JPH0769421B2 - On-vehicle multipurpose ultrasonic measuring device - Google Patents

On-vehicle multipurpose ultrasonic measuring device

Info

Publication number
JPH0769421B2
JPH0769421B2 JP2071295A JP7129590A JPH0769421B2 JP H0769421 B2 JPH0769421 B2 JP H0769421B2 JP 2071295 A JP2071295 A JP 2071295A JP 7129590 A JP7129590 A JP 7129590A JP H0769421 B2 JPH0769421 B2 JP H0769421B2
Authority
JP
Japan
Prior art keywords
vehicle
road surface
frequency
ultrasonic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2071295A
Other languages
Japanese (ja)
Other versions
JPH03269388A (en
Inventor
良一 木村
兆五 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2071295A priority Critical patent/JPH0769421B2/en
Publication of JPH03269388A publication Critical patent/JPH03269388A/en
Publication of JPH0769421B2 publication Critical patent/JPH0769421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車等の横滑り防止器、サスペンション制御
器等に供される計測値(データ)を得る車載用多目的超
音波計測装置に関する。
Description: TECHNICAL FIELD The present invention relates to a vehicle-mounted multipurpose ultrasonic measuring device that obtains measurement values (data) for use in a skid prevention device, a suspension controller, etc. of an automobile or the like.

一層詳細には、一つの素子あるいは一組の送受信素子か
らなる送受波器から車両の前方向、さらには前後方向の
路面に角度を有して放射した超音波と反射信号とから路
面までの直線距離を検出する。さらに反射波の信号のレ
ベルから車両前方の路面の突起等の状況を検出し、ま
た、反射波が路面から帰来する時間における直線距離と
超音波の放射角度とから車高を算出し、かつ得られるド
ップラ周波数をもとに車速を算出することにより、比較
的簡素な構成のもとに、車両の走行時の前方路面の突起
等の状況が検出され、ここでの検出値をもとにサスペン
ションの走行時の予測制御が可能となり、かつ車高なら
びに車速が高精度に得られるようにしたものである。
More specifically, a straight line from the ultrasonic wave radiated at an angle to the road surface in the front direction of the vehicle, and further in the front-back direction of the vehicle and the reflected signal from the transducer including a single element or a set of transmission / reception elements to the road surface. Detect the distance. Furthermore, the condition of road surface protrusions in front of the vehicle is detected from the level of the reflected wave signal, and the vehicle height is calculated and obtained from the straight line distance and the ultrasonic radiation angle at the time when the reflected wave returns from the road surface. By calculating the vehicle speed based on the Doppler frequency that is generated, the situation such as the projection of the road surface ahead of the vehicle when the vehicle is running is detected with a relatively simple configuration, and the suspension is based on the detected value here. This enables predictive control during travel of the vehicle and enables the vehicle height and vehicle speed to be obtained with high accuracy.

[従来の技術] 近時、自動車の高性能化の要望に対応して、周知の横滑
り防止器、サスペンション制御器等が採用されつつあ
る。この場合、超音波計測装置等が多用されており、路
面の突起等の検出と、車高ならびに車速が検出され、こ
こで検出値が横滑り防止器、サスペンション制御器等に
供される。
[Prior Art] Recently, well-known skid prevention devices, suspension controllers, and the like are being adopted in response to the demand for higher performance of automobiles. In this case, an ultrasonic measuring device or the like is frequently used, and detection of road protrusions and the like, vehicle height and vehicle speed are detected, and the detected values are provided to a skid preventer, suspension controller, and the like.

前記の超音波計測装置において、路面状況の検出は車両
に装着された送受波器から超音波が放射される路面まで
の距離を推定して車高を検出し、ここで車高が一定の場
合に路面が平坦であり、また変動が大きい場合に路面に
凹凸や突起物を有していると判定して、これにもとづい
て路面情報信号を送出する。
In the above ultrasonic measurement device, the road surface condition is detected by estimating the distance from the transducer mounted on the vehicle to the road surface on which the ultrasonic waves are radiated and detecting the vehicle height, where the vehicle height is constant. When the road surface is flat and the fluctuation is large, it is determined that the road surface has irregularities or protrusions, and the road surface information signal is transmitted based on this.

車高は放射された超音波が路面で反射されて帰来する時
間をもとに検出し、これにもとづいて車高情報信号を送
出している。
The vehicle height is detected based on the time it takes for the radiated ultrasonic waves to return after being reflected on the road surface, and based on this, the vehicle height information signal is transmitted.

車速はタイヤあるいはトランスミッションギアの回転数
を検出して、これにもとづいて車速情報信号が送出され
る。
As the vehicle speed, the rotation speed of the tire or the transmission gear is detected, and the vehicle speed information signal is transmitted based on this.

[発明が解決しようとする課題] しかしながら、上記の従来の技術に係る計測装置におい
ては、主に車両直下の路面の突起等の状況の検出が行わ
れており、車両前方の突起等の状況を予め検出すること
ができない。このためサスペンション制御器における走
行時の前方の路面に対応した予測制御は困難である。さ
らに車速の検出を行うための送受波器と、車高を算出す
る検出/計測部等が個別に必要となり、このためコスト
増を招き、さらに車体における、殊に、送受波器の取り
付け位置の自由度が得られ難い。また、車速の検出を行
う際に、タイヤのスリップ等で正確な計測値が得られな
い場合を生起する等々の欠点を有している。
[Problems to be Solved by the Invention] However, in the measuring device according to the above-mentioned conventional technique, the situation such as a protrusion on the road surface directly below the vehicle is mainly detected, and the situation such as the protrusion in the front of the vehicle is detected. It cannot be detected in advance. For this reason, it is difficult for the suspension controller to perform predictive control corresponding to the road surface ahead when the vehicle is running. Furthermore, a wave transmitter / receiver for detecting the vehicle speed and a detector / measuring unit for calculating the vehicle height are separately required, which leads to an increase in cost, and further, the mounting position of the wave transmitter / receiver on the vehicle body, especially It is difficult to obtain the degree of freedom. Further, when the vehicle speed is detected, there are drawbacks such as a case where an accurate measured value cannot be obtained due to a tire slip or the like.

本発明は係る点に鑑みてなされ、その目的とするところ
は、一つの素子あるいは一組の送受信素子からなる送受
波器を用い、比較的簡素な構成のもとに車両の走行時の
前方路面の突起等を検出し、ここでの検出値をもとにサ
スペンションの走行時における予測制御が可能となり、
かつ車高ならびに車速が高精度に検出される車載用多目
的超音波計測装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to use a transducer including one element or a pair of transmitting and receiving elements, and use a relatively simple configuration to provide a front road surface when the vehicle is running. It is possible to detect the protrusions of the suspension and predict the control when the suspension is running based on the detected value.
Another object of the present invention is to provide a vehicle-mounted multipurpose ultrasonic measuring device capable of detecting the vehicle height and the vehicle speed with high accuracy.

[課題を解決するための手段] 前記の課題を解決するために、本発明の車載用多目的超
音波計測装置は、 車体に配され、一つの発射周波数の超音波を前記車体の
前後方向に等しい放射角度で、突起を有する路面に放射
し、かつ反射波を受信する一つの素子あるいは一組の送
受信素子からなる送受波器と、 放射した前記超音波と受信した前記反射波中の前記突起
からの反射波との時間差をもとに、前記突起と前記送受
波器との間の直線距離を検出し、かつ前記反射波のレベ
ルをもとに前記車体前方向の路面の突起の有無と突起の
大きさを検出する突起検出手段と、 この突起検出手段で検出された前記直線距離と前記超音
波の放射角度とから車体から路面までの直下の距離を検
出する車高検出手段と、 車速検出手段とを備え、 この車速検出手段は、前記超音波の発射周波数と前記路
面の前後方向からの反射波の周波数とから前後方向の二
つのドップラ周波数を検出した後、これら二つのドップ
ラ周波数の差のドップラ周波数を求め、この差のドップ
ラ周波数と超音波速度との積を前記発射周波数と前記放
射角度の余弦と定数4との積で割った商を車速として検
出することを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the on-vehicle multipurpose ultrasonic measuring device according to the present invention is arranged in a vehicle body, and ultrasonic waves of one emission frequency are equalized in the front-rear direction of the vehicle body. A transmitter / receiver consisting of a single element or a set of transmitting / receiving elements that radiates on the road surface having projections at an emission angle and receives reflected waves, and from the projections in the emitted ultrasonic waves and the received reflected waves. The linear distance between the protrusion and the transducer is detected on the basis of the time difference from the reflected wave, and the presence or absence of a protrusion on the road surface in the front direction of the vehicle and the protrusion based on the level of the reflected wave. And a vehicle height detection means for detecting the distance directly below the vehicle body to the road surface from the straight line distance detected by the projection detection means and the radiation angle of the ultrasonic wave, and the vehicle speed detection means. And means for detecting the vehicle speed Is, after detecting two Doppler frequencies in the front-back direction from the emission frequency of the ultrasonic wave and the frequency of the reflected wave from the front-back direction of the road surface, obtain the Doppler frequency of the difference between these two Doppler frequencies, It is characterized in that the quotient obtained by dividing the product of the Doppler frequency and the ultrasonic velocity by the product of the firing frequency, the cosine of the radiation angle and the constant 4 is detected as the vehicle speed.

[作用] 上記の構成においては、送受波器から車両の前方向ある
いは前後方向の路面に角度を有して超音波が放射され
る。そして放射される超音波と路面の突起の反射波に係
る受信信号から突起までの時間が計測される。さらに路
面の突起の反射波に係る信号のレベル、例えば、域値と
の比較において、車両前方の路面の突起等の有無、およ
びその大きさが検出される。さらに反射波が路面から帰
来する時間における直線距離と超音波の放射角度とから
車高を算出し、かつ得られるドップラ周波数をもとに車
速が算出される。
[Operation] In the above configuration, ultrasonic waves are radiated from the wave transmitter / receiver at an angle to the road surface in the front or front-rear direction of the vehicle. Then, the time from the received signal related to the radiated ultrasonic wave and the reflected wave of the road surface projection to the projection is measured. Further, in comparison with the level of the signal related to the reflected wave of the road surface projection, for example, the threshold value, the presence or absence of the road surface projection in front of the vehicle and the size thereof are detected. Further, the vehicle height is calculated from the straight line distance at the time when the reflected wave returns from the road surface and the emission angle of the ultrasonic wave, and the vehicle speed is calculated based on the obtained Doppler frequency.

さらに、車体の前後方向に等しい放射角度を有して超音
波が放射され、夫々の反射波に係る受信信号のドップラ
周波数を検出し、差のドップラ周波数を求めて、車体の
垂直速度成分が打ち消された車速が算出する。
Further, ultrasonic waves are radiated with an equal radiation angle in the front-back direction of the vehicle body, the Doppler frequencies of the received signals relating to the respective reflected waves are detected, the difference Doppler frequency is obtained, and the vertical velocity component of the vehicle body is canceled. The calculated vehicle speed is calculated.

これにより、車両の走行時の前方路面の突起等に係る状
況が検出され、かつ車高ならびに車速が高精度に得られ
る。
As a result, the situation related to the protrusion on the front road surface when the vehicle is traveling can be detected, and the vehicle height and the vehicle speed can be obtained with high accuracy.

[実施例] 次に、本発明に係る車載用多目的超音波計測装置の実施
例を、添付図面を参照しながら以下詳細に説明する。
[Embodiment] Next, an embodiment of an on-vehicle multipurpose ultrasonic measuring device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は構成を示すブロック図、第2図(a)、
(b)、(c)、(d)は振動子と路面間距離の検出に
係る動作説明に供される図、第3図はドップラ周波数に
係る動作説明に供される図、第4図はペアビームのドッ
プラ周波数検出に係る動作説明に供される図である。
FIG. 1 is a block diagram showing the configuration, FIG. 2 (a),
(B), (c) and (d) are diagrams for explaining the operation related to the detection of the distance between the vibrator and the road surface, FIG. 3 is a diagram for explaining the operation related to the Doppler frequency, and FIG. It is a figure with which an operation explanation concerning Doppler frequency detection of a pair beam is offered.

先ず、構成を説明する。First, the configuration will be described.

第1図において、角度θで超音波を路面Mに放射する送
受波器10が車体(図示せず)の前部に設けられている。
この送受波器10は一つの振動子(素子)あるいは一組の
送受信振動子で構成されている。
In FIG. 1, a transducer 10 for radiating ultrasonic waves to the road surface M at an angle θ is provided in the front part of a vehicle body (not shown).
The wave transmitter / receiver 10 is composed of one oscillator (element) or a set of transmitting / receiving oscillators.

さらに信号処理部12には発振器14と、分週器16と、バー
スト波発生器18と、電力増幅器20と、送受信切換器22と
を有している。さらに路面M、突起物Maからの反射波を
送受波器10で受信し、ここから導出される受信信号が送
受信切換器22を介して入力される受信増幅器24と、エン
ベロープ検波器26と、微分比較器27と、路面Mの突起の
状態を示す突起情報信号Dsを創出するマイクロプロセッ
サ(MPU)等の時間/距離変換部28とが設けられてい
る。
Further, the signal processing unit 12 includes an oscillator 14, a week divider 16, a burst wave generator 18, a power amplifier 20, and a transmission / reception switch 22. Further, the reflected wave from the road surface M and the projection Ma is received by the wave transmitter / receiver 10, and the received signal derived from this is input through the transmission / reception switch 22, a reception amplifier 24, an envelope detector 26, and a differentiator. A comparator 27 and a time / distance converter 28 such as a microprocessor (MPU) that generates a protrusion information signal Ds indicating the state of the protrusion on the road surface M are provided.

さらに、PLL回路30と、車速情報信号Vsを導出するF−
V変換器32とが備えられている。
Further, the PLL circuit 30 and F- for deriving the vehicle speed information signal Vs
And a V converter 32.

また、車高情報信号Hsを導出するマイクロプロセッサ
(MPU)等の直距離/高さ演算部34とを有している。
Further, it has a direct distance / height calculation unit 34 such as a microprocessor (MPU) for deriving the vehicle height information signal Hs.

なお、符号36はサーミスタ等の感温素子を示す。Reference numeral 36 indicates a temperature sensitive element such as a thermistor.

次に、上記の構成における動作を説明する。Next, the operation of the above configuration will be described.

発振器14で発振した主周波数発振信号Saは分周器16に入
力されて分周信号f0が導出される。分周信号f0はバース
ト波発生器18に入力されてバースト波信号Sbが生成さ
れ、続いて、電力増幅器20で電力増幅される。この後、
送受信切換器22を介して送受波器10に入力される。この
送受波器10から角度θの傾斜で超音波パルスPtが路面M
に対して放射される。
The main frequency oscillation signal Sa oscillated by the oscillator 14 is input to the frequency divider 16 and the frequency divided signal f 0 is derived. The frequency-divided signal f 0 is input to the burst wave generator 18, the burst wave signal Sb is generated, and then the power amplifier 20 performs power amplification. After this,
It is input to the wave transceiver 10 through the transmission / reception switch 22. The ultrasonic pulse Pt is transmitted from the transmitter / receiver 10 at an angle θ to the road surface M.
Radiated against.

ここで路面Mからの反射波Prは送受波器10で受波され、
ここから導出される受信信号が送受信切換器22を経て受
信増幅器24に入力される。この受信増幅器24では車体の
上下変動による送受波器10と路面M間で生起する反射波
Prの音波伝播距離にもとづく振幅の減衰(特性)を補正
するためSTCが行われて適当なレベルに増幅された増幅
受信信号Siが導出される。続いて、エンベロープ検波器
26から包絡線成分の検波信号Sdが導出される。
Here, the reflected wave Pr from the road surface M is received by the wave transmitter / receiver 10,
The reception signal derived from this is input to the reception amplifier 24 via the transmission / reception switch 22. In this receiving amplifier 24, the reflected wave generated between the transducer 10 and the road surface M due to the vertical movement of the vehicle body
In order to correct the attenuation (characteristic) of the amplitude based on the sound wave propagation distance of Pr, STC is performed and the amplified received signal Si amplified to an appropriate level is derived. Next, the envelope detector
From 26, the detection signal Sd of the envelope component is derived.

この検波信号Sdは微分比較器27に入力され、続いて、時
間/距離変換部28から路面Mの突起物Ma等の状態を示す
突起情報信号Dsが導出される。
This detection signal Sd is input to the differential comparator 27, and then the time / distance converter 28 derives a projection information signal Ds indicating the state of the projection Ma or the like on the road surface M.

ここで突起情報信号Dsの検出について、第2図を用いて
詳細に説明する。
Here, the detection of the protrusion information signal Ds will be described in detail with reference to FIG.

第2図(a)、(b)、(c)、(d)において、縦軸
は振幅、横軸は時間軸である。
2 (a), (b), (c), and (d), the vertical axis is the amplitude and the horizontal axis is the time axis.

第2図(a)はバースト波信号Sbが送受波器10から放射
される超音波パルスPtであり、ここではパルスPsのみを
示す。第2図(b)は反射波Prである。ここで符号Psa
は前記パルスPsに対応した、例えば、送受信切換器22を
漏洩した受信パルスである。符号Praは路面Mの突起物M
aからの反射波の信号であり、さらに符号Prbは路面Mか
らの反射波に係る信号を示す。第2図(c)は検波信号
Sdであり、この検波信号Sdは微分比較器27で微分されて
第2図(d)に示すように閾値信号VRFを越えた信号部
分であるスパイク信号Scが時間/距離変換部28に入力さ
れる。この閾値信号VRFを越えた信号の有無を、例え
ば、量子化の後のデジタル演算信号処理で路面Mの突起
物Ma等の大きさを検出し、同時にその有無が検知され
る。さらに、第2図(d)に示されるように、受信パル
スPsaと反射波Praの夫々の前縁部間の時間tdを、高速ク
ロックで計数することにより、距離dが算出される。こ
のようにして得られる突起情報信号Dsは車両のサスペン
ション制御器(図示せず)に供されて、走行時の予測制
御が行われる。
FIG. 2A shows an ultrasonic pulse Pt in which the burst wave signal Sb is radiated from the transceiver 10, and here only the pulse Ps is shown. FIG. 2B shows the reflected wave Pr. Where the symbol Psa
Is a received pulse corresponding to the pulse Ps and leaked from the transmission / reception switch 22, for example. The symbol Pra is a protrusion M on the road surface M.
It is a signal of the reflected wave from a, and the symbol Prb represents a signal related to the reflected wave from the road surface M. Figure 2 (c) shows the detected signal
Sd, and this detection signal Sd is differentiated by the differential comparator 27 and the spike signal Sc, which is the signal portion exceeding the threshold signal V RF , is input to the time / distance converter 28 as shown in FIG. 2 (d). To be done. The presence / absence of a signal exceeding the threshold signal V RF is detected by, for example, the size of the protrusion Ma or the like on the road surface M by digital calculation signal processing after quantization, and the presence / absence thereof is detected at the same time. Further, as shown in FIG. 2 (d), the distance d is calculated by counting the time td between the respective leading edges of the reception pulse Psa and the reflected wave Pra with a high speed clock. The projection information signal Ds thus obtained is supplied to a suspension controller (not shown) of the vehicle to perform predictive control during traveling.

次に、車高Hを示す車高情報信号Hsの導出について説明
する。
Next, the derivation of the vehicle height information signal Hs indicating the vehicle height H will be described.

先ず、直距離/高さ演算部34では前記時間/距離変換部
28での信号処理と同様にして路面Mの突起物Maまでの距
離dが演算される。そして、予め判明している送受波器
10の角度θから車高Hを次式で求める。
First, in the direct distance / height calculation unit 34, the time / distance conversion unit
Similar to the signal processing in 28, the distance d to the protrusion Ma on the road surface M is calculated. And the known transducer
The vehicle height H is calculated from the angle θ of 10 by the following formula.

H=d sinθ (1) この演算結果が直距離/高さ演算部34から車高情報信号
Hsとして出力される。
H = d sin θ (1) This calculation result is the vehicle height information signal from the direct distance / height calculation unit 34.
Output as Hs.

このようにして得られるこの車高情報信号Hsは、例え
ば、前記の突起情報信号Dsとともに車両のサスペンショ
ン制御器(図示せず)に供されて、走行時のサスペンシ
ョンに係る予測制御が行われる。
The vehicle height information signal Hs thus obtained is supplied to, for example, the vehicle suspension controller (not shown) together with the projection information signal Ds, and predictive control relating to the suspension during traveling is performed.

さらに、車速V示す車速情報信号Vsの導出について第3
図を用いて説明する。
Further, regarding the derivation of the vehicle speed information signal Vs indicating the vehicle speed V,
It will be described with reference to the drawings.

送受波器10から路面Mに向かって角度θで超音波パルス
Pt(分周信号f0は周波数foaとする)が反射されると、
路面Mからの反射波Prの周波数成分は、 f0±fd …(2) (fd:ドップラ周波数) で表される。
Ultrasonic pulse from transmitter / receiver 10 toward road surface M at angle θ
When Pt (divided signal f 0 is frequency foa) is reflected,
The frequency component of the reflected wave Pr from the road surface M is represented by f 0 ± f d (2) (f d : Doppler frequency).

但し、送受波器10が第3図の矢印方向Kに速度Vで進行
すると、ドップラ周波数fdは周知のように、 で表される。すなわち、ドップラ周波数fdを検出するこ
とによって車の速度Vで検出できる。
However, when the transmitter / receiver 10 travels at the speed V in the direction K of the arrow in FIG. 3, the Doppler frequency f d is, as is well known, It is represented by. That is, the vehicle speed V can be detected by detecting the Doppler frequency f d .

ここでは反射波Prの式(2)で示される周波数成分(f0
±fd)および分周信号f0をもとにしてPLL回路30のフェ
イズ・ロック・ループの出力信号として式(3)で周波
数成分±fd(極性は矢印方向Kの進行方向で定まる)を
得る。
Here, the frequency component (f 0
± f d ) and the frequency-divided signal f 0 as the output signal of the phase lock loop of the PLL circuit 30 in the frequency component ± f d in the formula (3) (the polarity is determined in the direction of arrow K) To get

そして、F−V変換器32で周波数成分±fdを電圧値に変
換し、ここで車速V示す車速情報信号Vsが導出される。
フェイズ・ロック・ループの動作は周知のため省略す
る。
Then, the FV converter 32 converts the frequency component ± f d into a voltage value, and the vehicle speed information signal Vs indicating the vehicle speed V is derived here.
Since the operation of the phase lock loop is well known, it is omitted.

このようにして得られる車速情報信号Vsは極めて応答性
が向上した正確な値である。
The vehicle speed information signal Vs thus obtained is an accurate value with extremely improved responsiveness.

なお、時間/距離変換部28、F−V変換器32、直距離/
高さ演算部34では感温素子36から得られた温度情報(信
号)により、周知の超音波の温度による音速変化の補
正、すなわち、超音波パルスPt、反射波Prの距離dに係
る音速の補正が行われる。
The time / distance converter 28, the FV converter 32, the direct distance /
The height calculation unit 34 uses the temperature information (signal) obtained from the temperature sensing element 36 to correct the known change in sound velocity due to the temperature of the ultrasonic wave, that is, the ultrasonic velocity related to the distance d between the ultrasonic pulse Pt and the reflected wave Pr. Correction is performed.

次に、上記の実施例では角度θに傾斜した送受波器10が
設けられ、一方向に超音波パルスPtが路面Mに対して放
射されている。そして、路面Mからの反射波Prを受信す
る。この場合、車体への送受波器10の取り付けの際、ま
た、車体が傾いている場合にヒールやトリムが生起する
と、これによる速度誤差が増大する。
Next, in the above-described embodiment, the wave transmitter / receiver 10 tilted at the angle θ is provided, and the ultrasonic pulse Pt is emitted to the road surface M in one direction. Then, the reflected wave Pr from the road surface M is received. In this case, when the wave transmitter / receiver 10 is attached to the vehicle body, and if heel or trim occurs when the vehicle body is tilted, the speed error due to this increases.

このような速度誤差が改善されるペアビーム方式を第4
図に示す。
The fourth method is the paired beam method, which improves such speed error.
Shown in the figure.

本ペアビーム方式は、同図に示すように、車両の前後方
向(二方向)に超音波パルスPma、Pmbを送受信する。こ
こで送受波器11の水平速度をV、垂直速度をUとする
と、ビームN1に対するドップラ周波数fd1は、 となり、同じくビームN2に対して、 となる(C:音速、f0:発射周波数、θ、θ2:音波発射
角度)。
The pair beam system transmits and receives ultrasonic pulses Pma and Pmb in the front-rear direction (two directions) of the vehicle as shown in the figure. Here, if the horizontal velocity of the transducer 11 is V and the vertical velocity is U, the Doppler frequency f d1 for the beam N 1 is And similarly for beam N 2 , (C: speed of sound, f 0 : emission frequency, θ 1 , θ 2 : sound wave emission angle).

θ=θとすると、ペアビーム方式では、 となり、垂直速度Uは打ち消され、誤差は生じない。If θ 1 = θ 2 , then in the paired beam method, Therefore, the vertical velocity U is canceled and no error occurs.

一方、トリムまたはヒールによって、いま、N1がδだけ
傾いた場合は、 であるドップラ周波数が得られる。その誤差は、 E1(%)=100×(cosδ−tanθ sinδ−1) …(8) となる。
On the other hand, if N 1 is tilted by δ due to trim or heel, A Doppler frequency that is The error is E 1 (%) = 100 × (cos δ−tan θ sin δ−1) (8).

ペアビームの場合はビームN2もδだけ傾いたとしてドッ
プラ周波数を求めればよく、 で表され、誤差E12は E12(%)=100×(cosδ−1) …(10) で表される。両者に角度θおよびδを導入して求めれば
明らかなように、ロール、ピッチによる誤差は改善され
ないが、本ペアビーム方式では著しく誤差が少なくな
る。
In the case of paired beams, the Doppler frequency should be calculated assuming that beam N 2 is also inclined by δ, The error E 12 is represented by E 12 (%) = 100 × (cos δ−1) (10). As can be seen by introducing the angles θ and δ into both, the error due to the roll and the pitch is not improved, but the error is significantly reduced in the present pair beam system.

このように車体が路面Mの状態で上下に揺れ、すなわ
ち、第4図に示される垂直速度(U)に係る垂直成分が
発生しても、これに起因する速度Vに誤差は生起しな
い。また、送受波器10の取り付けの角度θや車両の走行
状態によりヒールやトリム角を有していても前記の一つ
の送受波器10を用いた場合に比較して、その誤差は極め
て少なくなる。本ペアビーム方式では、容易に理解され
るように2系統の送受波器11ならびに受信処理系が配設
される。
Thus, even if the vehicle body swings up and down on the road surface M, that is, even if a vertical component relating to the vertical velocity (U) shown in FIG. 4 is generated, no error occurs in the velocity V due to this. Further, even if there is a heel or trim angle depending on the mounting angle θ of the wave transmitter / receiver 10 and the traveling state of the vehicle, the error is extremely small compared to the case where the one wave transmitter / receiver 10 is used. . In this pair beam system, as is easily understood, two systems of transmitter / receiver 11 and a reception processing system are provided.

なお、上記の実施例では、例えば、一つの振動子あるい
は一組の送受信振動子が同一筐体に配設される送受波器
10、11を用いることなく、送信と受信の振動子を離間し
た位置に別個に配設した送受波器を採用して、前記と同
様に信号処理を行い、前記と同様の作用効果を得るこ
と、さらに、バースト波信号Sbを生成して超音波パルス
Ptを放射しているが、これに限定されず、例えば、電磁
波を送信して対応した周波数の受信信号処理を行うこ
と、また微分比較器27を用いず、例えば、デジタル信号
処理回路を用いて、前記同様の作用効果を得ることも本
発明に含まれる。
In the above embodiment, for example, a transducer in which one oscillator or a set of transmitting and receiving oscillators are arranged in the same housing.
A transmitter / receiver in which a transducer for transmission and a transducer for reception are separately arranged at separate positions without using 10, 11 and performs signal processing in the same manner as described above, and obtains the same effect as the above. , Further, generate a burst wave signal Sb to generate ultrasonic pulse
Although radiating Pt, it is not limited to this, for example, by transmitting an electromagnetic wave to perform reception signal processing of a corresponding frequency, and without using the differential comparator 27, for example, using a digital signal processing circuit. The present invention also includes obtaining the same effects as the above.

[発明の効果] 以上の説明から明らかなように本発明の車載用多目的超
音波計測装置によれば、送受波器から車両の前方向ある
いは前後方向の路面に角度を有して超音波が放射され、
そして反射波に係る受信信号から路面までの直線距離が
得られる。さらに路面の突起物の反射波に係る信号のレ
ベル、例えば、閾値との比較において、車両前方の路面
の突起等の有無、およびその大きさが検出される。さら
に反射波が路面から帰来する時間における直線距離と超
音波の放射角度とから車高を算出し、かつ得られるドッ
プラ周波数をもとに車速が算出される。
[Effects of the Invention] As is apparent from the above description, according to the multi-purpose ultrasonic measuring device for vehicle of the present invention, ultrasonic waves are radiated from the transmitter / receiver at an angle on the road surface in the front direction or the front-back direction of the vehicle. Is
Then, the straight line distance from the received signal related to the reflected wave to the road surface can be obtained. Further, the level of a signal related to a reflected wave of a road surface protrusion, for example, the presence or absence of a road protrusion in front of the vehicle and its size are detected by comparison with a threshold value. Further, the vehicle height is calculated from the straight line distance at the time when the reflected wave returns from the road surface and the emission angle of the ultrasonic wave, and the vehicle speed is calculated based on the obtained Doppler frequency.

さらに、車体の前後方向に等しい放射角度を有して超音
波が放射され、夫々の反射波に係る受信信号のドップラ
周波数を検出し、差のドップラ周波数を求めて、車体の
垂直速度成分が打ち消された車速が得られることを特徴
としている。
Further, ultrasonic waves are radiated with an equal radiation angle in the front-back direction of the vehicle body, the Doppler frequencies of the received signals relating to the respective reflected waves are detected, the difference Doppler frequency is obtained, and the vertical velocity component of the vehicle body is canceled. The feature is that the vehicle speed can be obtained.

これにより、一つの素子あるいは一組の送受信素子から
なる送受波器を用い、比較的簡素な構成のもとに車両の
走行時の前方路面の突起等が検出され、ここでの検出値
をもとにサスペンションの走行時における予測制御が可
能となり、かつ車高ならびに車速が高精度に得られる効
果を奏する。
As a result, by using a transducer consisting of one element or a pair of transmitting and receiving elements, the protrusions etc. on the front road surface when the vehicle is traveling are detected with a relatively simple configuration, and the detected value here is also detected. In addition, it is possible to perform predictive control when the suspension is running and to obtain the vehicle height and the vehicle speed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る車載用多目的超音波計測装置の一
実施例の構成を示すブロック図、 第2図は第1図に示される実施例の振動子と路面間距離
の検出に係る動作説明に供される図、 第3図は第1図に示される実施例のドップラ周波数に係
る動作の時間軸上の波形を示す図、 第4図は第1図に示される実施例のペアビームのドップ
ラ周波数検出に係る動作説明に供される図である。 10……送受波器、12……信号処理部 14……発振器、16……分周器 18……バースト波発生器、20……電力増幅器 22……送受信切換器、24……受信増幅器 26……エンベロープ検波器、27……微分比較器 28……時間/距離変換部、30……PLL回路 32……F−V変換器 34……直距離/高さ演算部 36……感温素子 Ds……突起情報信号 f0……分周信号 Hs……車高情報信号 M……路面、Ma……突起物 Sa……主周波数発振信号 Sb……バースト波信号 Sd……検波信号 Sc……スパイク信号 Si……増幅受信信号 Vs……車速情報信号
FIG. 1 is a block diagram showing the configuration of an embodiment of a vehicle-mounted multipurpose ultrasonic measuring device according to the present invention, and FIG. 2 is an operation relating to detection of a distance between a vibrator and a road surface of the embodiment shown in FIG. FIG. 3 is a diagram provided for explanation, FIG. 3 is a diagram showing a waveform on the time axis of the operation related to the Doppler frequency of the embodiment shown in FIG. 1, and FIG. 4 is a pair beam of the embodiment shown in FIG. It is a figure with which an operation explanation concerning Doppler frequency detection is offered. 10 …… Transmitter / receiver, 12 …… Signal processing unit 14 …… Oscillator, 16 …… Frequency divider 18 …… Burst wave generator, 20 …… Power amplifier 22 …… Transmit / receive switch, 24 …… Reception amplifier 26 …… Envelope detector, 27 …… Differential comparator 28 …… Time / distance converter, 30 ・ ・ ・ PLL circuit 32 …… FV converter 34 …… Direct distance / height calculator 36 …… Temperature sensor Ds …… Projection information signal f 0 …… Division signal Hs …… Vehicle height information signal M …… Road surface, Ma …… Projection Sa …… Main frequency oscillation signal Sb …… Burst wave signal Sd …… Detection signal Sc… … Spike signal Si …… Amplified reception signal Vs …… Vehicle speed information signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】車体に配され、一つの発射周波数の超音波
を前記車体の前後方向に等しい放射角度で、突起を有す
る路面に放射し、かつ反射波を受信する一つの素子ある
いは一組の送受信素子からなる送受波器と、 放射した前記超音波と受信した前記反射波中の前記突起
からの反射波との時間差をもとに、前記突起と前記送受
波器との間の直線距離を検出し、かつ前記反射波のレベ
ルをもとに前記車体前方向の路面の突起の有無と突起の
大きさを検出する突起検出手段と、 この突起検出手段で検出された前記直線距離と前記超音
波の放射角度とから車体から路面までの直下の距離を検
出する車高検出手段と、 車速検出手段とを備え、 この車速検出手段は、前記超音波の発射周波数と前記路
面の前後方向からの反射波の周波数とから前後方向の二
つのドップラ周波数を検出した後、これら二つのドップ
ラ周波数の差のドップラ周波数を求め、この差のドップ
ラ周波数と超音波速度との積を前記発射周波数と前記放
射角度の余弦と定数4との積で割った商を車速として検
出することを特徴とする車載用多目的超音波計測装置。
1. An element or a set of elements arranged on a vehicle body for radiating ultrasonic waves of one emission frequency to a road surface having protrusions at the same emission angle in the front-rear direction of the vehicle body and receiving reflected waves. Based on the time difference between the transmitter / receiver composed of a transmitting / receiving element and the reflected wave from the protrusion in the reflected wave received and the ultrasonic wave emitted, the linear distance between the protrusion and the transmitter / receiver is calculated. Projection detection means for detecting the presence or absence of a projection on the road surface in the front direction of the vehicle and the size of the projection based on the level of the reflected wave; and the linear distance detected by the projection detection means and the The vehicle height detecting means for detecting a distance directly below the vehicle body to the road surface from the emission angle of the sound wave and the vehicle speed detecting means are provided, and the vehicle speed detecting means detects the emission frequency of the ultrasonic wave and the longitudinal direction of the road surface. From the frequency of the reflected wave After detecting the two Doppler frequencies, the Doppler frequency of the difference between these two Doppler frequencies is obtained, and the product of the Doppler frequency of this difference and the ultrasonic velocity is the product of the cosine of the firing frequency and the radiation angle and a constant 4. An on-vehicle multipurpose ultrasonic measuring device characterized by detecting a quotient divided by.
JP2071295A 1990-03-20 1990-03-20 On-vehicle multipurpose ultrasonic measuring device Expired - Fee Related JPH0769421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071295A JPH0769421B2 (en) 1990-03-20 1990-03-20 On-vehicle multipurpose ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071295A JPH0769421B2 (en) 1990-03-20 1990-03-20 On-vehicle multipurpose ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JPH03269388A JPH03269388A (en) 1991-11-29
JPH0769421B2 true JPH0769421B2 (en) 1995-07-31

Family

ID=13456540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071295A Expired - Fee Related JPH0769421B2 (en) 1990-03-20 1990-03-20 On-vehicle multipurpose ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPH0769421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716270B1 (en) * 2015-12-03 2017-03-14 한국과학기술원 The front ground state estimation apparatus and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262118A (en) * 1992-03-17 1993-10-12 Toyota Motor Corp Damping force control device of shock absorber
JPH06230126A (en) * 1993-01-29 1994-08-19 Aisin Seiki Co Ltd On-board ultrasonic measuring device
JP2945230B2 (en) * 1993-02-25 1999-09-06 三菱電機株式会社 Road surface condition detection device
JP3237034B2 (en) * 1993-05-25 2001-12-10 アイシン精機株式会社 In-vehicle ultrasonic measurement equipment
KR20010056696A (en) * 1999-12-16 2001-07-04 박종섭 Device and method for measuring distance using ultrasonic waves
KR100501364B1 (en) * 2002-10-04 2005-07-18 현대자동차주식회사 Apparatus for detecting upset of automobile and method of the same
JP4550434B2 (en) 2004-01-15 2010-09-22 日本碍子株式会社 Cell structure and manufacturing method thereof
JP2008070358A (en) * 2007-08-08 2008-03-27 Hitachi Ltd Traveling control device for vehicle
JP6340713B2 (en) * 2014-03-04 2018-06-13 パナソニックIpマネジメント株式会社 Obstacle detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235084B2 (en) * 1983-10-22 1990-08-08 Merii Suuzan Gaadonaa
JPH0235083B2 (en) * 1983-04-01 1990-08-08 Nippon Kokan Kk KYORYONOKEEBURUSHIKIKASETSUKOHONIOKERUANKAAHOHO

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962736U (en) * 1982-10-20 1984-04-25 株式会社クボタ reaping harvester
JPH0623983Y2 (en) * 1988-08-31 1994-06-22 三菱自動車工業株式会社 Road sensor
JPH0235084U (en) * 1988-08-31 1990-03-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235083B2 (en) * 1983-04-01 1990-08-08 Nippon Kokan Kk KYORYONOKEEBURUSHIKIKASETSUKOHONIOKERUANKAAHOHO
JPH0235084B2 (en) * 1983-10-22 1990-08-08 Merii Suuzan Gaadonaa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101716270B1 (en) * 2015-12-03 2017-03-14 한국과학기술원 The front ground state estimation apparatus and method

Also Published As

Publication number Publication date
JPH03269388A (en) 1991-11-29

Similar Documents

Publication Publication Date Title
US6396435B1 (en) Method for determining the vertical distance between an object and a device with a variable position
JPH0769421B2 (en) On-vehicle multipurpose ultrasonic measuring device
JPH0798375A (en) On-vehicle radar device
US6683533B1 (en) Inter-vehicle distance measuring system and apparatus measuring time difference between each detection time of same road surface condition
US5475620A (en) Ultrasonic measuring system
JPH02287183A (en) Ultrasonic doppler type vehicle ground speed indicator
JP3565862B2 (en) Measuring method of ground speed of a vehicle using radar using reflection of electromagnetic wave on road
JP2932210B2 (en) Automotive radar system
JP3563827B2 (en) In-vehicle measuring equipment
US5239516A (en) Ultrasonic ground speedometer utilizing doppler effect of ultrasonic waves
JP3879966B2 (en) Frequency modulation radar and radar frequency modulation method
JP3631550B2 (en) In-vehicle tilt measuring device and tilt vehicle speed measuring device
US5491648A (en) Ultrasonic measuring system
JPH0419513B2 (en)
JPH0545459A (en) Doppler type ground-vehicle-speed detecting apparatus
JPH0921870A (en) Ground speed detecting device for vehicle
JPS62122812A (en) Road surface sensor for vehicle
JPH09257922A (en) Radio-wave ground speed meter
JP3094792B2 (en) Ground speed detector
JPH02280077A (en) Vehicle attitude detecting device
WO2001027653A1 (en) Radar-based own motor vehicle movement sensor system
JPH068487Y2 (en) Road surface detection device
JPS6293657A (en) Apparatus for detecting state of road surface
JPH0528326B2 (en)
JPS61294383A (en) Speed measuring method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees