過する際その吸引作用により吸入口26
aから集ガス部7の液面付近の槽内液28を吸引して被
処理液流入部4に供給される。これにより槽内液が循環
し、スラッジブランケット形成に必要な上向流速が確保
される。このときガスも吸入されてスラッジブランケッ
トの流動化を促進する。
In the above structure, when the liquid to be treated is supplied from the liquid to be treated supply path 5 by the pump P, when the liquid to be treated passes through the ejector 26, its suction action causes the suction port 26.
The in-tank liquid 28 near the liquid surface of the gas collecting portion 7 is sucked from a and supplied to the liquid to be treated inflow portion 4. As a result, the liquid in the tank is circulated, and the upward flow velocity necessary for forming the sludge blanket is secured. At this time, gas is also sucked in to promote fluidization of the sludge blanket.

【0039】汚泥が軽質化した場合は、集ガス部7の液
面付近に浮上するが、この浮上汚泥27は槽内液28と
ともにエゼクタ26の吸入口26aから吸入されて被処
理液と激しく混合され、これにより汚泥は破砕されて重
質化し、反応部3に循環する。このようにエゼクタ26
で槽内液を循環することにより、上向流速の確保と浮上
汚泥の破砕が行われ、効率のよい処理が可能となる。
When the sludge becomes lighter, it floats near the liquid surface of the gas collecting section 7. The floating sludge 27 is sucked together with the in-tank liquid 28 from the suction port 26a of the ejector 26 and is vigorously mixed with the liquid to be treated. As a result, the sludge is crushed to become heavy and circulates in the reaction section 3. In this way, the ejector 26
By circulating the liquid in the tank, the upward flow velocity is secured and the floating sludge is crushed, and efficient treatment is possible.

【0040】なお上記の処理において、給液部として
は、ポンプ、エゼクタに限らず、槽内液の循環と浮上汚
泥の破砕が可能なものであれば他の同様の装置の使用が
可能である。
In the above process, the liquid supply unit is not limited to the pump and the ejector, and other similar devices can be used as long as they can circulate the liquid in the tank and crush the floating sludge. .

【0041】[0041]

【発明の効果】本発明によれば、集ガス部から槽内液と
ともに浮上汚泥を取出し、汚泥を破砕しながら被処理液
とともに嫌気性反応槽に供給する給液部を設けたので、
UASB法において、グラニュール状汚泥が浮上した場
合でも、汚泥を効率よく取出し沈降性を回復させて反応
部に戻し、これにより槽内汚泥濃度を高く維持して高処
理効率で処理を行うとともに、固液分離部の負荷を増大
させることなく大量の槽内液を循環させてスラッジブラ
ンケットを維持することが可能になる。
According to the present invention, since the floating sludge is taken out from the gas collecting part together with the liquid in the tank and the sludge is crushed, the liquid supplying part for supplying the liquid to be treated to the anaerobic reaction tank is provided.
In the UASB method, even when the granulated sludge floats up, the sludge is efficiently taken out, the sedimentation property is restored and returned to the reaction section, whereby the sludge concentration in the tank is maintained high and the treatment is performed with high treatment efficiency. It becomes possible to maintain a sludge blanket by circulating a large amount of in-tank liquid without increasing the load on the solid-liquid separation section.

【0042】給液部としてポンプを用いると、被処理液
の流量が変動する場合でも、流量を一定にして一定の上
向流速を得ることができる。
When a pump is used as the liquid supply section, even if the flow rate of the liquid to be treated varies, the flow rate can be kept constant and a constant upward flow velocity can be obtained.

【0043】給液部としてエゼクタを用いると、装置の
構成および操作を簡素化して処理を行うことができる。
When an ejector is used as the liquid supply unit, the structure and operation of the apparatus can be simplified and the processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態の嫌気性処理装置の系統図である。FIG. 1 is a system diagram of an anaerobic treatment apparatus of an embodiment.

【図2】他の実施形態の嫌気性処理装置の系統図であ
る。
FIG. 2 is a system diagram of an anaerobic treatment apparatus of another embodiment.

【符号の説明】[Explanation of symbols]

1 嫌気性反応槽 2 スラッジブランケット 3 反応部 4 被処理液流入部 5 被処理液供給路 6a、6b 固気液分離部材 7 集ガス部 8 固液分離部 9 槽内液取出部 10 槽内液取出路 11 処理液取出部 12 処理液取出路 13 ガス室 14 ガス取出路 15 酸生成槽 16 排液導入路 17 炭酸ガス除去槽 18、19 流量計 21 散気部 22 給気路 23 調節弁 25 制御装置 26 エゼクタ 1 Anaerobic reaction tank 2 Sludge blanket 3 Reaction part 4 Treated liquid inflow part 5 Treated liquid supply paths 6a, 6b Solid-gas separation member 7 Gas collection part 8 Solid-liquid separation part 9 In-tank liquid extraction part 10 In-tank liquid Extraction passage 11 Treatment liquid taking-out portion 12 Treatment liquid taking-out passage 13 Gas chamber 14 Gas taking-out passage 15 Acid generation tank 16 Waste liquid introduction passage 17 Carbon dioxide removal tank 18, 19 Flowmeter 21 Air diffuser 22 Air supply passage 23 Control valve 25 Control device 26 ejector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部に嫌気性微生物を含むグラニュール
状汚泥からなるスラッジブランケットを形成した反応部
を有し、底部に被処理液流入部を有する嫌気性反応槽
と、 前記反応部の上部に集ガス部および固液分離部を分離す
るように配置された固気液分離部材と、 前記集ガス部の上部から浮上汚泥を含む槽内液を取出す
槽内液取出部と、 前記槽内液取出部から取出された槽内液中の汚泥を破砕
しながら、槽内液を被処理液とともに被処理液流入部に
給液する給液部と、 前記固液分離部から処理液を取出す処理液取出部とを備
えていることを特徴とする嫌気性処理装置。
1. An anaerobic reaction tank having a reaction part in which a sludge blanket made of granulated sludge containing anaerobic microorganisms is formed, and an inflow part for liquid to be treated at the bottom, and an upper part of the reaction part. A gas-liquid separating member arranged to separate the gas collecting part and the solid-liquid separating part, an in-tank liquid taking-out part for taking out the in-tank liquid containing floating sludge from the upper part of the gas collecting part, and the in-tank liquid A liquid supply part that feeds the in-tank liquid to the to-be-treated liquid inflow part together with the to-be-treated liquid while crushing sludge in the in-tank liquid taken out from the take-out part, and a treatment liquid to be taken out from the solid-liquid separation part An anaerobic treatment apparatus comprising: a liquid extraction unit.
【請求項2】 給液部が被処理液および槽内液を吸入し
て給液するポンプを含む請求項1記載の嫌気性処理装
置。
2. The anaerobic treatment apparatus according to claim 1, wherein the liquid supply unit includes a pump for sucking and supplying the liquid to be treated and the liquid in the tank.
【請求項3】 給液部が被処理液の送液圧により槽内液
を吸入するエゼクタを含む請求項1記載の嫌気性処理装
置。
3. The anaerobic treatment apparatus according to claim 1, wherein the liquid supply unit includes an ejector for sucking the liquid in the tank by the liquid feeding pressure of the liquid to be treated.
JP2961796A 1996-02-16 1996-02-16 Unaerobic treatment apparatus Pending JPH09220592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2961796A JPH09220592A (en) 1996-02-16 1996-02-16 Unaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2961796A JPH09220592A (en) 1996-02-16 1996-02-16 Unaerobic treatment apparatus

Publications (1)

Publication Number Publication Date
JPH09220592A true JPH09220592A (en) 1997-08-26

Family

ID=12281049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2961796A Pending JPH09220592A (en) 1996-02-16 1996-02-16 Unaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JPH09220592A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144415A (en) * 2003-11-20 2005-06-09 Kirin Brewery Co Ltd Anaerobic treatment method for organic wastewater
WO2005077841A1 (en) * 2004-02-12 2005-08-25 Sumitomo Heavy Industries, Ltd. Drain treating device
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
CN101805066A (en) * 2010-04-20 2010-08-18 上海大学 Method and device for preventing scaling of reactor and simultaneously purifying biogas
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
JP2017177098A (en) * 2016-03-28 2017-10-05 住友重機械エンバイロメント株式会社 Water treatment apparatus
CN114436396A (en) * 2022-01-05 2022-05-06 安阳工学院 Anaerobic ammonia oxidation granular sludge stable operation device and anaerobic ammonia oxidation stable operation method
CN114560558A (en) * 2022-04-08 2022-05-31 滁州职业技术学院 Anaerobic reactor for sewage treatment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606726B2 (en) * 2003-11-20 2011-01-05 麒麟麦酒株式会社 Anaerobic treatment method for organic wastewater
JP2005144415A (en) * 2003-11-20 2005-06-09 Kirin Brewery Co Ltd Anaerobic treatment method for organic wastewater
WO2005077841A1 (en) * 2004-02-12 2005-08-25 Sumitomo Heavy Industries, Ltd. Drain treating device
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
JP2009522095A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
JP2009522096A (en) * 2006-01-05 2009-06-11 バイオタン システムズ インターナショナル ビー.ブイ. Method and reactor for anaerobic wastewater purification
US8021552B2 (en) 2006-01-05 2011-09-20 Veolia Water Solutions & Technologies Support Process and reactor for anaerobic waste water purification
US8043506B2 (en) 2006-01-05 2011-10-25 Biothane Systems International B.V. Process and reactor for anaerobic waste water purification
CN101805066A (en) * 2010-04-20 2010-08-18 上海大学 Method and device for preventing scaling of reactor and simultaneously purifying biogas
JP2014188486A (en) * 2013-03-28 2014-10-06 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus
JP2017177098A (en) * 2016-03-28 2017-10-05 住友重機械エンバイロメント株式会社 Water treatment apparatus
CN114436396A (en) * 2022-01-05 2022-05-06 安阳工学院 Anaerobic ammonia oxidation granular sludge stable operation device and anaerobic ammonia oxidation stable operation method
CN114560558A (en) * 2022-04-08 2022-05-31 滁州职业技术学院 Anaerobic reactor for sewage treatment

Similar Documents

Publication Publication Date Title
KR101054087B1 (en) Apparatus for total phosphorus removal of sewage
EP0970922B1 (en) Method for methane fermentation of organic waste
JP2010515567A (en) System and method for promoting activated sludge treatment
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JP4571065B2 (en) Granular microbial sludge generation method and granular microbial sludge generation apparatus
CA1081378A (en) Continuous fermentation process and apparatus
JPH09220592A (en) Unaerobic treatment apparatus
CN109133510A (en) High concentration garlic wastewater processing unit
JP2008086862A (en) Anaerobic treatment method and arrangement
JPH0910792A (en) Anaerobic treatment apparatus
JP3175480B2 (en) Anaerobic treatment equipment
JP3425930B2 (en) Apparatus and method for reducing volume of garbage using fermenter
JP3358322B2 (en) Anaerobic treatment equipment
WO2018215040A1 (en) A method and an apparatus for recovering a solid organics from a flow of an effluent of partly digested biomass
JPH10180289A (en) Anaerobic treating device
JP3358321B2 (en) Anaerobic treatment equipment
KR20020075046A (en) The treating method of high concentration organic waste water
KR101045878B1 (en) High-efficiency hybrid sedimentation basin for processing water elevation
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
CN111747625A (en) Carbon source recovery-based municipal sludge physicochemical and biochemical combined treatment and reduction method
KR102131735B1 (en) Compact type aeration tank for sewage treatment and sewage treatment system comprising the same
CN111704325A (en) Beer wastewater treatment system
JPH08132091A (en) Anaerobic treating device
JPH08103795A (en) Anaerobic treatment device
JPH0714519B2 (en) Sewage treatment method and device