JP2006110511A - Operation method for anaerobic ammonia oxidation apparatus - Google Patents

Operation method for anaerobic ammonia oxidation apparatus Download PDF

Info

Publication number
JP2006110511A
JP2006110511A JP2004302690A JP2004302690A JP2006110511A JP 2006110511 A JP2006110511 A JP 2006110511A JP 2004302690 A JP2004302690 A JP 2004302690A JP 2004302690 A JP2004302690 A JP 2004302690A JP 2006110511 A JP2006110511 A JP 2006110511A
Authority
JP
Japan
Prior art keywords
anaerobic ammonia
ammonia oxidation
tank
anaerobic
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004302690A
Other languages
Japanese (ja)
Other versions
JP4945891B2 (en
Inventor
Kazuichi Isaka
和一 井坂
Tatsuo Sumino
立夫 角野
Shigeki Kobayashi
茂樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004302690A priority Critical patent/JP4945891B2/en
Publication of JP2006110511A publication Critical patent/JP2006110511A/en
Application granted granted Critical
Publication of JP4945891B2 publication Critical patent/JP4945891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method for an anaerobic ammonia oxidation apparatus which can improve operation stability in the anaerobic ammonia oxidation apparatus for a long time, and enables easy transfer to steady operation in a short time at the start of operation, the load change, and the start-up of operation from deactivation. <P>SOLUTION: In the anaerobic ammonia oxidation apparatus 10, ammoniacal waste water from raw water piping 20 is sent to a distributor 12 by driving a raw water pump 22 to be distributed to a nitrite type nitrification tank 14 and an anaerobic ammonia oxidation tank 18 through first piping 24 and second piping 26. The treated water of the nitrification tank 14 is joined to the second piping 26 through third piping 28, and sent to the anaerobic ammonia oxidation tank 18. A regulating tank 16 is installed in the second piping 26 to regulate the inflow to the anaerobic ammonia oxidation tank 18. A part of the treated water of the anaerobic ammonia oxidation tank 18 is discharged by a flow divider 32 through fourth piping 34, and the remainder is returned to the anaerobic ammonia oxidation tank 18. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は嫌気性アンモニア酸化装置の運転方法に係り、特に嫌気性アンモニア酸化法を活用して原水中のアンモニアを除去するための嫌気性アンモニア酸化装置の運転方法に関する。   The present invention relates to an operation method of an anaerobic ammonia oxidation apparatus, and more particularly to an operation method of an anaerobic ammonia oxidation apparatus for removing ammonia in raw water by utilizing an anaerobic ammonia oxidation method.

下水や産業廃水に含有する窒素成分は、湖沼の富栄養化の原因になること、河川の溶存酸素の低下原因になること等の理由から、窒素成分を除去する必要がある。下水や産業廃水に含有する窒素成分は、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素、有機性窒素が主たる窒素成分である。   Nitrogen components contained in sewage and industrial wastewater need to be removed for reasons such as causing eutrophication of lakes and marshes and reducing dissolved oxygen in rivers. Nitrogen components contained in sewage and industrial wastewater are mainly nitrogen components such as ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and organic nitrogen.

従来、この種の廃水は、窒素濃度が低濃度であれば、イオン交換法での除去や塩素、オゾンによる酸化も用いられているが、中高濃度の場合には生物処理が採用されており、一般的には以下の条件で運転されている。   Conventionally, this type of wastewater, if the nitrogen concentration is low, is also removed by ion exchange method and oxidation by chlorine, ozone, but in the case of medium to high concentration, biological treatment is adopted, Generally, it is operated under the following conditions.

生物処理では好気硝化と嫌気脱窒による硝化・脱窒処理が行われており、好気硝化では、アンモニア酸化細菌(Nitrosomonas,Nitrosococcus,Nitrosospira,Nitrosolobusなど)と亜硝酸酸化細菌(Nitrobactor,Nitrospina,Nitrococcus,Nitrospira など)によるアンモニア性窒素や亜硝酸性窒素の酸化が行われる一方、嫌気脱窒では、従属栄養細菌(Pseudomonas denitrificans など)による脱窒が行われる。   Biological treatment involves aerobic nitrification and anaerobic denitrification, and in aerobic nitrification, ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, etc.) and nitrite oxidizing bacteria (Nitrobactor, Nitrospina, Nitrococcus, Nitrospira, etc.) oxidize ammonia nitrogen and nitrite nitrogen, while anaerobic denitrification involves denitrification by heterotrophic bacteria (Pseudomonas denitrificans, etc.).

また、好気硝化を行なう硝化槽は負荷0.2〜0.3kg−N/m3 /日の範囲で運転され、嫌気脱窒の脱窒槽は負荷0.2〜0.4kg−N/m3 /日の範囲で運転される。下水の総窒素濃度30〜40mg/Lを処理するには、硝化槽で6〜8時間の滞留時間、脱窒槽で5〜8時間が必要であり、大規模な処理槽が必要であった。また無機質だけを含有する産業廃水では、硝化槽や脱窒槽は先と同様の負荷で設計されるが、脱窒に有機物が必要で、窒素濃度の3〜4倍濃度のメタノールを添加していた。このためイニシャルコストばかりでなく、多大なランニングコストを要するという問題もある。 A nitrification tank for performing aerobic nitrification is operated in a load range of 0.2 to 0.3 kg-N / m 3 / day, and a denitrification tank for anaerobic denitrification has a load of 0.2 to 0.4 kg-N / m. It is operated in the range of 3 / day. In order to treat the total nitrogen concentration of sewage of 30 to 40 mg / L, a residence time of 6 to 8 hours was required in the nitrification tank and 5 to 8 hours were required in the denitrification tank, and a large-scale treatment tank was required. In industrial wastewater containing only inorganic substances, nitrification tanks and denitrification tanks are designed with the same load as before, but organic substances are required for denitrification, and methanol with a concentration of 3 to 4 times the nitrogen concentration was added. . For this reason, there is a problem that not only the initial cost but also a great running cost is required.

これに対し、最近、嫌気性アンモニア酸化法による窒素除去方法が注目されている(例えば、特許文献1)。この嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを以下の反応式により同時脱窒する方法である(Strous M et al.(1998)Appl.Microbio.Biotechnol.Vol.50,P.589-596を参照) 。   On the other hand, recently, a nitrogen removal method using an anaerobic ammonia oxidation method has attracted attention (for example, Patent Document 1). This anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrite is used as a hydrogen acceptor, and ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium according to the following reaction formula (Strous M et al. (1998) Appl. Microbio. Biotechnol. Vol. 50, P. 589-596).

(化1)
1.0 NH4 +1.32NO 2 +0.066HCO 3 +0.13H+ →1.02N 2 +0.26NO 3 +0.066CH2 O 0.5 N 0.15+2.03H2 O
この方法によれば、アンモニアを水素供与体とするため、脱窒で使用するメタノール等の使用量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがあり,今後の窒素除去方法として有効な方法であると考えられている。
特開2001−37467号公報
(Chemical formula 1)
1.0 NH 4 + 1.32NO 2 + 0.066HCO 3 + 0.13H + → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
According to this method, since ammonia is used as a hydrogen donor, there are merits such as drastically reducing the amount of methanol used for denitrification and reducing the amount of sludge generated. It is considered to be an effective method.
JP 2001-37467 A

しかしながら、この嫌気性アンモニア酸化細菌は、亜硝酸(NO 2−N)を基質とする反面、NO 2−N濃度が上昇すると活性が低下することが知られている。従って、嫌気性アンモニア酸化槽内に蓄積するNO 2−N量が増大する環境変化を起こすと、嫌気性アンモニア酸化反応の活性を低下させて、想定される処理性能が得られない結果を招くことになる。 However, while this anaerobic ammonia oxidizing bacterium uses nitrous acid (NO 2 -N) as a substrate, it is known that the activity decreases when the NO 2 -N concentration increases. Therefore, when an environmental change that increases the amount of NO 2 -N accumulated in the anaerobic ammonia oxidation tank is caused, the activity of the anaerobic ammonia oxidation reaction is reduced, and the expected treatment performance cannot be obtained. become.

特に、嫌気性アンモニア酸化槽内に攪拌機構がない場合では、流れ方向に嫌気性アンモニア酸化細菌の微生物相が形成され、流入水濃度に見合ったバイオマスが形成されるので、槽内に亜硝酸が高濃度に残留しない平衡状態が保たれるが、発明者の研究により、例えば嫌気性アンモニア酸化槽内の流速が変動する等の諸々の不安定要因により適切な処理系が維持できなくなり、嫌気性アンモニア酸化装置の処理性能が低下するという欠点がある。   In particular, when there is no stirring mechanism in the anaerobic ammonia oxidation tank, anaerobic ammonia-oxidizing bacteria microflora is formed in the flow direction, and biomass commensurate with the influent concentration is formed. Although an equilibrium state that does not remain at a high concentration is maintained, according to the inventor's research, an appropriate treatment system cannot be maintained due to various instability factors such as fluctuation of the flow rate in the anaerobic ammonia oxidation tank, and anaerobic There exists a fault that the processing performance of an ammonia oxidation device falls.

本発明はこのような事情に鑑みてなされたもので、嫌気性アンモニア酸化装置における長期にわたる運転安定性を向上させることができると共に、運転開始時や負荷変動時、失活から運転の立ち上げ時において簡易且つ短時間で定常運転に移行できる嫌気性アンモニア酸化装置の運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and can improve the long-term operation stability in the anaerobic ammonia oxidation apparatus, and at the start of operation or when the load is changed, from deactivation to when the operation is started An object of the present invention is to provide a method for operating an anaerobic ammonia oxidation apparatus that can be shifted to steady operation in a simple and short time.

請求項1に記載の発明は前記目的を達成するために、原水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽を備えた嫌気性アンモニア酸化装置の運転方法において、前記嫌気性アンモニア酸化槽における槽内流速が一定となるように、該嫌気性アンモニア酸化槽で処理した処理水を前記嫌気性アンモニア酸化槽の入口に循環させる循環量及び/又は前記原水の原水量を調整して運転を行なうことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is an operation of an anaerobic ammonia oxidation apparatus provided with an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid in raw water by anaerobic ammonia oxidizing bacteria. In the method, the circulation amount and / or the raw water for circulating the treated water treated in the anaerobic ammonia oxidation tank to the inlet of the anaerobic ammonia oxidation tank so that the flow rate in the tank in the anaerobic ammonia oxidation tank is constant. The operation is performed by adjusting the amount of raw water.

本発明によれば、アンモニアと亜硝酸とを嫌気性アンモニア酸化細菌によって同時脱窒する嫌気性アンモニア酸化槽では、嫌気性アンモニア酸化反応の不安定性に関して様々な要因が想定される。本願発明者は、特に嫌気性アンモニア酸化槽へ流入する流入水の流速変動が安定した処理を行なうことができない大きな要因であることに着目し、嫌気性アンモニア酸化槽の槽内流速が一定になるように、嫌気性アンモニア酸化槽で処理した処理水を嫌気性アンモニア酸化槽の入口に循環させる循環量及び/又は原水の原水量を調整して運転を行なうようにした。   According to the present invention, in an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid by anaerobic ammonia oxidizing bacteria, various factors are assumed regarding the instability of the anaerobic ammonia oxidation reaction. The inventor of the present application pays particular attention to the fact that the flow rate fluctuation of the inflowing water flowing into the anaerobic ammonia oxidation tank is a major factor that makes it impossible to perform a stable treatment, and the tank flow rate of the anaerobic ammonia oxidation tank becomes constant. As described above, the operation was carried out by adjusting the circulation amount of the treated water treated in the anaerobic ammonia oxidation tank to the inlet of the anaerobic ammonia oxidation tank and / or the raw water amount of the raw water.

例えば、嫌気性アンモニア酸化槽への流入水(アンモニアと亜硝酸の混合水)中のNO 2−N濃度が嫌気性アンモニア酸化反応阻害を起こさないレベル(通常250mg/L以下、好ましくは200mg/L以下)であれば、嫌気性アンモニア酸化槽の流速が一定になるように原水量のみを調整することで対応可能である。しかし、嫌気性アンモニア酸化槽18内に蓄積するNO 2−N量が増大する何らかの環境変化が発生して、反応阻害を起こすレベルまで流入水中のNO 2−N濃度が高くなる場合には、原水量に対して処理水の循環量を多くして流入水を希釈しながら、嫌気性アンモニア酸化槽の流速を一定に維持する。更なる反応阻害が生じる場合には、原水の流入を停止して原水量をゼロとし、処理水(亜硝酸は略ゼロ)の循環だけで嫌気性アンモニア酸化槽の流速が一定になるように維持し、嫌気性アンモニア酸化細菌の活性が回復したら原水の流入を徐々に多くしていくことが必要である。これにより、嫌気性アンモニア酸化槽内の流速を一定にでき且つ嫌気性アンモニア酸化槽内のNO 2−N濃度の上昇による嫌気性アンモニア酸化反応の反応阻害も防止できるので、安定した定常運転を長時間行なうことができる。また、この運転方法は、嫌気性アンモニア酸化反応が比較的不安定な状態である運転開始時、負荷変動時、又は嫌気性アンモニア酸化細菌の失活後の再運転時において採用すれば、極めて短時間で定常運転に移行させることができる。 For example, the level at which the NO 2 —N concentration in the inflow water (mixed water of ammonia and nitrous acid) to the anaerobic ammonia oxidation tank does not inhibit the anaerobic ammonia oxidation reaction (usually 250 mg / L or less, preferably 200 mg / L If this is the case, it can be handled by adjusting only the amount of raw water so that the flow rate of the anaerobic ammonia oxidation tank is constant. However, when some environmental change that increases the amount of NO 2 —N accumulated in the anaerobic ammonia oxidation tank 18 occurs and the concentration of NO 2 —N in the inflowing water increases to a level causing reaction inhibition, The flow rate of the anaerobic ammonia oxidation tank is kept constant while diluting the incoming water by increasing the circulation amount of the treated water relative to the water amount. If further reaction inhibition occurs, the flow of raw water is stopped and the amount of raw water is made zero, and the flow rate of the anaerobic ammonia oxidation tank is kept constant only by circulating the treated water (nearly nitrous acid). However, when the activity of the anaerobic ammonia oxidizing bacteria is restored, it is necessary to gradually increase the inflow of raw water. As a result, the flow rate in the anaerobic ammonia oxidation tank can be kept constant, and the reaction inhibition of the anaerobic ammonia oxidation reaction due to the increase in the NO 2 -N concentration in the anaerobic ammonia oxidation tank can be prevented. Can be done for hours. In addition, this operation method is extremely short if it is employed at the start of operation in which the anaerobic ammonia oxidation reaction is relatively unstable, at the time of load change, or at the time of re-operation after the inactivation of anaerobic ammonia oxidizing bacteria. It is possible to shift to steady operation over time.

請求項2に記載の発明は、請求項1に記載の嫌気性アンモニア酸化装置の運転開始時、負荷変動時、又は前記嫌気性アンモニア酸化細菌の失活後からの再立ち上げ時においては、前記循環量及び/又は前記原水量を調整することにより、前記嫌気性アンモニア酸化槽へ流入するNO2 −N濃度を50〜250mg/Lの範囲に制御することを特徴とする。 The invention according to claim 2 is the above-mentioned in the start of operation of the anaerobic ammonia oxidizing apparatus according to claim 1, at the time of load fluctuation, or at the time of restarting after deactivation of the anaerobic ammonia oxidizing bacteria. By adjusting the amount of circulation and / or the amount of raw water, the concentration of NO 2 —N flowing into the anaerobic ammonia oxidation tank is controlled in the range of 50 to 250 mg / L.

請求項2によれば、嫌気性アンモニア酸化装置の特に運転開始時、負荷変動時、又は嫌気性アンモニア酸化細菌の失活後からの再立ち上げ時では、嫌気性アンモニア酸化槽内が不安定になり易く、亜硝酸が嫌気性アンモニア酸化槽内に蓄積される傾向がある。NO 2−Nが蓄積されると、定常運転へ移行させるのに多くの時間を要するばかりでなく、嫌気性アンモニア酸化細菌が失活して安定した運転を困難にする。そこで、循環量及び/又は原水量を調整することにより、嫌気性アンモニア酸化槽へ流入するNO 2−N濃度を50〜250mg/Lの範囲に調整して嫌気性アンモニア酸化反応に対する亜硝酸阻害を起こさない運転を行なうことにより、定常運転への移行に要する時間を大幅に短縮することができると共に、簡単に定常運転に移行させて安定させることができる。 According to claim 2, the inside of the anaerobic ammonia oxidation apparatus becomes unstable especially at the start of operation, when the load fluctuates, or when the anaerobic ammonia oxidation bacteria is restarted after being deactivated. Nitrous acid tends to accumulate in the anaerobic ammonia oxidation tank. When NO 2 —N accumulates, not only does it take a long time to shift to steady operation, but anaerobic ammonia-oxidizing bacteria are deactivated, making stable operation difficult. Therefore, by adjusting the amount of circulation and / or the amount of raw water, the concentration of NO 2 -N flowing into the anaerobic ammonia oxidation tank is adjusted to the range of 50 to 250 mg / L to inhibit nitrous acid against the anaerobic ammonia oxidation reaction. By performing the operation that does not occur, the time required for the transition to the steady operation can be greatly shortened, and the transition to the steady operation can be easily performed and stabilized.

請求項3に記載の発明は、請求項1又は2に記載の嫌気性アンモニア酸化装置の運転開始時、負荷変動時、又は前記嫌気性アンモニア酸化細菌の失活後からの再立ち上げ時においては、前記嫌気性アンモニア酸化槽の流速の変動幅は、定常運転時に対して50%以内に制御することを特徴とする。   The invention described in claim 3 is the time when the operation of the anaerobic ammonia oxidation apparatus according to claim 1 or 2 is started, when the load is changed, or when the anaerobic ammonia oxidizing bacteria is restarted after being deactivated. The fluctuation range of the flow rate of the anaerobic ammonia oxidation tank is controlled within 50% with respect to the steady operation.

請求項3によれば、嫌気性アンモニア酸化槽における槽内流速を一定化することは、嫌気性アンモニア酸化反応の安定化にとって重要であるが、槽内流速を常に誤差なく一定化することは極めて困難である。そこで、本願発明者が槽内流速に対する処理効率を調査したところ、運転開始時、負荷変動時、又は嫌気性アンモニア酸化細菌の失活後からの再立ち上げ時の各槽内流速において、定常運転時に対して50%以内の変動で抑えれば、不安定になり易い処理の安定化が可能であることが判明した。これにより、処理効率を低下させることなく槽内流速の調整を簡易化することができる。   According to claim 3, it is important to stabilize the flow rate in the anaerobic ammonia oxidation tank for stabilization of the anaerobic ammonia oxidation reaction. Have difficulty. Therefore, when the inventor of the present application investigated the processing efficiency with respect to the flow rate in the tank, steady operation was performed at each flow speed in the tank at the start of operation, when the load fluctuated, or at the time of restarting after deactivation of the anaerobic ammonia oxidizing bacteria. It has been found that if the fluctuation is suppressed within 50% with respect to the time, it is possible to stabilize the process that tends to be unstable. Thereby, adjustment of the flow rate in a tank can be simplified without reducing processing efficiency.

請求項4に記載の発明は、請求項1〜3のうち何れか1つに記載の処理水を前記嫌気性アンモニア酸化槽の入口に戻す循環比Rは、前記原水中の最大アンモニア濃度Aを用いて、次に示す数式1、R=(0.57×A)/200 …(数式1) から算出され、前記嫌気性アンモニア酸化槽における槽内流速Vは、算出された循環比Rと前記原水の流速Fを用いて、次に示す数式2、V=R×F …(数式2)から算出され、前記運転は、前記数式1で算出された算出値R以上に前記循環比を設定して行なわれることを特徴とする。   The invention according to claim 4 is characterized in that the circulation ratio R for returning the treated water according to any one of claims 1 to 3 to the inlet of the anaerobic ammonia oxidation tank is the maximum ammonia concentration A in the raw water. The following formula 1, R = (0.57 × A) / 200 (Equation 1) is calculated, and the in-bath flow velocity V in the anaerobic ammonia oxidation tank is calculated from the calculated circulation ratio R and the above-described circulation ratio R. Calculated from the following formula 2, V = R × F (Formula 2) using the flow rate F of raw water, and the operation sets the circulation ratio to be equal to or greater than the calculated value R calculated in Formula 1. It is characterized by being performed.

請求項4は、嫌気性アンモニア酸化槽の槽内流速Vを決定するための好ましい決定方法を規定したもので、この槽内流速Vは処理水の循環比Rと原水流速Fとの積によって決定される。即ち、循環比Rは、原水中の最大アンモニア濃度Aを用いたR=(0.57×A)/200の式から求める。そして、V=R×Fの式から嫌気性アンモニア酸化槽内の槽内流速Vを算出する。このように数式1から算出された算出値R以上になるように循環比を設定して嫌気性アンモニア酸化装置の運転を行なうことにより、数式2から算出された算出値V以上に槽内流速が設定されて、嫌気性アンモニア酸化反応を安定して行なうことができる。   Claim 4 defines a preferable determination method for determining the in-vessel flow velocity V of the anaerobic ammonia oxidation tank. This in-vessel flow velocity V is determined by the product of the circulation ratio R of the treated water and the raw water flow velocity F. Is done. That is, the circulation ratio R is obtained from the equation R = (0.57 × A) / 200 using the maximum ammonia concentration A in the raw water. And the tank flow velocity V in an anaerobic ammonia oxidation tank is computed from the formula of V = RxF. In this way, by setting the circulation ratio so as to be equal to or greater than the calculated value R calculated from Formula 1, and operating the anaerobic ammonia oxidation apparatus, the flow velocity in the tank exceeds the calculated value V calculated from Formula 2. Thus, the anaerobic ammonia oxidation reaction can be performed stably.

以上説明したように本発明に係る嫌気性アンモニア酸化装置の運転方法によれば、嫌気性アンモニア酸化装置における長期にわたる運転安定性を向上させることができると共に、運転開始時や負荷変動時、失活から運転の立ち上げ時において簡易且つ短時間で定常運転に移行できる。   As described above, according to the operation method of the anaerobic ammonia oxidation apparatus according to the present invention, it is possible to improve the long-term operation stability in the anaerobic ammonia oxidation apparatus, and at the time of start of operation or load fluctuation, deactivation Therefore, it is possible to shift to a steady operation easily and in a short time at the start of operation.

以下添付図面に従って本発明に係る嫌気性アンモニア酸化装置の運転方法における好ましい実施の形態について詳説する。   Hereinafter, a preferred embodiment of an operation method of an anaerobic ammonia oxidation apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の運転方法を実施する嫌気性アンモニア酸化装置の一例を示したものである。   FIG. 1 shows an example of an anaerobic ammonia oxidation apparatus for carrying out the operation method of the present invention.

同図の如く、嫌気性アンモニア装置10は、主として、分配器12と、亜硝酸型の硝化槽14と、調整タンク16と、嫌気性アンモニア酸化槽18と、とから構成される。   As shown in the figure, the anaerobic ammonia device 10 mainly includes a distributor 12, a nitrite type nitrification tank 14, a regulation tank 16, and an anaerobic ammonia oxidation tank 18.

原水配管20を流れるアンモニア性廃水は、調整タンク16及び嫌気性アンモニア酸化槽18の間に設けられた原水ポンプ22の駆動により分配器12に送られて、分配器12により所定の分配比で2方向へ分配される。分配された一方の廃水は第1配管24を介して亜硝酸型の硝化槽14に送られ、分配された他方の廃水は第2配管26を介して嫌気性アンモニア酸化槽18へ送られる。亜硝酸型の硝化槽14で処理された第1の処理水は、第3配管28を介して第2配管26に分配された他方の廃水と合流し、調整タンク16を介して嫌気性アンモニア酸化槽18へ送られる。   Ammonia wastewater flowing through the raw water pipe 20 is sent to the distributor 12 by driving a raw water pump 22 provided between the adjustment tank 16 and the anaerobic ammonia oxidation tank 18, and the distributor 12 supplies 2 at a predetermined distribution ratio. Distributed in the direction. One distributed wastewater is sent to the nitrite type nitrification tank 14 via the first pipe 24, and the other distributed wastewater is sent to the anaerobic ammonia oxidation tank 18 via the second pipe 26. The first treated water treated in the nitrite type nitrification tank 14 merges with the other wastewater distributed to the second pipe 26 via the third pipe 28, and anaerobic ammonia oxidation via the adjustment tank 16. It is sent to the tank 18.

次に、嫌気性アンモニア酸化槽18で処理された第2の処理水の一部は、処理水配管30を介して系外へ排出されると共に、第2の処理水の残りは処理水配管30の途中に設けられた分流器32により分流されて、循環ポンプ36の駆動により第4配管34を介して再び嫌気性アンモニア酸化槽18へ返送される。これにより、処理水の循環ルートが形成される。   Next, part of the second treated water treated in the anaerobic ammonia oxidation tank 18 is discharged out of the system through the treated water pipe 30, and the remaining second treated water is treated water pipe 30. The flow is divided by the flow divider 32 provided in the middle of the flow and is returned to the anaerobic ammonia oxidation tank 18 through the fourth pipe 34 by driving the circulation pump 36. Thereby, the circulation route of treated water is formed.

第1配管24により分配器12で分配された一方の廃水が流入する亜硝酸型の硝化槽14内には、微生物を包括固定化した担体を加熱することで亜硝酸を硝酸に酸化する亜硝酸酸化細菌を殺菌し、アンモニアを亜硝酸に酸化するアンモニア酸化細菌が優先繁殖された担体が投入されている。担体を加熱処理する例として、活性汚泥等の微生物をゲル材料で包括固定化した包括担体の場合には、30〜80°Cの範囲で、好ましくは40〜70°Cの範囲で1時間〜2週間の範囲で行なうことが好ましい。そして、亜硝酸型の硝化槽14では、流入した一方の廃水中に含有されるアンモニアの略全てがアンモニア酸化細菌により亜硝酸に酸化される。これにより、嫌気性アンモニア酸化槽18には、亜硝酸型の硝化槽14で生成された亜硝酸と、第2配管26を流れる原水からのアンモニアとが略半々の割合で流入する。嫌気性アンモニア酸化槽18に流入する流入水のアンモニアと亜硝酸との濃度調整については、原水中のアンモニアを半量亜硝酸に酸化する方法が必要であり、原水の略全量を亜硝酸型の硝化槽14に導入して硝化率を制御する方法や、図1に示したように、原水を分配器12で第1配管24と第2配管26とに略半量ずつ分配し、亜硝酸型の硝化槽14で略全量を亜硝酸に酸化した後に、第2配管26に分配されたアンモニアを含む原水と合流させる方法があるが、本実施の形態では分配する方法で示してある。   In the nitrite type nitrification tank 14 into which one wastewater distributed by the distributor 12 by the first pipe 24 flows, nitrous acid that oxidizes nitrous acid to nitric acid by heating a carrier in which microorganisms are entrapped and immobilized is heated. A carrier on which ammonia-oxidizing bacteria that sterilize oxidizing bacteria and oxidize ammonia to nitrite is preferentially propagated is introduced. As an example of heat-treating the carrier, in the case of a entrapped carrier in which microorganisms such as activated sludge are entrapped and immobilized with a gel material, the temperature is in the range of 30 to 80 ° C, preferably in the range of 40 to 70 ° C for 1 hour to It is preferable to carry out within a range of 2 weeks. In the nitrite type nitrification tank 14, substantially all of the ammonia contained in one of the inflowing wastewater is oxidized to nitrite by the ammonia oxidizing bacteria. Thereby, the nitrous acid produced | generated by the nitrite type nitrification tank 14 and the ammonia from the raw | natural water which flows through the 2nd piping 26 inflow into the anaerobic ammonia oxidation tank 18 in a substantially half ratio. In order to adjust the concentration of ammonia and nitrous acid in the inflow water flowing into the anaerobic ammonia oxidation tank 18, a method of oxidizing ammonia in the raw water to half amount of nitrous acid is necessary, and nitrite type nitrification is performed on almost the whole amount of the raw water. Introducing into the tank 14 to control the nitrification rate, or as shown in FIG. 1, the raw water is distributed to the first pipe 24 and the second pipe 26 by the distributor 12 approximately half by half, and nitrite type nitrification There is a method in which substantially the entire amount is oxidized to nitrous acid in the tank 14 and then merged with the raw water containing ammonia distributed to the second pipe 26. In this embodiment, the method of distribution is shown.

嫌気性アンモニア酸化槽18には、亜硝酸型の硝化槽14からの第1の処理水と、分配器12から分配された他方の廃水と、第4配管34からの処理水とが合流した合流水が流入する。そして、嫌気性アンモニア酸化槽18内の嫌気性アンモニア酸化細菌によって合流水中に含まれるアンモニアと亜硫酸とが同時脱窒される。   In the anaerobic ammonia oxidation tank 18, the first treated water from the nitrite type nitrification tank 14, the other waste water distributed from the distributor 12, and the treated water from the fourth pipe 34 are merged. Water flows in. The ammonia and sulfurous acid contained in the combined water are simultaneously denitrified by the anaerobic ammonia oxidizing bacteria in the anaerobic ammonia oxidizing tank 18.

嫌気性アンモニア酸化細菌は、その詳細は不明な点があるが例えばPlantomycete属であるといわれており、その増殖速度は0.001h-1とかなり遅いことが報告されている(例えば、Strous,M.et al.(1999),Nature, 400-446 を参照)。従って、嫌気性アンモニア酸化細菌を固定化した固定化担体を嫌気性アンモニア酸化槽18内に配設又は投入することが好ましい。 The anaerobic ammonia-oxidizing bacterium, although the details are unclear, is said to be, for example, the genus Plantomycete, and its growth rate has been reported to be as slow as 0.001 h −1 (eg, Strous, M . et al. (1999), Nature, 400-446). Therefore, it is preferable that the immobilization carrier on which the anaerobic ammonia-oxidizing bacteria are immobilized is disposed or put in the anaerobic ammonia-oxidizing tank 18.

嫌気性アンモニア酸化細菌を固定化する手段としては、主に固定床や包括固定化担体、付着固定化担体などが採用される。   As means for immobilizing the anaerobic ammonia oxidizing bacteria, a fixed bed, a entrapping immobilization carrier, an adhesion immobilization carrier and the like are mainly employed.

固定床は、ポリエチレンやポリエステル、ポリプロピレン、塩化ビニルなどのプラスチック素材や活性炭ファイバーなどの材料が使用されるが特に限定するものではない。固定床の形状としては、繊維状、菊花状、ハニカム状に成型したものが好ましいが、特に限定するものではない。固定床は、見かけ容積として30〜80%、好ましくは40〜70%であるものが使用される。また、空隙率としては、80%以上のものを使用することが好ましい。   For the fixed floor, plastic materials such as polyethylene, polyester, polypropylene, and vinyl chloride, and materials such as activated carbon fibers are used, but are not particularly limited. The shape of the fixed bed is preferably a fiber shape, chrysanthemum shape, or honeycomb shape, but is not particularly limited. A fixed bed having an apparent volume of 30 to 80%, preferably 40 to 70% is used. Further, it is preferable to use a porosity of 80% or more.

付着固定化担体は、嫌気性アンモニア酸化細菌と固定化材料とを接触させることにより、固定化材料の表面に付着固定化されて形成される。固定化材料としては、ポリビニルアルコールやアルギン酸、ポリエチレングリコール系のゲルや、セルソース、ポリエステル、ポリプロピレン、塩化ビニルなどのプラスチック担体などが使用されるが、特に限定するものではない。担体の形状としては、球形や円筒形、多孔質、立方体、スポンジ状、ハニカム状などに成形されたものを使用することが好ましく、表面に凹凸が多い材料が付着し易い。尚、微生物の自己造粒性を利用したグラニュールも本発明で使用することができる。   The adhesion immobilization carrier is formed by adhering and immobilizing on the surface of the immobilization material by bringing anaerobic ammonia oxidizing bacteria into contact with the immobilization material. As the immobilizing material, polyvinyl alcohol, alginic acid, polyethylene glycol gel, plastic carriers such as cell source, polyester, polypropylene, vinyl chloride, etc. are used, but are not particularly limited. As the shape of the carrier, it is preferable to use a shape formed into a spherical shape, a cylindrical shape, a porous shape, a cubic shape, a sponge shape, a honeycomb shape, or the like, and a material with many irregularities tends to adhere to the surface. Granules utilizing the self-granulating properties of microorganisms can also be used in the present invention.

包括固定化担体は、嫌気性アンモニア酸化細菌と固定化材料(モノマ、プレポリマ)を混合して、重合させることによって担体内部に包括固定化して形成される。モノマ材料としては、アクリルアミド、メチレンビスアクリルアミド、トリアクリルフォルマールなどが好ましい。プレポリマ材料としては、ポリエチレングリコールジアクリレートやポリエチレングリコールメタアクリレートが好ましく、その誘導体が多く使用される。このように形成される包括固定化担体として、球状や筒状などの包括担体、ひも状包括担体、不織布状包括担体など凹凸が多い包括担体を採用すれば、接触効率がよいため除去率を向上させることができる。   The entrapping immobilization carrier is formed by entrapping and immobilizing the inside of the carrier by mixing anaerobic ammonia-oxidizing bacteria and an immobilizing material (monomer, prepolymer) and polymerizing them. As the monomer material, acrylamide, methylenebisacrylamide, triacryl formal and the like are preferable. As the prepolymer material, polyethylene glycol diacrylate or polyethylene glycol methacrylate is preferable, and many derivatives thereof are used. If the inclusion carrier with many irregularities such as spherical or cylindrical inclusion carrier, string-like inclusion carrier, and non-woven inclusion carrier is adopted as the inclusion fixing carrier formed in this way, the contact efficiency is good and the removal rate is improved. Can be made.

次に、上記の如く構成された嫌気性アンモニア酸化装置10の運転方法における作用について説明する。   Next, the effect | action in the operating method of the anaerobic ammonia oxidation apparatus 10 comprised as mentioned above is demonstrated.

原水中のアンモニア性窒素を効率よく処理するためには、嫌気性アンモニア酸化細菌によって亜硝酸とアンモニアを効率良く同時脱窒する必要がある。   In order to efficiently treat ammonia nitrogen in raw water, it is necessary to efficiently denitrify nitrous acid and ammonia simultaneously by anaerobic ammonia oxidizing bacteria.

しかしながら、本願発明者の調査により、以下の3点の場合には嫌気性アンモニア酸化法による処理系が維持できずに脱窒処理ができなくなる可能性が高いことが判明した。   However, according to the investigation by the present inventor, in the following three cases, it has been found that there is a high possibility that the treatment system by the anaerobic ammonia oxidation method cannot be maintained and the denitrification treatment cannot be performed.

(1)槽内の流速は一定だが、NO 2−Nの濃度変動幅が大きく嫌気性アンモニア酸化槽18内に蓄積されるNO 2−N濃度が100mg/L以上(厳しい見方ではNO 2−N濃度が70mg/L以上)となる場合。 (1) Although the flow rate in the tank is constant, the concentration fluctuation range of NO 2 -N is large and the NO 2 -N concentration accumulated in the anaerobic ammonia oxidation tank 18 is 100 mg / L or more (in a strict view, NO 2 -N When the concentration is 70 mg / L or more).

(2)嫌気性アンモニア酸化槽18へ流入する流入水中のNO 2−N濃度が250mg/L以上(厳しい見方ではNO 2−N濃度が200mg/L以上)となる場合。 (2) When the NO 2 —N concentration in the inflow water flowing into the anaerobic ammonia oxidation tank 18 is 250 mg / L or more (in a strict view, the NO 2 —N concentration is 200 mg / L or more).

(3)嫌気性アンモニア酸化槽18に流入する流入水の流量変動が50%を超える場合。   (3) When the flow rate fluctuation of the inflow water flowing into the anaerobic ammonia oxidation tank 18 exceeds 50%.

特に、(3)の場合については、処理系内の安定化を図る上できわめて重要な項目であることに本願発明者は気付き、これらの3点を解決する方法として以下に示す対策をとることが必要である。   In particular, in the case of (3), the inventor of the present application notices that it is an extremely important item for stabilizing the processing system, and the following measures are taken as a method for solving these three points. is required.

即ち、第1の条件として、定常運転時の運転において、嫌気性アンモニア酸化槽18における槽内流速Vを次のように決定する。即ち、原水中の最大アンモニア濃度Aから以下の数式1の式から循環比Rを求める。   That is, as the first condition, in the operation during the steady operation, the in-vessel flow velocity V in the anaerobic ammonia oxidation tank 18 is determined as follows. That is, the circulation ratio R is obtained from the following formula 1 from the maximum ammonia concentration A in the raw water.

R=(0.57×A)/200 …(数式1)
ここで、循環比Rは、流入する流入水の流速に対する循環する流量比を表し、流入水の流速をFとすると、槽内流速Vは、以下の数式2で示した式から算出される。
R = (0.57 × A) / 200 (Formula 1)
Here, the circulation ratio R represents the ratio of the circulating flow rate to the flow rate of the inflowing inflow water, and the flow rate V in the tank is calculated from the equation shown in Equation 2 below, where F is the flow rate of the inflowing water.

V=R×F …(数式2)
そして、嫌気性アンモニア酸化槽18の流速が数式1及び数式2から決定された槽内流速Vに一定に維持されるように、嫌気性アンモニア酸化槽18で処理された処理水を嫌気性アンモニア酸化槽18の入口に戻す循環量及び/又は原水の原水量を調整する。
V = R × F (Formula 2)
The treated water treated in the anaerobic ammonia oxidation tank 18 is subjected to anaerobic ammonia oxidation so that the flow rate in the anaerobic ammonia oxidation tank 18 is kept constant at the in-vessel flow velocity V determined from Equation 1 and Equation 2. The circulation amount returned to the inlet of the tank 18 and / or the raw water amount is adjusted.

尚、上述した槽内流速Vを算出する循環比Rは、限定値としてではなく下限値として設定することが好ましい。即ち、数式1で算出された循環比Rの値以上であれば、嫌気性アンモニア酸化槽18において、槽内のNO2 −Nによって処理が阻害されることなく、安定して運転を行なうことができる。しかしながら、必要以上の槽内流速で運転を行なうことは、動力に要するコストが増大するだけである。従って、嫌気性アンモニア酸化槽18で設定される循環比は、数式1から算出された循環比Rの値、及びこの循環比Rの値を用いて数式2から算出された槽内流速Vに近い値であることが好ましい。 In addition, it is preferable to set the circulation ratio R for calculating the in-tank flow velocity V described above as a lower limit value instead of a limited value. In other words, if the circulation ratio R is equal to or greater than the value calculated by Equation 1, the anaerobic ammonia oxidation tank 18 can be stably operated without being hindered by NO 2 -N in the tank. it can. However, operating at an in-tank flow rate higher than necessary only increases the cost of power. Accordingly, the circulation ratio set in the anaerobic ammonia oxidation tank 18 is close to the circulation ratio R calculated from Expression 1 and the in-tank flow velocity V calculated from Expression 2 using the circulation ratio R value. It is preferably a value.

第2の条件として、運転開始時や嫌気性アンモニア酸化細菌の失活後における運転再開時などの不安定要因が発生し易い場合には、嫌気性アンモニア酸化槽18内のNO 2−N−N濃度が100mg/L以下、好ましくは70mg/L以下になるように、原水ポンプ22の流速を減速させると共に循環流速を上げて嫌気性アンモニア酸化槽18内の流速を一定に維持する。 As a second condition, when unstable factors such as the start of operation or the restart of operation after the inactivation of anaerobic ammonia oxidizing bacteria are likely to occur, NO 2 —N—N in the anaerobic ammonia oxidizing tank 18 is generated. The flow rate in the anaerobic ammonia oxidation tank 18 is kept constant by reducing the flow rate of the raw water pump 22 and increasing the circulation flow rate so that the concentration becomes 100 mg / L or less, preferably 70 mg / L or less.

第3の条件として、嫌気性アンモニア酸化槽18内の流速の変動幅を50%以内、好ましくは30%以内に保持する必要がある。   As a third condition, it is necessary to keep the fluctuation range of the flow rate in the anaerobic ammonia oxidation tank 18 within 50%, preferably within 30%.

これら3つの条件を満たすことにより、安定した運転を行なうことができることを本願発明者は見出した。特に、嫌気性アンモニア酸化槽18内の安定性が敏感である運転開始時や負荷変動時、失活後から再運転時においては、上述した本発明の運転方法は嫌気性アンモニア酸化槽における重要な運転方法となる。   The inventors of the present application have found that stable operation can be performed by satisfying these three conditions. In particular, the operation method of the present invention described above is important in an anaerobic ammonia oxidation tank at the start of operation where the stability in the anaerobic ammonia oxidation tank 18 is sensitive, when the load fluctuates, and at the time of re-operation after deactivation. It becomes a driving method.

尚、上述した嫌気性アンモニア酸化装置10において、使用される各装置及び部材の個数、形状、及び材質等は特に限定するものではない。   In addition, in the anaerobic ammonia oxidation apparatus 10 mentioned above, the number, shape, material, etc. of each apparatus and member used are not specifically limited.

[実施例1]
実施例1として、図1の嫌気性アンモニア酸化装置10を用いてアンモニア性窒素含有廃水の脱窒処理試験を行なった。供試される原水としては、以下の表1に示した成分で調整された無機合成廃水を使用した。
[Example 1]
As Example 1, a denitrification treatment test of wastewater containing ammoniacal nitrogen was performed using the anaerobic ammonia oxidation apparatus 10 of FIG. As raw water to be tested, inorganic synthetic wastewater adjusted with the components shown in Table 1 below was used.

Figure 2006110511
また、供試される原水のNH4 −N濃度は、1000mg/L(最大アンモニア濃度)で一定条件とした。
Figure 2006110511
In addition, the NH 4 —N concentration of the raw water to be tested was set at a constant condition of 1000 mg / L (maximum ammonia concentration).

分配器12は、原水の57%を亜硝酸型の硝化槽14に送るように調整し、アンモニアを亜硝酸に酸化したあと、原水と混合して嫌気性アンモニア酸化槽18へと移送した。   The distributor 12 was adjusted so that 57% of the raw water was sent to the nitrite-type nitrification tank 14, ammonia was oxidized to nitrous acid, mixed with the raw water, and transferred to the anaerobic ammonia oxidation tank 18.

(亜硝酸型の硝化槽)
亜硝酸型の硝化槽14は、容積負荷を1.0kg−N/m3 /dayで運転した。充填される包括固定化担体は、60°C、1時間加熱処理して亜硝酸酸化細菌を殺菌し、予め馴養したものを用いた。その充填率は10容積%であった。このとき、嫌気性アンモニア酸化槽18の入口では、アンモニア濃度は440mg/Lであり、亜硝酸濃度は550mg/Lであった。
(Nitrite type nitrification tank)
The nitrite type nitrification tank 14 was operated at a volumetric load of 1.0 kg-N / m 3 / day. As the entrapping immobilization carrier to be filled, a heat-treated one at 60 ° C. for 1 hour to sterilize nitrite-oxidizing bacteria, and used in advance. The filling rate was 10% by volume. At this time, at the inlet of the anaerobic ammonia oxidation tank 18, the ammonia concentration was 440 mg / L and the nitrous acid concentration was 550 mg / L.

(嫌気性アンモニア酸化槽)
嫌気性アンモニア酸化槽18は、嫌気性アンモニア酸化細菌を付着固定化した不織布で構成される固定床を内部に設置した。その不織布は、見かけ充填量が70%であり、空隙率が99%以上であった。そして、嫌気性アンモニア酸化槽18内における容積負荷は、2.0kg−N/m3 /dayとした。
(Anaerobic ammonia oxidation tank)
In the anaerobic ammonia oxidation tank 18, a fixed bed composed of a nonwoven fabric to which anaerobic ammonia oxidation bacteria were adhered and fixed was installed inside. The nonwoven fabric had an apparent filling amount of 70% and a porosity of 99% or more. The volume load in the anaerobic ammonia oxidation tank 18 was 2.0 kg-N / m 3 / day.

(循環比の計算)
上述したように、原水のNH4 −Nが1000mg/Lであるから、循環比Rは、R=(0.57×1000)/200=2.85と算出された。本試験では、R=3として処理を開始した。尚、反応リアクタは、高さ0.3mの円筒形を有する容量2Lのものが使用された。
(Calculation of circulation ratio)
As described above, since NH 4 —N of the raw water is 1000 mg / L, the circulation ratio R was calculated as R = (0.57 × 1000) /200=2.85. In this test, the process was started with R = 3. Note that the reaction reactor having a cylindrical shape with a height of 0.3 m and a capacity of 2 L was used.

(実験方法及び結果)
上述した条件の嫌気性アンモニア酸化装置10おいて、1ヶ月間の安定運転を行なった後、循環比3.2から1に変動させたときの嫌気性アンモニア酸化細菌の活性について評価する実験を行なった。嫌気性アンモニア酸化細菌の活性の評価は脱窒速度を見ることで評価した。又、この嫌気性アンモニア酸化装置10では、硝化槽14のDO(溶存酸素)が嫌気性アンモニア酸化槽18へ持ち込まれることを想定し、調整タンク16でN2 ガスをパージすることにより嫌気性アンモニア酸化槽18内のDOを0.5mg/L以下に設定するようにした。
(Experimental method and results)
In the anaerobic ammonia oxidizing apparatus 10 under the above-described conditions, an experiment was conducted to evaluate the activity of anaerobic ammonia oxidizing bacteria when the circulation ratio was changed from 3.2 to 1 after stable operation for one month. It was. The activity of anaerobic ammonia oxidizing bacteria was evaluated by looking at the denitrification rate. Further, anaerobic ammonium By this the anaerobic ammonium oxidation apparatus 10, DO nitrification tank 14 (dissolved oxygen) is intended to be brought into the anaerobic ammonium oxidation vessel 18, purging the N 2 gas in the expansion tank 16 The DO in the oxidation tank 18 was set to 0.5 mg / L or less.

この実験は、循環ポンプ36の流速のみを調整することにより循環比Rを変化させた。その結果を図2に示す。図2は、嫌気性アンモニア酸化槽18における循環比Rと脱窒速度との関係を示したグラフである。   In this experiment, the circulation ratio R was changed by adjusting only the flow rate of the circulation pump 36. The result is shown in FIG. FIG. 2 is a graph showing the relationship between the circulation ratio R and the denitrification rate in the anaerobic ammonia oxidation tank 18.

図2のグラフより、循環比Rが2.85を下回ると嫌気性アンモニア酸化細菌の失活性が著しくなり、循環比Rを2.3以下にすると活性が低下することが分かった。   From the graph of FIG. 2, it was found that when the circulation ratio R is less than 2.85, the anaerobic ammonia-oxidizing bacteria become inactive, and when the circulation ratio R is 2.3 or less, the activity decreases.

嫌気性アンモニア酸化槽18で処理された処理水中のNO 2−N濃度をゼロと仮定すると、循環により希釈された嫌気性アンモニア酸化槽18の入口におけるNO 2−N濃度は、図2に示す通り200mg/Lを超えると失活性が著しいことが理解できる。このことから、循環比Rの設定では、嫌気性アンモニア酸化槽18の入口におけるNO 2−N濃度が200mg/L以下に設定することが重要であることが明らかとなった。 Assuming a NO 2 -N concentration in the treated water which has been treated with the anaerobic ammonium oxidation vessel 18 to zero, NO 2 -N concentration at the inlet of the anaerobic ammonium oxidation vessel 18, which is diluted by circulation, as shown in FIG. 2 It can be understood that the deactivation is remarkable when it exceeds 200 mg / L. From this, it became clear that in setting the circulation ratio R, it is important to set the NO 2 —N concentration at the inlet of the anaerobic ammonia oxidation tank 18 to 200 mg / L or less.

[実施例2]
実施例2も又、図1の嫌気性アンモニア酸化装置10を用いてアンモニア性窒素含有廃水の脱窒試験を行なった。各処理条件は実施例1と同様であるが、表2に示したNH4 −N濃度を500mg/Lに設定すると共に、調整タンク16におけるNH4 −N濃度とNO 2−N濃度との比が1:1.32に近づくように分配器12を調整して試験を行なった。循環比1.58として、1カ月の安定運転を行ったのち、次の実験を行った。その他の条件については実施例1と同じである。
[Example 2]
In Example 2, a denitrification test of wastewater containing ammonia nitrogen was also performed using the anaerobic ammonia oxidation apparatus 10 of FIG. Each processing condition is the same as in Example 1, but the NH 4 —N concentration shown in Table 2 is set to 500 mg / L, and the ratio between the NH 4 —N concentration and the NO 2 —N concentration in the adjustment tank 16 is set. The test was conducted by adjusting the distributor 12 so as to approach 1: 1.32. After a stable operation for one month with a circulation ratio of 1.58, the following experiment was performed. Other conditions are the same as in the first embodiment.

実験では、下記の表2に示した試験1〜7のように、供試した原水中のアンモニア濃度を600〜850mg/Lの範囲で、即ち循環比Rを1.58〜2.69の範囲で変化させた。即ち、処理水のNO 2−N濃度をゼロと仮定したときに、処理水の循環により、常に嫌気性アンモニア酸化槽18内の入口はNO 2−N濃度が200mg/L以下の条件において、嫌気性アンモニア酸化槽18内の流速を変動させた場合に、処理性能がどのように変化するかを検証した。処理性能は脱窒速度を評価した。 In the experiment, as in Tests 1 to 7 shown in Table 2 below, the ammonia concentration in the raw water tested was in the range of 600 to 850 mg / L, that is, the circulation ratio R was in the range of 1.58 to 2.69. It was changed with. That is, when the NO 2 -N concentration of the treated water is assumed to be zero, the circulation of the treated water always causes the anaerobic ammonia oxidation tank 18 to be anaerobic when the NO 2 -N concentration is 200 mg / L or less. It was verified how the processing performance changes when the flow rate in the acidic ammonia oxidation tank 18 is varied. The treatment performance was evaluated on the denitrification rate.

Figure 2006110511
その結果を図3のグラフに示している。図3のグラフから、流速変動率が130%を超えると脱窒速度が低下し、更に流速変動率が150%を超えると活性が停止してしまった。このことより、嫌気性アンモニア酸化槽18の槽内流速を一定に保つことは、嫌気性アンモニア酸化反応の安定化に重要であることが判明した。
Figure 2006110511
The result is shown in the graph of FIG. From the graph of FIG. 3, the denitrification rate decreased when the flow rate fluctuation rate exceeded 130%, and the activity stopped when the flow rate fluctuation rate exceeded 150%. From this, it has been found that keeping the flow rate in the anaerobic ammonia oxidation tank 18 constant is important for stabilizing the anaerobic ammonia oxidation reaction.

なお、比較例1として、図1の嫌気性アンモニア酸化装置10において予め最大NH4 −N濃度を850mg/Lと想定し、廃水原水中のNH4 −N濃度を500mg/Lに、且つ循環比Rを2.42に設定して、実施例2と同様に約1ヶ月間安定運転を行なった後に、廃水原水中のNH4 −N濃度を500mg/Lから800mg/Lに上昇させる試験を行なった。その結果、比較例1では、予め循環比Rを高い値で設定されていたため、1週間後に失活することなく安定した処理性能を得ることができた。 As a comparative example 1, the advance maximum NH 4 -N concentration in the anaerobic ammonium oxidation apparatus 10 of FIG. 1 assumes that 850 mg / L, the NH 4 -N concentration of the waste Suwon underwater 500 mg / L, and the circulation ratio After R was set to 2.42 and stable operation was performed for about one month in the same manner as in Example 2, a test was performed to increase the NH 4 —N concentration in the wastewater raw water from 500 mg / L to 800 mg / L. It was. As a result, in Comparative Example 1, since the circulation ratio R was previously set to a high value, stable processing performance could be obtained without deactivation after one week.

上述したことから、本願発明者は次のことを導き出した。即ち、実施例2に示したように、原水中のアンモニア濃度が上昇して、それに伴いNO2 −N濃度が上昇した場合に、循環比Rのみをコントロールして対応させようとしても、槽内流速Vの値が変動してしまうため、安定した運転を行なうことはできない。従って、比較例1で示したように、予め想定される範囲内で最大アンモニア濃度を設定しておき、その値に対応可能である循環比を確保しておくことが重要である。 From the above, the present inventor has derived the following. That is, as shown in Example 2, when the ammonia concentration in the raw water is increased and the NO 2 -N concentration is increased accordingly, even if it is attempted to control only the circulation ratio R to cope with it, Since the value of the flow velocity V fluctuates, stable operation cannot be performed. Therefore, as shown in Comparative Example 1, it is important to set the maximum ammonia concentration within a presumed range and to secure a circulation ratio that can correspond to the value.

本発明の運転方法を実施する嫌気性アンモニア酸化装置の構成を示した説明図Explanatory drawing which showed the structure of the anaerobic ammonia oxidation apparatus which enforces the operating method of this invention 実施例1における循環比に対する脱窒速度及びNO 2−N濃度計算値の関係を示したグラフGraph showing the relationship between the denitrification rate and NO 2 -N concentration calcd for circulation ratio in Example 1 実施例2における嫌気性アンモニア酸化槽の流速変動率に対する脱窒速度を示したグラフThe graph which showed the denitrification speed with respect to the flow rate fluctuation rate of the anaerobic ammonia oxidation tank in Example 2.

符号の説明Explanation of symbols

10…嫌気性アンモニア酸化装置、12…分配器、14…亜硝酸型の硝化槽、16…調整タンク、18…嫌気性アンモニア酸化槽、20…原水配管、22…原水ポンプ、24…第1配管、26…第2配管、28…第3配管、30…処理水配管、32…分流器、34…第4配管、36…循環ポンプ   DESCRIPTION OF SYMBOLS 10 ... Anaerobic ammonia oxidation apparatus, 12 ... Distributor, 14 ... Nitrite type nitrification tank, 16 ... Adjustment tank, 18 ... Anaerobic ammonia oxidation tank, 20 ... Raw water piping, 22 ... Raw water pump, 24 ... 1st piping , 26 ... second pipe, 28 ... third pipe, 30 ... treated water pipe, 32 ... shunt, 34 ... fourth pipe, 36 ... circulation pump

Claims (4)

原水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により同時脱窒する嫌気性アンモニア酸化槽を備えた嫌気性アンモニア酸化装置の運転方法において、
前記嫌気性アンモニア酸化槽における槽内流速が一定となるように、該嫌気性アンモニア酸化槽で処理した処理水を前記嫌気性アンモニア酸化槽の入口に循環させる循環量及び/又は前記原水の原水量を調整して運転を行なうことを特徴とする嫌気性アンモニア酸化装置の運転方法。
In the operation method of an anaerobic ammonia oxidation apparatus equipped with an anaerobic ammonia oxidation tank that simultaneously denitrifies ammonia and nitrous acid in raw water by anaerobic ammonia oxidizing bacteria,
Circulation amount for circulating treated water treated in the anaerobic ammonia oxidation tank to the inlet of the anaerobic ammonia oxidation tank and / or raw water amount of the raw water so that the flow velocity in the anaerobic ammonia oxidation tank is constant A method for operating an anaerobic ammonia oxidation apparatus, characterized in that the operation is performed by adjusting the pressure.
前記嫌気性アンモニア酸化装置の運転開始時、負荷変動時、又は前記嫌気性アンモニア酸化細菌の失活後からの再立ち上げ時においては、前記循環量及び/又は前記原水量を調整することにより、前記嫌気性アンモニア酸化槽へ流入するNO2 −N濃度を50〜250mg/Lの範囲に制御することを特徴とする請求項1に記載の嫌気性アンモニア酸化装置の運転方法。 At the start of operation of the anaerobic ammonia oxidation apparatus, at the time of load fluctuation, or at the time of restart after the anaerobic ammonia oxidation bacteria are deactivated, by adjusting the amount of circulation and / or the amount of raw water, The method for operating an anaerobic ammonia oxidation apparatus according to claim 1, wherein the concentration of NO 2 -N flowing into the anaerobic ammonia oxidation tank is controlled within a range of 50 to 250 mg / L. 前記嫌気性アンモニア酸化装置の運転開始時、負荷変動時、又は前記嫌気性アンモニア酸化細菌の失活後からの再立ち上げ時においては、前記嫌気性アンモニア酸化槽の流速の変動幅は、定常運転時に対して50%以内に制御することを特徴とする請求項1又は2に記載の嫌気性アンモニア酸化装置の運転方法。   At the start of operation of the anaerobic ammonia oxidation apparatus, at the time of load fluctuation, or at the time of restarting after deactivation of the anaerobic ammonia oxidation bacteria, the fluctuation range of the flow rate of the anaerobic ammonia oxidation tank is a steady operation. The method of operating an anaerobic ammonia oxidation apparatus according to claim 1, wherein the control is performed within 50% with respect to time. 前記処理水を前記嫌気性アンモニア酸化槽の入口に戻す循環比Rは、前記原水中の最大アンモニア濃度Aを用いて、次に示す数式1、
R=(0.57×A)/200 …(数式1)
から算出され、
前記嫌気性アンモニア酸化槽における槽内流速Vは、算出された循環比Rと前記原水の流速Fを用いて、次に示す数式2、
V=R×F …(数式2)
から算出され、
前記運転は、前記数式1で算出された算出値R以上に前記循環比を設定して行なわれることを特徴とする請求項1〜3のうち何れか1つに記載の嫌気性アンモニア酸化装置の運転方法。
The circulation ratio R for returning the treated water to the inlet of the anaerobic ammonia oxidation tank is expressed by the following formula 1, using the maximum ammonia concentration A in the raw water:
R = (0.57 × A) / 200 (Formula 1)
Calculated from
The tank flow velocity V in the anaerobic ammonia oxidation tank is calculated by using the calculated circulation ratio R and the flow rate F of the raw water.
V = R × F (Formula 2)
Calculated from
4. The anaerobic ammonia oxidation apparatus according to claim 1, wherein the operation is performed by setting the circulation ratio to be equal to or higher than the calculated value R calculated by the mathematical formula 1. 5. how to drive.
JP2004302690A 2004-10-18 2004-10-18 Operation method of anaerobic ammonia oxidation equipment Expired - Fee Related JP4945891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004302690A JP4945891B2 (en) 2004-10-18 2004-10-18 Operation method of anaerobic ammonia oxidation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302690A JP4945891B2 (en) 2004-10-18 2004-10-18 Operation method of anaerobic ammonia oxidation equipment

Publications (2)

Publication Number Publication Date
JP2006110511A true JP2006110511A (en) 2006-04-27
JP4945891B2 JP4945891B2 (en) 2012-06-06

Family

ID=36379463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302690A Expired - Fee Related JP4945891B2 (en) 2004-10-18 2004-10-18 Operation method of anaerobic ammonia oxidation equipment

Country Status (1)

Country Link
JP (1) JP4945891B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122839A (en) * 2004-10-29 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Anaerobic ammonia oxidation apparatus and its operation method
CN101967030A (en) * 2010-09-26 2011-02-09 山东大学 Integrated filler ammoxidation internal circulation short-distance denitrification process
JP2013111493A (en) * 2011-11-25 2013-06-10 Kurita Water Ind Ltd Biological treatment method of organic wastewater
CN103739178A (en) * 2013-12-26 2014-04-23 中南大学 Rapid starting method of anaerobic ammonia oxidation reactor for enhancing sludge hydrolysis
CN113772818A (en) * 2021-09-18 2021-12-10 广东碧水沃丰环保科技有限公司 Anaerobic ammonia oxidation device for treating pig breeding wastewater and application method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615526B (en) * 2018-06-20 2022-03-29 中国石油化工股份有限公司 Starting method of anaerobic ammonia oxidation process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123691A (en) * 1991-11-06 1993-05-21 Japan Organo Co Ltd Method for upward flow sludge blanket and device therefor
JPH0619900U (en) * 1992-08-06 1994-03-15 三菱化工機株式会社 Upflow anaerobic treatment device
JPH09220592A (en) * 1996-02-16 1997-08-26 Kurita Water Ind Ltd Unaerobic treatment apparatus
JPH10180276A (en) * 1996-12-26 1998-07-07 Hitachi Ltd Water purifying device and its operation
JP2001000994A (en) * 1999-06-22 2001-01-09 Toshiba Corp Anaerobic wastewater treatment equipment
JP2003024984A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024986A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024981A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2003047990A (en) * 2001-08-02 2003-02-18 Kurita Water Ind Ltd Biological denitrifier
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123691A (en) * 1991-11-06 1993-05-21 Japan Organo Co Ltd Method for upward flow sludge blanket and device therefor
JPH0619900U (en) * 1992-08-06 1994-03-15 三菱化工機株式会社 Upflow anaerobic treatment device
JPH09220592A (en) * 1996-02-16 1997-08-26 Kurita Water Ind Ltd Unaerobic treatment apparatus
JPH10180276A (en) * 1996-12-26 1998-07-07 Hitachi Ltd Water purifying device and its operation
JP2001000994A (en) * 1999-06-22 2001-01-09 Toshiba Corp Anaerobic wastewater treatment equipment
JP2003024986A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024981A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024984A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2003047990A (en) * 2001-08-02 2003-02-18 Kurita Water Ind Ltd Biological denitrifier
JP2003245689A (en) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd Method and apparatus for treating wastewater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122839A (en) * 2004-10-29 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Anaerobic ammonia oxidation apparatus and its operation method
JP4688059B2 (en) * 2004-10-29 2011-05-25 株式会社日立プラントテクノロジー Anaerobic ammonia oxidation apparatus and operation method thereof
CN101967030A (en) * 2010-09-26 2011-02-09 山东大学 Integrated filler ammoxidation internal circulation short-distance denitrification process
JP2013111493A (en) * 2011-11-25 2013-06-10 Kurita Water Ind Ltd Biological treatment method of organic wastewater
CN103739178A (en) * 2013-12-26 2014-04-23 中南大学 Rapid starting method of anaerobic ammonia oxidation reactor for enhancing sludge hydrolysis
CN113772818A (en) * 2021-09-18 2021-12-10 广东碧水沃丰环保科技有限公司 Anaerobic ammonia oxidation device for treating pig breeding wastewater and application method

Also Published As

Publication number Publication date
JP4945891B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4284700B2 (en) Nitrogen removal method and apparatus
JP5932639B2 (en) Biological nitrogen removal method using anaerobic ammonia oxidation reaction
US8323487B2 (en) Waste water treatment apparatus
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP6666165B2 (en) Nitrification and denitrification treatment method for ammoniacal nitrogen-containing liquid to be treated
KR20150083435A (en) Operating method for wastewater treatment apparatus
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
JP2003047990A (en) Biological denitrifier
JP4671178B2 (en) Nitrogen removal method and apparatus
JP2009136725A (en) Ammonia-containing waste water treatment apparatus
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP4678577B2 (en) Wastewater treatment system
JP4945891B2 (en) Operation method of anaerobic ammonia oxidation equipment
JP6862617B2 (en) A method and an apparatus for maintaining a complex denitrification reaction by an anaerobic ammonia oxidation reaction (Anamox reaction) and a hydrogen oxidation denitrification reaction for a long period of time.
JP4835906B2 (en) Treatment equipment for ammonia-containing liquid
JP4817057B2 (en) Batch treatment of nitrogen-containing water
JP2003024986A (en) Biological denitrification method and biological denitrification apparatus
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
JP4042718B2 (en) Anaerobic ammonia oxidation method and apparatus
JP2005329399A (en) Method and apparatus for removing nitrogen
JP4636248B2 (en) Anaerobic ammonia oxidation reaction apparatus and operation method
JP4042719B2 (en) Nitrite-type nitrification method and apparatus, and wastewater treatment apparatus
JP2006088057A (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4945891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees