JPH0921870A - Ground speed detecting device for vehicle - Google Patents

Ground speed detecting device for vehicle

Info

Publication number
JPH0921870A
JPH0921870A JP16904095A JP16904095A JPH0921870A JP H0921870 A JPH0921870 A JP H0921870A JP 16904095 A JP16904095 A JP 16904095A JP 16904095 A JP16904095 A JP 16904095A JP H0921870 A JPH0921870 A JP H0921870A
Authority
JP
Japan
Prior art keywords
road surface
vehicle
vehicle speed
speed
doppler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16904095A
Other languages
Japanese (ja)
Inventor
Junji Kawakubo
淳史 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16904095A priority Critical patent/JPH0921870A/en
Publication of JPH0921870A publication Critical patent/JPH0921870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in detection accuracy of vehicle speed caused by frequency drop of reflected wave by change in the road surface conditions or frequency drop of rectangular wave due to omission of inversion. SOLUTION: Signals having different frequencies are sent to the same points on road with a pair of signal sending receiving means M1, M2, Doppler frequencies are detected with the means M1, M2, and a speed calculating means M3 detects vehicle speed by using the deviation of both Doppler frequencies. When the road surface becomes smooth, Doppler frequencies obtained with a pair of signal sending receiving means drop in similar level and the deviation of Doppler frequencies is not affected by the variation of the road surface conditions. High accuracy vehicle speed with no effect on road conditions is detected from this deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は対地車速検出装置に
関し、特にドップラー方式の対地車速検出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground vehicle speed detecting device, and more particularly to a Doppler type ground vehicle speed detecting device.

【0002】[0002]

【従来の技術】ABS(アンチロックブレーキシステ
ム)やTRC(トランクションコントロールシステム)
等の車両制御では精度の良い対地車速データが必要とさ
れ、超音波やマイクロ波を用いたドップラー方式の対地
車速検出装置が開発されている。
2. Description of the Related Art ABS (anti-lock brake system) and TRC (truncation control system)
Accurate ground vehicle speed data is required for vehicle control such as, and a Doppler type ground vehicle speed detection apparatus using ultrasonic waves or microwaves has been developed.

【0003】このような対地車速検出装置としては、例
えば特開昭61−14586号公報に記載のものがあ
る。この装置は、車両の移動方向に所定距離離して2つ
の超音波センサを設け、この2つの超音波センサから路
面上の同一地点に向けて超音波送信し、2つの超音波セ
ンサで受信したドップラー信号夫々から車両の対地車速
を演算している。
An example of such a ground vehicle speed detecting device is disclosed in Japanese Patent Application Laid-Open No. 61-14586. This device is provided with two ultrasonic sensors that are separated by a predetermined distance in the moving direction of the vehicle, transmits ultrasonic waves from the two ultrasonic sensors to the same point on the road surface, and receives the ultrasonic waves with the two Doppler sensors. The ground speed of the vehicle is calculated from each signal.

【0004】[0004]

【発明が解決しようとする課題】路面に対して垂直でな
く、角度を付けて超音波やマイクロ波を照射するドップ
ラー方式の対地車速検出装置では路面が粗いか滑らかか
の路面状況によって、センサで受信される反射波の強度
及び反射波の中心と路面のなす角度が変化し、路面が滑
らかなほど反射波の強度が低下し、上記角度が大きくな
って反射波の周波数が低下する。また、反射波の強度が
低下すると受信した反射波を矩形波に波形整形する際に
反転の抜けが生じ、矩形波の周波数が低下するおそれが
ある。なお、通常、波形整形には、ヒステリシスコンパ
レータを用いている。
In a Doppler type ground vehicle speed detecting device which irradiates ultrasonic waves or microwaves at an angle instead of being perpendicular to the road surface, a sensor is used depending on whether the road surface is rough or smooth. The intensity of the received reflected wave and the angle formed by the center of the reflected wave and the road surface change. The smoother the road surface, the lower the intensity of the reflected wave, and the larger the angle, the lower the frequency of the reflected wave. Further, if the intensity of the reflected wave is reduced, inversion omission may occur when the received reflected wave is shaped into a rectangular wave, and the frequency of the rectangular wave may be reduced. A hysteresis comparator is usually used for waveform shaping.

【0005】このような反射波の周波数低下や反転の抜
けによる矩形波の周波数の低下が生じると車速の検出精
度が悪化するという問題があった。本発明は上記の点に
鑑みなされたもので、路面上の同一地点に向けて互いに
異なる周波数の信号を送信して得られる2つのドップラ
ー周波数の偏差から車速を演算することにより、路面状
況の影響を受けることなく高精度に車速を検出できる対
地車速検出装置を提供することを目的とする。
If the frequency of the rectangular wave is reduced due to the frequency reduction of the reflected wave or the omission of the inversion, the vehicle speed detection accuracy is deteriorated. The present invention has been made in view of the above points, and by calculating the vehicle speed from the deviation of two Doppler frequencies obtained by transmitting signals of different frequencies toward the same point on the road surface, the influence of the road surface condition is obtained. It is an object of the present invention to provide a ground vehicle speed detecting device capable of detecting a vehicle speed with high accuracy without receiving a signal.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、図1(A)に示す如く、車両の車幅方向に所定距離
だけ離間して設けられ、路面上の同一地点に向けて互い
に異なる周波数の信号を送信し、路面で反射された信号
を受信して対地速度によるドップラー周波数を検出する
一対の送受信手段M1,M2と、上記一対の送受信手段
夫々で検出されたドップラー周波数の偏差から車速を演
算する車速演算手段M3とを有する。
According to a first aspect of the present invention, as shown in FIG. 1 (A), the vehicle is provided at a predetermined distance in the vehicle width direction and is directed toward the same point on the road surface. A pair of transmitting / receiving means M1 and M2 for transmitting signals of different frequencies and receiving a signal reflected on the road surface to detect the Doppler frequency depending on the ground speed, and a deviation of the Doppler frequency detected by each of the pair of transmitting / receiving means. And vehicle speed calculation means M3 for calculating the vehicle speed.

【0007】請求項1に記載の発明においては、一対の
送受信手段で路面上の同一地点に異なる周波数の信号を
送信して、夫々でトップラー周波数を検出し、両ドップ
ラー周波数の偏差を用いて車速を検出するため、路面が
滑らかとなった場合に一対の送受信手段夫々で得られる
ドップラー周波数は同程度に低下し、ドップラー周波数
の偏差は路面状況の変化の影響を受けないので、この偏
差から路面状況の変化の影響を受けない高精度の車速を
検出することができる。
According to the first aspect of the present invention, a pair of transmitting / receiving means transmits signals of different frequencies to the same point on the road surface to detect the Topler frequencies, and uses the deviation of both Doppler frequencies. Since the vehicle speed is detected, when the road surface becomes smooth, the Doppler frequency obtained by each of the pair of transmitting and receiving means decreases to the same extent, and the deviation of the Doppler frequency is not affected by the change in the road surface condition. It is possible to detect a highly accurate vehicle speed that is not affected by changes in road surface conditions.

【0008】請求項2に記載の発明は、図1(B)に示
す如く、請求項1に記載の対地車速検出装置において、
前記一対の送受信手段夫々で検出されたドップラー周波
数から車両の前後方向速度と横方向速度とを演算する方
向別速度演算手段M4を有する。
According to a second aspect of the present invention, as shown in FIG. 1B, the ground vehicle speed detecting device according to the first aspect is
The vehicle has a direction-specific speed calculation means M4 for calculating the longitudinal speed and the lateral speed of the vehicle from the Doppler frequencies detected by the pair of transmission / reception means.

【0009】請求項2に記載の発明においては、車両の
車幅方向に離間して設けられた送受信手段で得られたド
ップラー周波数に車両の横方向速度の成分が含まれるた
め、車両の前後方向速度と横方向速度とを分離して得る
ことができ、この前後方向速度と横方向速度から車両の
すべり角を得ることができる。
According to the second aspect of the present invention, the Doppler frequency obtained by the transmitting / receiving means spaced apart in the vehicle width direction includes the lateral velocity component of the vehicle. The velocity and the lateral velocity can be obtained separately, and the slip angle of the vehicle can be obtained from the longitudinal velocity and the lateral velocity.

【0010】[0010]

【発明の実施の形態】図2は本発明装置の構成図、図3
は本発明のブロック図を示す。図2(A)の平面図にお
いて、車両10の後部には車両中心線11から等距離だ
け離れた位置に送受信手段M1,M2に対応するレーダ
センサ12A,12Bが取り付けられている。
2 is a block diagram of the device of the present invention, and FIG.
Shows a block diagram of the present invention. In the plan view of FIG. 2A, radar sensors 12A and 12B corresponding to the transmitting / receiving means M1 and M2 are attached to the rear portion of the vehicle 10 at positions equidistant from the vehicle center line 11.

【0011】レーダセンサ12A,12B夫々は車両の
進行方向とは逆向きに、つまり車両の後方にレーダビー
ムを照射(送信)し、路面での反射レーダビームを受信
する。この際、レーダセンサ12A,12B夫々は車両
中心線11の延長上の一点をレーダビームの照射中心と
するように、車両中心線11に対して等しい角度θ2
設定され、また図2(B)の側面図に示す如く、路面に
対して角度θ1 でレーダビームを照射するよう設定され
ている。
Each of the radar sensors 12A and 12B emits (transmits) a radar beam in the direction opposite to the traveling direction of the vehicle, that is, behind the vehicle, and receives a reflected radar beam on the road surface. At this time, each of the radar sensors 12A and 12B is set at the same angle θ 2 with respect to the vehicle center line 11 so that one point on the extension of the vehicle center line 11 becomes the irradiation center of the radar beam, and FIG. ), The radar beam is set to irradiate the road surface at an angle θ 1 .

【0012】図3において、レーダセンサ12A,12
B夫々の送信するレーダビームの周波数、つまり送信周
波数f1 ,f2 は異なる周波数に設定されている。レー
ダセンサ12A,12B夫々は、送信したレーダビーム
と路面で反射されたレーダビームとのビート信号を生成
して出力する。
In FIG. 3, the radar sensors 12A, 12
The frequencies of the radar beams transmitted by the respective Bs, that is, the transmission frequencies f 1 and f 2 are set to different frequencies. The radar sensors 12A and 12B each generate and output a beat signal between the transmitted radar beam and the radar beam reflected on the road surface.

【0013】車両が車速Vで走行するとき、レーダセン
サ12A,12Bに対して相対的に路面は速度−Vで移
動するため、ドップラー効果によって、各レーダセンサ
12A,12Bにおけるビート信号の周波数はドップラ
ー周波数fd1 ,fd2 となる。このドップラー周波数
fd1 ,fd2 夫々のビート信号は、増幅器14A,1
4B夫々で増幅された後、波形整形器16A,16B夫
々で矩形波に整形されて車速演算ECU(電子制御回
路)20に供給される。
When the vehicle travels at the vehicle speed V, the road surface moves at a speed -V relative to the radar sensors 12A and 12B, so that the frequency of the beat signal at each of the radar sensors 12A and 12B is Doppler due to the Doppler effect. The frequencies are fd 1 and fd 2 . The beat signals of the Doppler frequencies fd 1 and fd 2 are respectively fed to the amplifiers 14A and 1A.
After being amplified by each of 4B, it is shaped into a rectangular wave by each of the waveform shapers 16A and 16B and supplied to the vehicle speed calculation ECU (electronic control circuit) 20.

【0014】波形整形器16A,16B夫々は図4に示
す如く、コンパレータ20で構成されている。同図中、
端子21には増幅器14A又は14Bの出力するビート
信号が入来しコンパレータ20の反転入力端子に供給さ
れる。コンパレータ20の非反転入力端子は抵抗R1
介して電圧VREF の直流電源22に接続されると共に、
抵抗R2 を介して出力端子23に接続され、出力端子2
3は抵抗R3 を介して電圧VRLの端子24に接続されて
おり、ヒステリシス特性を有している。
Each of the waveform shapers 16A and 16B is composed of a comparator 20, as shown in FIG. In the figure,
The beat signal output from the amplifier 14A or 14B is input to the terminal 21 and supplied to the inverting input terminal of the comparator 20. The non-inverting input terminal of the comparator 20 is connected to the DC power source 22 of the voltage V REF via the resistor R 1 , and
It is connected to the output terminal 23 through the resistor R 2 and the output terminal 2
3 is connected to the terminal 24 of the voltage V RL via the resistor R 3 and has a hysteresis characteristic.

【0015】この回路では、端子23の出力電圧VOUT
がハイレベルVOHのときの閾値VTH (H) 、出力電圧V
OUT がローレベルVOLのとき閾値VTH(L) 夫々は次式で
表わされる。
In this circuit, the output voltage V OUT of the terminal 23
Is a high level V OH , threshold V TH (H) , output voltage V
When OUT is at low level V OL , each threshold value V TH (L) is expressed by the following equation.

【0016】[0016]

【数1】 [Equation 1]

【0017】コンパレータ20はビート信号のレベルが
閾値VTH(H) を超えるとローレベルとなり、閾値V
TH(L) 未満のときハイレベルとなる矩形波信号を生成し
て端子23より出力する。この波形整形器16A,16
Bで矩形化されたビート信号は車速演算ECU18に供
給される。
The comparator 20 becomes low level when the level of the beat signal exceeds the threshold value V TH (H) , and the threshold value V
When it is less than TH (L) , a rectangular wave signal that becomes high level is generated and output from the terminal 23. This waveform shaper 16A, 16
The beat signal rectangularized in B is supplied to the vehicle speed calculation ECU 18.

【0018】ここで、図5(A)に示す如く、車両30
に固定したレーダセンサ10からレーダビームの中心軸
が路面に対して仰角θ、俯角ψ(ψ=90°−θ)とな
るように設定しても、レーダビームはある程度広がり、
路面において最大仰角θ’で最小仰角θ”となるビーム
幅を持つ。
Here, as shown in FIG.
Even if the central axis of the radar beam from the radar sensor 10 fixed to is set to an elevation angle θ and a depression angle ψ (ψ = 90 ° −θ) with respect to the road surface, the radar beam spreads to some extent,
It has a beam width that gives the maximum elevation angle θ ′ and the minimum elevation angle θ ″ on the road surface.

【0019】また、レーダビームをレーダセンサ10方
向に反射する確率である散乱係数は、図5(B)に示す
如く路面状況によって大きく異なる。路面が粗い場合は
実線Iaに示す如く俯角ψによらず大きな散乱係数が得
られる。路面の滑らかさが増加するに従って一点鎖線I
b,破線Icの順に散乱係数が低下する。路面が滑らか
になると俯角ψが大きいほど散乱係数が低下する傾向に
あり、その傾向は滑らかな路面ほど大きくなる。
The scattering coefficient, which is the probability of reflecting the radar beam toward the radar sensor 10, greatly differs depending on the road surface condition, as shown in FIG. 5 (B). When the road surface is rough, a large scattering coefficient can be obtained regardless of the depression angle ψ as shown by the solid line Ia. As the smoothness of the road surface increases, the alternate long and short dash line I
The scattering coefficient decreases in the order of b and the broken line Ic. When the road surface becomes smooth, the scattering coefficient tends to decrease as the depression angle ψ increases, and the tendency increases as the road surface becomes smoother.

【0020】この結果、路面で反射されたレーダビーム
をレーダセンサで受信する角度である散乱ビーム角度は
路面が滑らかになるに従って仰角θより大きな値とな
る。この現象をドップラー周波数の信号スペクトラムで
見ると、路面が滑らかになるに従って図5(C)の実線
IIa,一点鎖線IIb,破線IIc の順にピークの周波数が低く
なり、かつピークレベル(反射ビーム強度)が低くな
る。
As a result, the scattered beam angle, which is the angle at which the radar sensor receives the radar beam reflected on the road surface, becomes larger than the elevation angle θ as the road surface becomes smoother. Looking at this phenomenon in the signal spectrum of the Doppler frequency, as the road surface becomes smoother, the solid line in FIG.
The peak frequency decreases in the order of IIa, the alternate long and short dash line IIb, and the broken line IIc, and the peak level (reflected beam intensity) decreases.

【0021】ここで、従来、車速Vは(1)式を用いて
算出している。
Here, conventionally, the vehicle speed V is calculated using the equation (1).

【0022】[0022]

【数2】 [Equation 2]

【0023】但し、fdはドップラー周波数、f0 は送
信周波数、Cは光速、θは仰角である。しかるに、散乱
ビーム角度は路面状況によって変化するにも拘らず、固
定値である仰角θを用いると、路面が滑らになるにつ
れ、算出される車速は低車速側に誤差を生じることにな
る。
However, fd is the Doppler frequency, f 0 is the transmission frequency, C is the speed of light, and θ is the elevation angle. However, although the scattered beam angle changes depending on the road surface condition, if the fixed elevation angle θ is used, the calculated vehicle speed will have an error on the low vehicle speed side as the road surface becomes slippery.

【0024】なお、路面が滑らかなほどピークの周波数
が低くなる理由について説明する。(1)式を変形した
(1’)式を得る。
The reason why the peak frequency becomes lower as the road surface becomes smoother will be described. A formula (1 ′) obtained by modifying the formula (1) is obtained.

【0025】[0025]

【数3】 (Equation 3)

【0026】仰角θが大きくなった場合、(1’)式の
右辺分母は一定とみなすことができ、右辺分子のcos
θが減小するためにドップラー周波数fdが低くなる。
更に、路面が粗い場合は、散乱係数が大であるため、ビ
ート信号の振幅は図6(A)に示す如く大振幅となり、
波形整形時に反転の抜けがなく同図(B)に示す如き矩
形波のビート信号が得られる。
When the elevation angle θ becomes large, the denominator on the right side of the equation (1 ') can be regarded as constant, and the cos of the numerator on the right side can be considered.
Since the θ is reduced, the Doppler frequency fd is lowered.
Further, when the road surface is rough, the scattering coefficient is large, so the amplitude of the beat signal becomes large as shown in FIG.
There is no inversion omission during waveform shaping, and a rectangular wave beat signal as shown in FIG.

【0027】これに対して、路面が滑らかな場合は、散
乱係数が小となるために、ビート信号の振幅は図7
(A)に示す如く小振幅となり、ヒステリシスを持つ回
路で波形整形を行うと反転の抜けが生じて同図(B)に
示す如き矩形波のビート信号が得られる。これは即ちビ
ート信号の周波数の低下が生じたことになる。
On the other hand, when the road surface is smooth, the amplitude of the beat signal is as shown in FIG. 7 because the scattering coefficient is small.
As shown in (A), the amplitude is small, and when waveform shaping is performed in a circuit having hysteresis, inversion omission occurs and a rectangular wave beat signal as shown in (B) is obtained. This means that the frequency of the beat signal has dropped.

【0028】本実施例は、上記のような路面状況の変化
によってビート信号周波数が低下し、車速が低下するこ
とを防止するものである。図8は車速演算ECU18が
実行する車速演算処理(車速演算手段M3に対応)の一
実施例のフローチャートを示す。この処理は所定時間毎
に繰り返し実行される。同図中、ステップS10では波
形整形器16Aから供給されるビート信号のドップラー
周波数fd1 を(2)式を用いて演算し、次にステップ
S20で波形整形器16Bから供給されるビート信号の
ドップラー周波数fd2 を(3)式を用いて演算する。
The present embodiment is intended to prevent the beat signal frequency from being lowered and the vehicle speed from being lowered due to the change in the road surface condition as described above. FIG. 8 shows a flowchart of an embodiment of the vehicle speed calculation processing (corresponding to the vehicle speed calculation means M3) executed by the vehicle speed calculation ECU 18. This process is repeatedly executed at predetermined time intervals. In the figure, the Doppler frequency fd 1 of the beat signal supplied from the step S10 in a waveform shaper 16A (2) equation is calculated using, then Doppler beat signal supplied from the waveform shaper 16B in step S20 The frequency fd 2 is calculated using the equation (3).

【0029】[0029]

【数4】 (Equation 4)

【0030】但し、Cは光速、f1 はレーダセンサ12
Aの送信周波数、f2 はレーダセンサ12Bの送信周波
数、Vは車速である。次にステップS30でドップラー
周波数fd1 ,fd2 の周波数偏差fd’を求める。な
お、図9にドップラー周波数fd1 (実線IIIa) 、ドッ
プラー周波数fd2 (実線IIIb) 、周波数偏差fd’
(実線IIIc) と車速との関係を示す。ここで(2),
(3)式より
Where C is the speed of light and f 1 is the radar sensor 12
The transmission frequency of A, f 2 is the transmission frequency of the radar sensor 12B, and V is the vehicle speed. Then determine the Doppler frequency fd 1, fd 2 of the frequency deviation fd 'at step S30. In FIG. 9, the Doppler frequency fd 1 (solid line IIIa), the Doppler frequency fd 2 (solid line IIIb), and the frequency deviation fd ′ are shown.
The relationship between (solid line IIIc) and vehicle speed is shown. Where (2),
From equation (3)

【0031】[0031]

【数5】 (Equation 5)

【0032】次にステップS40で周波数偏差fd’を
用いて(4)式を変形した(5)式により車速Vを算出
し、処理を終了する。
Next, in step S40, the vehicle speed V is calculated using the equation (5) obtained by modifying the equation (4) using the frequency deviation fd ', and the process ends.

【0033】[0033]

【数6】 (Equation 6)

【0034】ここで、車両の走行する路面の路面状況が
図10に示す如く、粗い路面から滑らかな路面となり、
再び粗い路面となった場合、滑らかな路面において散乱
係数が低下するためにドップラー周波数fd1 ,fd2
は共に低下する。しかし、上記のドップラー周波数の低
下量はfd1 ,fd2 で略同一であるため、周波数偏差
fd’は路面状況の変化に拘らず一定となる。この周波
数偏差fd’を用いて車速Vを求めるため、この車速V
は路面状況の影響を受けることがなく、高精度なものと
なる。
Here, as shown in FIG. 10, the road surface on which the vehicle is traveling changes from a rough road surface to a smooth road surface.
When the road surface becomes rough again, the Doppler frequencies fd 1 and fd 2 decrease because the scattering coefficient decreases on a smooth road surface.
Both decrease. However, since the amount of decrease in the Doppler frequency is approximately the same for fd 1 and fd 2 , the frequency deviation fd ′ is constant regardless of changes in road surface conditions. Since the vehicle speed V is obtained using this frequency deviation fd ′, this vehicle speed V
Will not be affected by road conditions and will be highly accurate.

【0035】ところで、ステップS40の車速演算の後
に、車体の前後方向速度及び横方向速度を検出し、そこ
から車両の横すべり角度を算出するステップ(方向別速
度演算手段M4に対応)を追加することができる。図1
1に示す如く、車両10が前後方向に速度VF で横方向
に速度VL で走行し、横すべり角βが生じたものとす
る。このときレーダセンサ12A,12B夫々のビーム
照射方向の速度Vfd1 ,Vfd2 は次式で表わされ
る。
By the way, after the vehicle speed calculation in step S40, a step (corresponding to the direction-specific speed calculation means M4) of detecting the longitudinal speed and the lateral speed of the vehicle body and calculating the lateral slip angle of the vehicle from them is added. You can FIG.
As shown in FIG. 1, it is assumed that the vehicle 10 travels at a speed V F in the front-rear direction and at a speed V L in the lateral direction to generate a sideslip angle β. At this time, the velocities Vfd 1 and Vfd 2 of the radar sensors 12A and 12B in the beam irradiation direction are expressed by the following equations.

【0036】[0036]

【数7】 (Equation 7)

【0037】(6)式よりドップラー周波数fd1 ,f
2 を求めると、
From the equation (6), the Doppler frequencies fd 1 , f
When d 2 is calculated,

【0038】[0038]

【数8】 (Equation 8)

【0039】上記(7)式を解くことにより(8)式を
得ることができる。
The equation (8) can be obtained by solving the equation (7).

【0040】[0040]

【数9】 [Equation 9]

【0041】上記のC,f1 ,f2 ,θ1 ,θ2 は既知
の定数であり、VF ,VL 夫々はfd1 ,fd2 の関数
として表わされる。また(8)式において、横方向速度
L は2項の差となっており、直進時にV L =0,横方
向速度が図10に示す如く進行方向に対して右向きのと
きVL >0、左向きのときVL <0となって横方向速度
の向きを知ることができる。このようにして得た、前後
方向速度VF 、横方向速度VL 、横すべり角βは車両の
アンダーステア、オーバーステア、スピン等を防止する
ための制御情報として利用することができる。
C, f above1, FTwo, Θ1, ΘTwoIs known
Is a constant of VF, VLEach is fd1, FdTwoFunction
Is represented as In equation (8), the lateral velocity
VLIs the difference between the two terms, and V L= 0, sideways
If the heading speed is rightward with respect to the traveling direction as shown in FIG.
VL> 0, V when facing leftL<0 and lateral velocity
You can know the direction. Thus obtained, front and back
Directional speed VF, Lateral velocity VL, The sideslip angle β is
Prevent understeer, oversteer, spin, etc.
Can be used as control information for

【0042】更に、レーダセンサ12A,12Bの2セ
ンサ構成を冗長系として使用することも可能である。レ
ーダセンサ12A,12Bのいずれか一方の出力が故障
等により供給され、なくなったとき、他方の出力だけを
用いて(2)又は(3)式の変形式により車速Vを得る
ことができる。ただし、この場合は精度が落ちるが冗長
系であるため問題はない。
Further, it is possible to use the two-sensor structure of the radar sensors 12A and 12B as a redundant system. When the output of either one of the radar sensors 12A and 12B is supplied due to a failure or the like and is lost, the vehicle speed V can be obtained by the modified equation (2) or (3) using only the other output. However, in this case, the accuracy is lowered, but there is no problem because it is a redundant system.

【0043】[0043]

【発明の効果】上述の如く、請求項1に記載の発明によ
れば、一対の送受信手段で路面上の同一地点に異なる周
波数の信号を送信して、夫々でトップラー周波数を検出
し、両ドップラー周波数の偏差を用いて車速を検出する
ため、路面が滑らかとなった場合に一対の送受信手段夫
々で得られるドップラー周波数は同程度に低下し、ドッ
プラー周波数の偏差は路面状況の変化の影響を受けない
ので、この偏差から路面状況の変化の影響を受けない高
精度の車速を検出することができる。
As described above, according to the first aspect of the present invention, the pair of transmitting / receiving means transmit signals of different frequencies to the same point on the road surface to detect the topler frequency, and to detect both of them. Since the vehicle speed is detected using the deviation of the Doppler frequency, when the road surface becomes smooth, the Doppler frequency obtained by each of the pair of transmitting / receiving means decreases to the same extent, and the deviation of the Doppler frequency affects the influence of changes in the road surface condition. Since it is not affected, it is possible to detect a highly accurate vehicle speed that is not affected by changes in road surface conditions from this deviation.

【0044】また、請求項2に記載の発明によれば、車
両の車幅方向に離間して設けられた送受信手段で得られ
たドップラー周波数に車両の横方向速度の成分が含まれ
るため、車両の前後方向速度と横方向速度とを分離して
得ることができ、この前後方向速度と横方向速度から車
両のすべり角を得ることができ、実用上きわめて有用で
ある。
According to the second aspect of the invention, since the Doppler frequency obtained by the transmitting / receiving means spaced apart in the vehicle width direction includes the lateral velocity component of the vehicle, The longitudinal velocity and the lateral velocity can be obtained separately, and the slip angle of the vehicle can be obtained from the longitudinal velocity and the lateral velocity, which is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明装置の構成図である。FIG. 2 is a configuration diagram of the device of the present invention.

【図3】本発明装置のブロック図である。FIG. 3 is a block diagram of the device of the present invention.

【図4】波形整形器の回路図である。FIG. 4 is a circuit diagram of a waveform shaper.

【図5】本発明を説明するための図である。FIG. 5 is a diagram for explaining the present invention.

【図6】本発明を説明するための図である。FIG. 6 is a diagram for explaining the present invention.

【図7】本発明を説明するための図である。FIG. 7 is a diagram for explaining the present invention.

【図8】車速演算処理のフローチャートである。FIG. 8 is a flowchart of vehicle speed calculation processing.

【図9】本発明を説明するための図である。FIG. 9 is a diagram for explaining the present invention.

【図10】本発明を説明するための図である。FIG. 10 is a diagram for explaining the present invention.

【図11】本発明を説明するための図である。FIG. 11 is a diagram for explaining the present invention.

【符号の説明】[Explanation of symbols]

10 車両 12A,12B レーダセンサ 14A,14B 増幅器 16A,16B 波形整形器 18 ECU M1,M2 送受信手段 M3 車速演算手段 M4 方向別速度演算手段 10 Vehicle 12A, 12B Radar Sensor 14A, 14B Amplifier 16A, 16B Waveform Shaper 18 ECU M1, M2 Transmitter / Receiver M3 Vehicle Speed Calculator M4 Directional Speed Calculator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車両の車幅方向に所定距離だけ離間して
設けられ、路面上の同一地点に向けて互いに異なる周波
数の信号を送信し、路面で反射された信号を受信して対
地速度によるドップラー周波数を検出する一対の送受信
手段と、 上記一対の送受信手段夫々で検出されたドップラー周波
数の偏差から車速を演算する車速演算手段とを有するこ
とを特徴とする対地車速検出装置。
1. A vehicle, which is provided at a predetermined distance in the vehicle width direction, transmits signals of different frequencies toward the same point on the road surface, receives signals reflected on the road surface, and detects the ground speed. A ground vehicle speed detecting device comprising: a pair of transmitting / receiving means for detecting a Doppler frequency, and a vehicle speed calculating means for calculating a vehicle speed from a deviation of the Doppler frequency detected by each of the pair of transmitting / receiving means.
【請求項2】 請求項1に記載の対地車速検出装置にお
いて、 前記一対の送受信手段夫々で検出されたドップラー周波
数から車両の前後方向速度と横方向速度とを演算する方
向別速度演算手段を有することを特徴とする対地車速検
出装置。
2. The ground vehicle speed detecting device according to claim 1, further comprising direction-specific speed calculating means for calculating a vehicle front-rear direction speed and a vehicle lateral speed from Doppler frequencies detected by the pair of transmitting / receiving means. A ground vehicle speed detection device characterized by the above.
JP16904095A 1995-07-04 1995-07-04 Ground speed detecting device for vehicle Pending JPH0921870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16904095A JPH0921870A (en) 1995-07-04 1995-07-04 Ground speed detecting device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16904095A JPH0921870A (en) 1995-07-04 1995-07-04 Ground speed detecting device for vehicle

Publications (1)

Publication Number Publication Date
JPH0921870A true JPH0921870A (en) 1997-01-21

Family

ID=15879208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16904095A Pending JPH0921870A (en) 1995-07-04 1995-07-04 Ground speed detecting device for vehicle

Country Status (1)

Country Link
JP (1) JPH0921870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188966A (en) * 2003-12-24 2005-07-14 Olympus Corp Carrying speed detector, and image forming device provided therewith
JP2008070358A (en) * 2007-08-08 2008-03-27 Hitachi Ltd Traveling control device for vehicle
JP2014169949A (en) * 2013-03-05 2014-09-18 Hitachi Automotive Systems Ltd Speed measuring device
CN109188442A (en) * 2018-10-24 2019-01-11 广东工业大学 A kind of electric vehicle tachymeter based on frequency-difference method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188966A (en) * 2003-12-24 2005-07-14 Olympus Corp Carrying speed detector, and image forming device provided therewith
JP4509548B2 (en) * 2003-12-24 2010-07-21 オリンパス株式会社 Conveyance speed detector
JP2008070358A (en) * 2007-08-08 2008-03-27 Hitachi Ltd Traveling control device for vehicle
JP2014169949A (en) * 2013-03-05 2014-09-18 Hitachi Automotive Systems Ltd Speed measuring device
CN109188442A (en) * 2018-10-24 2019-01-11 广东工业大学 A kind of electric vehicle tachymeter based on frequency-difference method

Similar Documents

Publication Publication Date Title
US6396435B1 (en) Method for determining the vertical distance between an object and a device with a variable position
US20020189875A1 (en) Pavement detector and vertical axial shift detector of on board radar
CN102414576B (en) Laser diode based self-mixing sensor for a vehicle electronic stability program
GB2500290A (en) Ultrasonic detector for vehicle
US9229105B2 (en) Relative position detection device for vehicle
JPH0798375A (en) On-vehicle radar device
JP2002175599A (en) Lane position estimating device for precedent vehicle or target
JPH0921870A (en) Ground speed detecting device for vehicle
JPH0769421B2 (en) On-vehicle multipurpose ultrasonic measuring device
JPWO2019181448A1 (en) Radar device
JP2009085921A (en) Equipment and method for detecting object
JPH0784035A (en) Front warning radar for automobile
JPH0915332A (en) Detecting device of vehicle ground speed
JP3369501B2 (en) Radio-type road information detection device
US20220107404A1 (en) System and method of detecting vehicles beyond a view-blocking vehicle
US20210302571A1 (en) Object detection system
WO2022149485A1 (en) Object detection device
JP2011247761A (en) Object detector
JP3094792B2 (en) Ground speed detector
JPH0651057A (en) Radar mounted on vehicle
JP2531276Y2 (en) Road surface condition detection device
JPH06281539A (en) Road surface condition detection device of steering support system of motor vehicle
KR100353420B1 (en) Device and method for braking of vehicle with using radar
JPH07333332A (en) Ultrasonic distance measuring equipment between vehicles
JPH0592768U (en) Inter-vehicle distance alarm device