JPH09181220A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09181220A
JPH09181220A JP7337499A JP33749995A JPH09181220A JP H09181220 A JPH09181220 A JP H09181220A JP 7337499 A JP7337499 A JP 7337499A JP 33749995 A JP33749995 A JP 33749995A JP H09181220 A JPH09181220 A JP H09181220A
Authority
JP
Japan
Prior art keywords
thermal expansion
insulating substrate
radiator
semiconductor device
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7337499A
Other languages
Japanese (ja)
Other versions
JP3426827B2 (en
Inventor
Mikio Fujii
幹男 藤井
Koyo Hiramatsu
幸洋 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33749995A priority Critical patent/JP3426827B2/en
Publication of JPH09181220A publication Critical patent/JPH09181220A/en
Application granted granted Critical
Publication of JP3426827B2 publication Critical patent/JP3426827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15321Connection portion the connection portion being formed on the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the stress due to the thermal expansion difference between a substrate and a radiator by a method wherein a radiator is made of a copper within a specific range and residual part comprising a sintered body of a low thermal expansion metal and a sintering assistant metal in the thermal expansion coefficient not exceeding a specific value from the room temperature to a specific temperature as well as setting up a specific requirement for the thermal expansion difference from an insulating substrate. SOLUTION: A radiator 7 is junctioned with an insulating substrate 2 using an adhesive 8 and then a semiconductor element 9 is directly fitted to the surface of the radiator 7 to radiate the heat generated from the semiconductor element 9. Such a radiator 7 is composed of 30-80wt.% of copper and the residual part comprising the sintered body of a low thermal expansion coefficient not exceeding 6ppm/C deg. and a sintering assistant metal while setting up the thermal expansion difference from that of the insulating substrate 2 to be ±0.5ppm/C deg.. Through these procedures, the stress due to the thermal expansion difference between the insulating substrate 2 and the radiator 7 can be suppressed thereby enabling this semiconductor device having high radiating characteristics causing no warping and cracking at all to be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子が搭載
されるとともに、熱放散のための放熱体を具備した半導
体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device on which a semiconductor element is mounted and which is provided with a heat radiator for heat dissipation.

【0002】[0002]

【従来技術】半導体素子、とりわけLSIは高集積化、
高速化のために発熱が増加する傾向にある。これら発生
した熱が半導体素子内に蓄積されると、半導体素子内の
回路の誤動作を発生させたり、さらには半導体回路自身
を破壊したりするという問題がある。そこで、従来よ
り、半導体素子から発生する熱を外部に放散するための
放熱体が設けられている。
2. Description of the Related Art Semiconductor devices, especially LSIs, are highly integrated.
Heat generation tends to increase due to speeding up. When the generated heat is accumulated in the semiconductor element, there is a problem that a circuit in the semiconductor element malfunctions or the semiconductor circuit itself is destroyed. Therefore, conventionally, a heat radiator for dissipating the heat generated from the semiconductor element to the outside is provided.

【0003】一方、半導体素子を搭載する半導体装置
は、絶縁基板の内部またはその表面に配線層が形成さ
れ、さらに絶縁基板の表面に半導体素子が搭載されてい
る。高集積半導体素子を搭載する半導体装置において
は、その回路の信頼性の点から絶縁基板として、熱伝導
率が約20W/mKのアルミナ(Al2 3 )などのセ
ラミックスが最も多用されている。熱放散が必要な場合
には、上記の半導体装置にさらに、放熱体が取り付けら
れる。
On the other hand, in a semiconductor device on which a semiconductor element is mounted, a wiring layer is formed inside or on the surface of an insulating substrate, and the semiconductor element is mounted on the surface of the insulating substrate. In a semiconductor device having a highly integrated semiconductor element mounted thereon, ceramics such as alumina (Al 2 O 3 ) having a thermal conductivity of about 20 W / mK are most frequently used as an insulating substrate in terms of the reliability of the circuit. When heat dissipation is necessary, a radiator is further attached to the above semiconductor device.

【0004】このような放熱体材料としては、高熱伝導
性を有することが求められるが、熱伝導率の高い材料と
しては、銅(熱伝導率393W/m・K)等が知られて
いるが、放熱体を取り付ける絶縁基板との熱膨張差が大
きいと基板にクラックが発生したり、半導体素子の封止
構造における気密性が損なわれるため、放熱体として、
約10重量%の銅を含む、銅−タングステン焼結体(熱
伝導率 約180W/mK、熱膨張率 約7ppm/
℃)が最も広く用いられている。
Such a radiator material is required to have high thermal conductivity, and copper (thermal conductivity 393 W / mK) or the like is known as a material having high thermal conductivity. , If the thermal expansion difference with the insulating substrate to which the heat radiator is attached is large, cracks may occur in the substrate, or the airtightness of the sealing structure of the semiconductor element may be impaired.
A copper-tungsten sintered body containing about 10% by weight of copper (thermal conductivity of about 180 W / mK, thermal expansion coefficient of about 7 ppm /
(° C) is the most widely used.

【0005】一方、半導体のさらなる高速化、高周波数
化にともない、半導体素子と外部回路の間で高速に信号
をやりとりする必要性が増している。そのためには半導
体装置内を信号が伝送される際の損失をより小さくする
必要があるが、従来より、アルミナ質セラミックスとの
同時焼成により基板を作製する場合には、配線層を高融
点金属のタングステンあるいはモリブデン等により形成
されるが、このタングステンやモリブデンは、導体抵抗
が高く、特に高周波においては導体抵抗による損失が大
きいという問題がある。
On the other hand, with the further increase in speed and frequency of semiconductors, there is an increasing need to exchange signals at high speed between semiconductor elements and external circuits. For that purpose, it is necessary to further reduce the loss when a signal is transmitted in the semiconductor device, but conventionally, when a substrate is produced by co-firing with alumina ceramics, the wiring layer is made of refractory metal. Although it is formed of tungsten, molybdenum, or the like, tungsten or molybdenum has a high conductor resistance, and there is a problem that loss due to the conductor resistance is large especially at high frequencies.

【0006】そこで、最近では、導体として良電気伝導
性を有する銅、金などの低抵抗金属を使用する半導体装
置が増加している。これにともない、絶縁基板材料とし
て、アルミナ質セラミックスに代わり、有機樹脂を主成
分とする材料や、これらの低抵抗金属と同時焼成が可能
な材料として、有機樹脂を主成分とする複合材料や焼成
温度が1000℃以下のガラス−セラミックス複合材料
が多く用いられつつある。
Therefore, recently, an increasing number of semiconductor devices use low-resistance metals such as copper and gold having good electrical conductivity as conductors. Along with this, as an insulating substrate material, a material containing organic resin as a main component instead of alumina ceramics, or a composite material containing organic resin as a main component or a material that can be co-fired with these low resistance metals A glass-ceramic composite material having a temperature of 1000 ° C. or lower is being widely used.

【0007】加えて、半導体装置を有機樹脂を主成分と
する外部電気回路基板に実装した場合、特に半導体装置
が大集積化により大型化した場合、半導体装置における
絶縁基板と、外部電気回路基板との熱膨張差に起因して
半導体装置の実装時あるいが実装後の過酷な使用条件下
で、熱サイクルが付加された時に、半導体装置と外部電
気回路基板との電気的接続不良が発生するという問題が
提起されている。
In addition, when the semiconductor device is mounted on an external electric circuit board containing an organic resin as a main component, particularly when the semiconductor device becomes large due to large integration, the insulating substrate in the semiconductor device and the external electric circuit board Due to the difference in thermal expansion between the semiconductor device and the external electrical circuit board when the semiconductor device is mounted or under a severe use condition after mounting and a thermal cycle is applied. Has been raised.

【0008】このような問題に対しては、半導体装置に
おける絶縁基板の熱膨張特性を、有機樹脂を主成分とす
る外部電気回路基板の熱膨張係数に近似させることが提
案さている。通常、外部電気回路基板の熱膨張係数は9
〜14ppm/℃程度であるため、絶縁基板としても同
様に9〜14ppm/℃程度が要求される。
[0008] With respect to such a problem, it has been proposed that the thermal expansion characteristics of the insulating substrate in the semiconductor device be approximated to the thermal expansion coefficient of the external electric circuit substrate containing organic resin as a main component. Generally, the coefficient of thermal expansion of the external electric circuit board is 9
Since it is about 14 ppm / ° C, about 9-14 ppm / ° C is also required as an insulating substrate.

【0009】[0009]

【発明が解決しようとする課題】熱膨張係数が9〜14
ppm/℃程度の絶縁材料としては、アルミナ質セラミ
ックスでは得ることが難しいため、ガラスセラミックス
や有機樹脂を主成分とする複合材料により形成すること
が望ましいが、このような有機樹脂を主成分とする複合
材料やガラス−セラミックス複合材料は、アルミナ質セ
ラミックスに比較して熱伝導率が数W/m・k程度と低
いために、半導体装置の絶縁基板として用いた場合に
は、搭載する半導体素子からの発熱を充分に放散するこ
とができないために、高集積化、高速化された半導体素
子を搭載する半導体装置の絶縁基板として適用できない
ものであった。
The coefficient of thermal expansion is 9-14.
Since it is difficult to obtain alumina / ceramics as an insulating material of about ppm / ° C., it is desirable to use glass ceramics or a composite material containing an organic resin as a main component, but such an organic resin is used as a main component. Since the composite material and the glass-ceramic composite material have a low thermal conductivity of about several W / m · k as compared with the alumina ceramics, when used as an insulating substrate of a semiconductor device, the composite material and glass-ceramic composite material are Since it is not possible to sufficiently dissipate the heat generated by the above, it cannot be applied as an insulating substrate of a semiconductor device mounting a highly integrated and high speed semiconductor element.

【0010】また、熱放散性を改善する方法としては、
高熱伝導性を有する放熱体を取り付けることが望まれる
が、従来から最も多用されている約10重量%銅を含む
銅−タングステン焼結体では、有機樹脂を主成分とする
複合材料やガラス−セラミックス複合材料からなる絶縁
基板とは熱膨張係数が大きく異なるために、熱膨張差に
起因する応力によって基板にクラックや反りが発生する
等の問題があった。
As a method for improving the heat dissipation property,
Although it is desired to attach a heat radiator having high thermal conductivity, a copper-tungsten sintered body containing approximately 10% by weight of copper, which has been most frequently used in the past, is a composite material or glass-ceramics containing an organic resin as a main component. Since the thermal expansion coefficient is largely different from that of the insulating substrate made of the composite material, there is a problem that the substrate is cracked or warped due to the stress caused by the thermal expansion difference.

【0011】しかも、ガラスセラミックス複合材料を配
線基板とする場合は、アルミナセラミックスの場合と同
様に靭性が低いので、熱膨張率が一致しないとクラック
が生じる可能性が高い。また有機樹脂を主成分とする複
合材料においては、材料の靭性は高いものの、逆に剛性
が低いために、熱膨張差に起因する応力によってパッケ
ージの反りが生じるなどの不具合が発生する。
Moreover, when the glass-ceramic composite material is used as the wiring board, since the toughness is low as in the case of the alumina ceramics, cracks are likely to occur if the thermal expansion coefficients do not match. Further, in a composite material containing an organic resin as a main component, although the material has high toughness, on the contrary, since the rigidity is low, a problem such as warpage of the package occurs due to stress due to the difference in thermal expansion.

【0012】このような熱膨張係数が9〜14ppm/
℃の高い熱膨張特性を有する絶縁基板を具備する半導体
装置における熱放散性の改善については、具体的に検討
されておらず、まして、熱膨張係数が9〜14ppm/
℃の高い熱膨張特性を有する絶縁基板に取り付ける放熱
体についても具体的に何ら検討されていない。
Such a thermal expansion coefficient is 9 to 14 ppm /
Improvement of heat dissipation in a semiconductor device including an insulating substrate having a high thermal expansion characteristic of high temperature has not been specifically examined, let alone a thermal expansion coefficient of 9 to 14 ppm /
No specific study has been made on a heat radiator attached to an insulating substrate having a high thermal expansion characteristic of ℃.

【0013】従って、本発明は、熱膨張係数が9〜14
ppm/℃の高い熱膨張特性を有する絶縁基板を具備す
る半導体装置における熱放散性を改善した半導体装置を
提供することを目的とするものである。
Therefore, according to the present invention, the coefficient of thermal expansion is 9 to 14.
An object of the present invention is to provide a semiconductor device having improved heat dissipation in a semiconductor device including an insulating substrate having a high thermal expansion characteristic of ppm / ° C.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記の問
題点に対して、検討を重ねた結果、有機樹脂を主成分と
する複合材料やガラス−セラミックス複合材料の強度が
これまでのアルミナ質セラミックスに比較して小さいこ
とに起因し、この絶縁基板に放熱体を取り付ける場合、
放熱体と絶縁基板との熱膨張差を小さく制御することが
必要であること、また、絶縁基板の熱膨張特性との差が
小さく、しかも高熱伝導性を有する材料としては、銅を
比較的多量に含み、これと室温から熱膨張係数が小さい
材料および焼結助剤と組み合わせた材料が最もよいこと
を知見した。
As a result of repeated studies on the above problems, the inventors of the present invention have found that the strength of a composite material containing an organic resin as a main component or the strength of a glass-ceramic composite material has not been improved. Due to its small size compared to alumina ceramics, when mounting a radiator on this insulating substrate,
It is necessary to control the difference in thermal expansion between the heat radiator and the insulating substrate to be small, and the material having a small difference in thermal expansion characteristics from the insulating substrate and having high thermal conductivity is copper in a relatively large amount. It has been found that the best combination is a material having a small coefficient of thermal expansion from room temperature and a material combined with a sintering aid.

【0015】即ち、本発明は、配線層を有し、且つ室温
から400℃における熱膨張係数が9〜14ppm/℃
の絶縁基板と、該絶縁基板の表面に搭載された半導体素
子と、前記絶縁基板に接合された放熱体とを具備してな
る半導体装置において、前記放熱体が、銅を30〜80
重量%と、残部が室温から400℃における熱膨張係数
が6ppm/℃以下の低熱膨張金属と、焼結助剤金属と
の焼結体からなるとともに、前記絶縁基板との熱膨張差
が±0.5ppm/℃であることを特徴とするものであ
り、特に、前記絶縁基板が、有機樹脂を主成分とする複
合材料やガラス−セラミックス複合材料からなり、前記
配線層が銅からなること特徴とするものである。
That is, the present invention has a wiring layer and has a coefficient of thermal expansion from room temperature to 400 ° C. of 9 to 14 ppm / ° C.
In an insulating substrate, a semiconductor element mounted on the surface of the insulating substrate, and a radiator bonded to the insulating substrate, the radiator dissipating copper from 30 to 80.
% By weight, and the balance being a sintered body of a low thermal expansion metal having a thermal expansion coefficient of 6 ppm / ° C. or less at room temperature to 400 ° C. and a sintering aid metal, and having a thermal expansion difference of ± 0 with the insulating substrate. In particular, the insulating substrate is made of a composite material containing an organic resin as a main component or a glass-ceramic composite material, and the wiring layer is made of copper. To do.

【0016】[0016]

【作用】本発明によれば、半導体素子を搭載した半導体
装置において、絶縁基板の室温から400℃における熱
膨張係数を9〜14ppm/℃に制御することにより、
有機樹脂を主成分とする外部電気回路基板との熱膨張差
を小さくできるために、半導体装置をこの外部電気回路
基板に実装する時、あるいは実装後に熱サイクルが付与
された場合においても、熱膨張差に起因する接続不良を
生じることがなく、高信頼性の実装が可能となる。特
に、半導体装置の外部電気回路基板への接続端子がリー
ドピンでなく、半導体装置の裏面に形成された半田等や
金具からなり、半田等により表面実装するような半導体
装置の場合、特に熱膨張差による応力の発生が顕著であ
るため、特に上記のような高熱膨張係数の絶縁基板を用
いることが有効である。
According to the present invention, in a semiconductor device mounted with a semiconductor element, the thermal expansion coefficient of the insulating substrate at room temperature to 400 ° C. is controlled to 9 to 14 ppm / ° C.
Since the difference in thermal expansion from the external electric circuit board containing organic resin as a main component can be made small, the thermal expansion does not occur even when the semiconductor device is mounted on this external electric circuit board or when a thermal cycle is applied after the mounting. It is possible to mount with high reliability without causing connection failure due to the difference. Particularly, in the case of a semiconductor device in which the connection terminals to the external electric circuit board of the semiconductor device are not lead pins but solder or metal fittings formed on the back surface of the semiconductor device and are surface-mounted by solder, etc. Since stress is significantly generated by the above, it is particularly effective to use an insulating substrate having a high coefficient of thermal expansion as described above.

【0017】また、本発明によれば、上記のような高熱
膨張係数の絶縁基板が有機樹脂を主成分とする複合材料
やガラス−セラミックス複合材料から構成した場合、熱
伝導率が低いために放熱体を取り付けることが必須とな
るが、このような放熱体として、銅を30〜80重量%
と、残部が室温から400℃における熱膨張係数が6p
pm/℃以下の低熱膨張金属と、焼結助剤金属との焼結
体により構成する。このように銅の含有量を高めること
により放熱体の熱伝導率を高めることができ、半導体素
子の熱の放熱を高めることができる。
Further, according to the present invention, when the insulating substrate having a high coefficient of thermal expansion as described above is made of a composite material containing an organic resin as a main component or a glass-ceramic composite material, the thermal conductivity is low, so that the heat radiation is reduced. It is essential to attach a body, but as such a heat radiator, copper is 30 to 80% by weight.
And the balance has a thermal expansion coefficient of 6p from room temperature to 400 ° C.
It is composed of a sintered body of a low thermal expansion metal of pm / ° C. or less and a sintering aid metal. By increasing the copper content in this way, the thermal conductivity of the radiator can be increased, and the heat dissipation of the semiconductor element can be increased.

【0018】また、絶縁基板が有機樹脂を主成分とする
複合材料やガラス−セラミックス複合材料は、それ自体
と強度が大きくないために熱膨張差に起因する応力によ
って、容易にクラックが発生したり、封止構造の気密性
が損なわれる可能性が高い。
Further, since the insulating substrate is a composite material containing an organic resin as a main component or the glass-ceramic composite material is not so strong as itself, a stress caused by a difference in thermal expansion easily causes cracks. The airtightness of the sealing structure is likely to be impaired.

【0019】そこで、放熱体と前記絶縁基板との熱膨張
差を±0.5ppm/℃以下に制御することにより、応
力の発生を抑制し、半導体装置の信頼性を高めることが
できるのである。
Therefore, by controlling the difference in thermal expansion between the radiator and the insulating substrate to be ± 0.5 ppm / ° C. or less, it is possible to suppress the generation of stress and enhance the reliability of the semiconductor device.

【0020】[0020]

【発明の実施の形態】本発明の半導体装置と、外部電気
回路基板への実装構造の概略図を図1に示した。図1に
よれば、半導体装置1の絶縁基板2の内部には配線層3
が形成され、配線層3の一部はスルーホール4として形
成される。また、絶縁基板2の一部には、キャビティ5
が形成され、キャビティ5の内部には半導体素子が収納
される。キャビティ5は、蓋体6により気密に封止され
ている。
FIG. 1 is a schematic view of a semiconductor device of the present invention and a mounting structure on an external electric circuit board. According to FIG. 1, the wiring layer 3 is provided inside the insulating substrate 2 of the semiconductor device 1.
Are formed, and a part of the wiring layer 3 is formed as a through hole 4. In addition, the cavity 5 is provided in a part of the insulating substrate 2.
Is formed, and a semiconductor element is housed inside the cavity 5. The cavity 5 is hermetically sealed by the lid 6.

【0021】また、この半導体装置1には放熱体7が取
り付けられている。この放熱体7は、絶縁基板2に接着
剤8により接合され、放熱体7の表面には半導体素子9
が直接取り付けられており、半導体素子9から発生する
熱を放熱する。
A heat radiator 7 is attached to the semiconductor device 1. The radiator 7 is bonded to the insulating substrate 2 with an adhesive 8, and the semiconductor element 9 is provided on the surface of the radiator 7.
Are directly attached to radiate heat generated from the semiconductor element 9.

【0022】なお、半導体装置1の下面には、外部電気
回路基板と接続するための端子電極10が形成されてい
る。なお、この端子電極10は、半導体素子9と配線層
3を通じて電気的に接続されている。この端子電極10
は、図1によれば、半田からなるボール状電極である。
A terminal electrode 10 for connecting to an external electric circuit board is formed on the lower surface of the semiconductor device 1. The terminal electrode 10 is electrically connected to the semiconductor element 9 through the wiring layer 3. This terminal electrode 10
1 is a ball-shaped electrode made of solder according to FIG.

【0023】この半導体装置1を外部電気回路基板11
に実装するには、外部電気回路基板11の表面に形成さ
れた外部配線層12と半田13により実装される。ま
た、この外部電気回路基板11は、有機樹脂を主体とす
る複合材料から構成され、具体的には、ガラスエポキシ
銅張基板等からなり、その熱膨張係数は、室温から40
0℃において9〜14ppm/℃程度である。
The semiconductor device 1 is connected to the external electric circuit board 11
The external wiring layer 12 and the solder 13 formed on the surface of the external electric circuit board 11 are used for mounting. The external electric circuit board 11 is composed of a composite material mainly composed of an organic resin, specifically, a glass epoxy copper clad board or the like, and its coefficient of thermal expansion is from room temperature to 40.
It is about 9 to 14 ppm / ° C at 0 ° C.

【0024】本発明によれば、上記の半導体装置におい
て、絶縁基板2は、室温から400℃における熱膨張係
数が9〜14ppm/℃の絶縁体から構成される。この
絶縁基板2の熱膨張係数を上記の範囲に限定したのは、
この範囲から逸脱すると、外部電気回路基板11との熱
膨張差により半導体装置の実装時、または実装後の熱サ
イクル付加時に電気的接続不良が生じる場合があり、信
頼性を損ねるためである。
According to the present invention, in the above semiconductor device, the insulating substrate 2 is made of an insulator having a coefficient of thermal expansion of 9 to 14 ppm / ° C. from room temperature to 400 ° C. The reason why the thermal expansion coefficient of the insulating substrate 2 is limited to the above range is that
If it deviates from this range, electrical connection failure may occur at the time of mounting the semiconductor device or at the time of applying a heat cycle after mounting due to the difference in thermal expansion with the external electric circuit board 11, and this will reduce the reliability.

【0025】このような熱膨張特性を有する材料として
は、熱膨張係数が上記の範囲を満足するものであれば、
有機樹脂を主成分とする複合材料、セラミックス、ガラ
ス−セラミックス複合材料のいずれであってもよいが、
半導体装置の配線層を銅配線により構成する場合には、
とりわけ、有機樹脂を主成分とする複合材料やガラスセ
ラミックス複合材料が好適である。
As a material having such a thermal expansion characteristic, if the coefficient of thermal expansion satisfies the above range,
It may be any of a composite material containing an organic resin as a main component, ceramics, and a glass-ceramic composite material,
When the wiring layer of the semiconductor device is composed of copper wiring,
Above all, a composite material containing an organic resin as a main component and a glass ceramic composite material are preferable.

【0026】このような特性を有する有機樹脂を主成分
とする複合材料としては、ガラス−エポキシ系複合材料
等が挙げられる。なお、この有機樹脂を主成分とする複
合材料は、それ自体の靱性が低いことから、内部に配設
される銅配線層の配線密度によって、熱膨張係数が変化
する。
Examples of the composite material containing an organic resin as a main component having such characteristics include a glass-epoxy composite material. Since the composite material containing the organic resin as a main component has low toughness, the coefficient of thermal expansion changes depending on the wiring density of the copper wiring layer provided inside.

【0027】一方、上記のような特性を有するガラスセ
ラミックス複合材料としては、特願平7−195206
号、特願平7−283832号にて提案したように、L
2Oを5〜30重量%の割合で含有するリチウム珪酸
ガラスやNa2 O、Al2 3 を含有するソーダアルミ
ニウム珪酸ガラス、室温から400℃までの熱膨張係数
が6ppm/℃以上のセラミックフィラーとから構成さ
れるものが挙げられる。室温から400℃までの熱膨張
係数が6ppm/℃以上のセラミックフィラーとして
は、フォルステライト、クリストバライト、クウォー
ツ、スピネル、ネフェリン、アルミナ、ペタライト、エ
ンスタタイト等が挙げられる。
On the other hand, as a glass-ceramic composite material having the above characteristics, Japanese Patent Application No. 7-195206 is available.
No., as proposed in Japanese Patent Application No. 7-283832.
Lithium silicate glass containing 5 to 30% by weight of i 2 O, soda aluminum silicate glass containing Na 2 O and Al 2 O 3, and ceramic having a thermal expansion coefficient of 6 ppm / ° C or more from room temperature to 400 ° C. Examples include those composed of a filler. Examples of the ceramic filler having a thermal expansion coefficient of 6 ppm / ° C. or higher from room temperature to 400 ° C. include forsterite, cristobalite, quartz, spinel, nepheline, alumina, petalite, enstatite and the like.

【0028】また、配線層としては、W、Mo、Mo−
Mn、Cu、Ag、Au等が挙げられるが、配線層とし
ての信頼性の点、および高周波用としてはCuが最も望
ましく、配線層は、絶縁基板と同時焼成によって形成さ
れることが多層化の上で望ましい。
As the wiring layer, W, Mo, Mo-
Examples thereof include Mn, Cu, Ag, Au, etc., but Cu is most preferable in terms of reliability as a wiring layer and for high frequencies, and the wiring layer may be formed by co-firing with an insulating substrate. Desirable above.

【0029】一方、放熱体としては、銅を30〜80重
量%と、残部が室温から400℃における熱膨張係数が
6ppm/℃以下の低熱膨張金属と、焼結助剤金属との
合金からなる。また、前記絶縁基板が、有機樹脂を主体
する複合材料や、ガラスセラミックス複合材料からなる
場合、それ自体の熱伝導率は低いために半導体装置とし
ての放熱体の熱伝導性はより高いものが要求される。従
って、望ましくは、放熱体の熱伝導率は150W/m・
k以上、特に200W/m・k以上であることが望まし
い。
On the other hand, the heat radiating body is made of an alloy of 30 to 80% by weight of copper, the balance being a low thermal expansion metal having a thermal expansion coefficient of 6 ppm / ° C. or less at room temperature to 400 ° C. and a sintering aid metal. . In addition, when the insulating substrate is made of a composite material mainly composed of an organic resin or a glass ceramic composite material, the thermal conductivity of the semiconductor substrate is low, and thus a heat radiator of a semiconductor device is required to have higher thermal conductivity. To be done. Therefore, it is desirable that the heat conductivity of the radiator be 150 W / m.
It is desirable that it is k or more, especially 200 W / m · k or more.

【0030】なお、銅の含有量を上記の範囲に限定した
のは、30重量%より少ないと、150W/m・k以上
の熱伝導率が得られずに本発明の半導体装置に対する放
熱体としての機能が不十分となり、80重量%を越える
と熱膨張係数を上記の範囲に制御することが困難となる
ためである。
The copper content is limited to the above range when the content is less than 30% by weight, the thermal conductivity of 150 W / m · k or more cannot be obtained, and the copper is used as a radiator for the semiconductor device of the present invention. This is because the above function becomes insufficient, and if it exceeds 80% by weight, it becomes difficult to control the thermal expansion coefficient within the above range.

【0031】また、熱膨張係数が6ppm/℃以下の金
属は、銅の熱膨張係数が非常に大きいために、放熱体の
熱膨張係数を上記のように調整するための必須の成分で
あり、6ppm/℃より大きい金属を選択すると、熱膨
張係数を上記の範囲に制御するためには、銅の量を減ら
さねばならないために、放熱体としての熱伝導率を高め
ることができないためである。なお、焼結助剤は主成分
に応じて適切に選択すれば良い。
A metal having a coefficient of thermal expansion of 6 ppm / ° C. or less is an essential component for adjusting the coefficient of thermal expansion of the radiator as described above, because the coefficient of thermal expansion of copper is very large. This is because if a metal having a content of more than 6 ppm / ° C. is selected, the amount of copper must be reduced in order to control the thermal expansion coefficient within the above range, so that the thermal conductivity as a radiator cannot be increased. The sintering aid may be appropriately selected according to the main component.

【0032】例えば、銅に対して、熱膨張係数が6pp
m/℃以下の金属としてタングステンを選択した場合、
焼結助剤金属としては、鉄、ニッケル、コバルトなどの
鉄族元素が最適である。その他、熱膨張係数が6ppm
/℃以下の金属としては、モリブデン等が挙げられ、焼
結助剤金属としては、Ni等の鉄族金属等が最適であ
る。
For example, the coefficient of thermal expansion is 6 pp for copper.
When tungsten is selected as the metal of m / ° C or less,
As the sintering aid metal, iron group elements such as iron, nickel and cobalt are most suitable. In addition, the thermal expansion coefficient is 6ppm
Examples of the metal having a temperature of / ° C. or lower include molybdenum and the like, and the sintering aid metal is most preferably an iron group metal such as Ni.

【0033】本発明における放熱体は、上記金属成分の
組成によって、放熱体焼結体の室温から400℃までの
熱膨張係数の前記絶縁基板との熱膨張差が±0.5pp
m/℃、特に±0.3ppm/℃以下となるように調整
される。本発明の放熱体は、粉末冶金により作製される
ものであり、各金属成分がそれぞれ粒子分散した組織か
ら構成されるために、これらの複合材料の熱膨張係数α
は、一般に次の数1で容易に計算することができる。
In the heat radiator of the present invention, the difference in thermal expansion coefficient of the thermal expansion body from the room temperature to 400 ° C. of the insulating substrate is ± 0.5 pp, depending on the composition of the metal components.
m / ° C., especially ± 0.3 ppm / ° C. or less. The heat radiator of the present invention is produced by powder metallurgy, and since each metal component is composed of a structure in which particles are dispersed, the thermal expansion coefficient α of these composite materials is
Can generally be easily calculated by the following equation 1.

【0034】[0034]

【数1】 [Equation 1]

【0035】また、個々の材料の体積弾性率、剛性率が
著しく異なることのない場合には、次の数2で近似する
ことができる。
If the bulk modulus and the rigidity of the individual materials are not significantly different, the following equation 2 can be used for approximation.

【0036】[0036]

【数2】 [Equation 2]

【0037】この数1あるいは数2あるいはこの式に準
じた実験式を作製することにより、熱膨張係数を絶縁基
板に正確に一致させることのできる放熱体材料を容易に
決定することができる。
By preparing the Mathematical formula 1 or the Mathematical formula 2 or an empirical formula based on this formula, it is possible to easily determine a radiator material that can exactly match the thermal expansion coefficient with the insulating substrate.

【0038】なお、放熱体を半導体装置に絶縁基板に取
り付ける方法としては、エポキシ系の有機樹脂による接
着や、半田による接合等でも可能である。また、放熱体
に半導体素子を取り付ける場合には、放熱体の熱膨張係
数が大きくても、半導体素子自体が小さいために熱膨張
差による応力も大きくなく、問題となることはないが、
信頼性の点からは、エポキシ系。ポリイミド系の有機系
の樹脂の接着剤あるいはこれにAgなどの金属を配合し
たものにより接着することにより、応力が発生した場合
においても接着層により応力が緩和される。
As a method of attaching the heat radiator to the insulating substrate on the semiconductor device, adhesion with an epoxy-based organic resin, joining with solder, or the like is also possible. In addition, when a semiconductor element is attached to the heat radiator, even if the thermal expansion coefficient of the heat radiator is large, the stress due to the difference in thermal expansion is not large because the semiconductor element itself is small, so there is no problem.
From the point of reliability, epoxy type. By adhering with a polyimide-based organic resin adhesive or a compound in which a metal such as Ag is mixed, the stress is relieved by the adhesive layer even when stress is generated.

【0039】上記の実施の形態では、接続端子がボール
状の半田により形成される場合について述べたが、上記
以外にリードレスチップキャリア、クワッドフラットパ
ッケージのように、外部電気回路基板に対して表面実装
されるタイプの接続端子であってもよく、また、ピング
リッドアレイの様にリードタイプの接続端子であっても
よい。
In the above embodiment, the case where the connection terminal is formed by ball-shaped solder has been described, but in addition to the above, the surface of the external electric circuit board is different from that of the leadless chip carrier or the quad flat package. It may be a type of connection terminal to be mounted, or a lead type connection terminal such as a pin grid array.

【0040】[0040]

【実施例】本発明による図1に示す半導体装置を具体的
に製造した。なお、基板の外辺寸法は5cm×5cm、
キャビティ内寸法 2cm×2cm、基板厚み3mmの
寸法とし、放熱体は3cm×3cm×5mmの寸法とし
た。
EXAMPLE A semiconductor device shown in FIG. 1 according to the present invention was specifically manufactured. The outer dimensions of the substrate are 5 cm × 5 cm,
The inside dimensions of the cavity were 2 cm × 2 cm, the substrate thickness was 3 mm, and the radiator was 3 cm × 3 cm × 5 mm.

【0041】(絶縁基板)絶縁基板としては、ガラス−
エポキシ複合材料を絶縁基板として、Cuを内部配線と
して、絶縁基板内への配線密度の異なる複数の基板を作
製し、室温から400℃までの熱膨張係数が12.7p
pm/℃、13.1ppm/℃、13.7ppm/℃の
3種類の配線基板を作製した。
(Insulating Substrate) As the insulating substrate, glass-
A plurality of substrates having different wiring densities into the insulating substrate were prepared by using the epoxy composite material as the insulating substrate and Cu as the internal wiring, and the thermal expansion coefficient from room temperature to 400 ° C. was 12.7 p.
Three types of wiring boards of pm / ° C, 13.1 ppm / ° C, and 13.7 ppm / ° C were produced.

【0042】また、ガラスセラミック複合材料として、
表1に示すような種々の材料を用いた。そして、これら
の組成物を用いてドクターブレード法によりグリーンシ
ートを作製した後、シートの表面に銅ペーストを塗布し
て複数層積層した後、900〜1000℃で同時焼成し
た。また、基板の底面には、内部配線層との接続され
た、高温半田からなるボール状の端子電極を取付けた。
As the glass ceramic composite material,
Various materials as shown in Table 1 were used. Then, a green sheet was produced by a doctor blade method using these compositions, a copper paste was applied to the surface of the sheet to laminate a plurality of layers, and then the sheets were simultaneously fired at 900 to 1000 ° C. Further, ball-shaped terminal electrodes made of high-temperature solder, which were connected to the internal wiring layer, were attached to the bottom surface of the substrate.

【0043】[0043]

【表1】 [Table 1]

【0044】(放熱体の作製)放熱体として、銅、低熱
膨張率の金属としてタングステン、焼結助剤金属として
ニッケルを選択した。銅粉末とタングステン粉末とニッ
ケル粉末を所定量だけ調合し、粉末100重量部に対し
てナイロンボールを120重量部加え、乾式にてボール
ミル中で8時間混合を行った。混合を行った粉末を所定
の金型に充填し、1平方cmあたり3tの荷重に調整し
た1軸プレスにて加圧を行い成形体を得た。その後、成
形体を水素12.5体積%、窒素87.5体積%のフォ
ーミングガス気流中で、組成に応じて1200〜135
0℃の炉中に2時間保持し、材料を焼結させた。この焼
結体を所定寸法に切りだした後、上下面を研磨し、放熱
体とした。そして、これらの放熱体を上記のガラス−エ
ポキシ複合材料製の基板に対してはエポキシ樹脂系接着
剤により、ガラスセラミック複合材料製の配線基板に対
しては高温の半田付けにて接合した。また、半導体素子
の放熱体への取付は、エポキシ系樹脂接着剤により行っ
た。
(Preparation of Heat Dissipator) Copper was selected as the heat dissipator, tungsten was selected as the metal having a low coefficient of thermal expansion, and nickel was selected as the sintering aid metal. A predetermined amount of copper powder, tungsten powder and nickel powder were mixed, 120 parts by weight of nylon balls were added to 100 parts by weight of the powder, and the mixture was dry-type mixed in a ball mill for 8 hours. The mixed powder was filled in a predetermined mold and pressed with a uniaxial press adjusted to a load of 3 t per 1 cm 2 to obtain a molded body. Then, the molded body is subjected to a forming gas flow of 12.5% by volume of hydrogen and 87.5% by volume of nitrogen, and the amount of 1200 to 135 depending on the composition.
The material was sintered by holding it in an oven at 0 ° C for 2 hours. After cutting this sintered body into a predetermined size, the upper and lower surfaces were polished to obtain a radiator. Then, these radiators were bonded to the above-mentioned glass-epoxy composite material substrate by an epoxy resin adhesive and to the glass-ceramic composite material wiring board by high-temperature soldering. Further, the semiconductor element was attached to the radiator by an epoxy resin adhesive.

【0045】(試験)上記のようにして作製された半導
体装置に対して、基板自体の反りなどを含む寸法変化
量、および放熱体と絶縁基板との接合部周辺でのクラッ
クの有無について調べた。
(Test) For the semiconductor device manufactured as described above, the amount of dimensional change including the warp of the substrate itself and the presence or absence of cracks around the joint between the radiator and the insulating substrate were examined. .

【0046】また、この半導体装置をガラスエポキシ樹
脂の表面に銅箔の配線導体が形成された複合基板からな
る外部電気回路基板(0〜400℃熱膨張係数13pp
m/℃)に半田により実装した後、これを−40℃と1
25℃の恒温槽に15分/15分の1サイクルとして、
熱サイクル試験を行い電気抵抗に変化が現れるまでのサ
イクル数を表2に示した。
Further, this semiconductor device is provided with an external electric circuit board (0 to 400 ° C. having a thermal expansion coefficient of 13 pp, which is a composite board in which wiring conductors of copper foil are formed on the surface of glass epoxy resin.
m / ° C) by soldering and then -40 ° C and 1
In a constant temperature bath at 25 ° C, cycle 15 minutes / 15 minutes,
Table 2 shows the number of cycles until a change in the electric resistance was observed in the heat cycle test.

【0047】[0047]

【表2】 [Table 2]

【0048】表2からも明らかなように、絶縁基板と放
熱体との熱膨張差の絶対値が0.5ppm/℃よりも大
きい試料No.2、3、6、8では、いずれも、反りが大
きくなったり、絶縁基板にクラックが発生する等を弊害
が生じた。また、絶縁基板としての熱膨張係数が7.5
ppm/℃の試料No.10では、外部電気回路基板との
熱膨張差が起因する応力により、熱サイクル試験で電気
抵抗の変化が認められ、十分な信頼性の高いものではな
かった。
As is clear from Table 2, in samples Nos. 2, 3, 6, and 8 in which the absolute value of the difference in thermal expansion between the insulating substrate and the radiator is larger than 0.5 ppm / ° C. Has a bad effect such as a large size and cracks on the insulating substrate. Further, the thermal expansion coefficient of the insulating substrate is 7.5.
In sample No. 10 of ppm / ° C., due to stress caused by the difference in thermal expansion from the external electric circuit board, a change in electric resistance was observed in the thermal cycle test, and the reliability was not sufficiently high.

【0049】また、放熱体の組成において、Cuの含有
量が30重量%より少ない試料No.3、13では、熱膨
張係数が9ppm/℃より小さくなるか、または熱伝導
率が200W/m・Kより低くなり、80重量%を越え
る試料No.9では、熱膨張係数が14ppm/℃を越え
るものとなった。
Regarding the composition of the heat radiator, in samples No. 3 and 13 in which the Cu content is less than 30% by weight, the coefficient of thermal expansion is smaller than 9 ppm / ° C., or the thermal conductivity is 200 W / m.multidot. The sample No. 9, which has a temperature lower than K and exceeds 80% by weight, has a coefficient of thermal expansion exceeding 14 ppm / ° C.

【0050】これに対して、絶縁基板の熱膨張係数が9
〜14ppm/℃の範囲で、放熱体との熱膨張差を絶対
値で0.5ppm/℃以下とすることにより、反りやク
ラックの発生が解消されると同時に、外部電気回路基板
への実装においても熱サイクルに対して高い信頼性を有
するものであった。しかも、放熱体として30〜80重
量%のCuを含有するものは、いずれも200W/m・
K以上の高い熱伝導率−示した。
On the other hand, the thermal expansion coefficient of the insulating substrate is 9
In the range of up to 14 ppm / ° C, the difference in thermal expansion with the radiator is set to 0.5 ppm / ° C or less in absolute value, which eliminates the occurrence of warpage and cracks and at the same time when mounting on an external electric circuit board. Also had high reliability for thermal cycling. Moreover, the heat radiator containing 30 to 80% by weight of Cu is 200 W / m.
High thermal conductivity of K or higher-shown.

【0051】[0051]

【発明の効果】以上詳述したように、本発明によれば、
高熱膨張係数の絶縁基板を有するために、有機樹脂を主
成分とする外部電気回路基板への実装においても高い信
頼性を有すると同時に、さらに絶縁基板との熱膨張差の
小さい放熱体を具備するために、基板と放熱体との熱膨
張差に起因する応力の発生を抑制し、反りやクラックの
発生がなく、且つ高い放熱特性を有する半導体装置を提
供できる。
As described in detail above, according to the present invention,
Since it has an insulating substrate with a high coefficient of thermal expansion, it has high reliability even when mounted on an external electric circuit board containing organic resin as a main component, and at the same time, it has a radiator with a small difference in thermal expansion from the insulating substrate. Therefore, it is possible to provide a semiconductor device that suppresses the generation of stress due to the difference in thermal expansion between the substrate and the heat radiator, does not cause warpage or cracks, and has high heat radiation characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置と、外部電気回路基板への
実装構造を説明するための概略図である。
FIG. 1 is a schematic diagram for explaining a semiconductor device of the present invention and a mounting structure on an external electric circuit board.

【符号の説明】[Explanation of symbols]

1 半導体装置 2 絶縁基板 3 配線層 4 スルーホール 5 キャビティ 6 蓋体 7 放熱体 8 接着剤 9 半導体素子 10 端子電極 11 外部電気回路基板 12 外部配線層 13 半田 1 Semiconductor Device 2 Insulating Substrate 3 Wiring Layer 4 Through Hole 5 Cavity 6 Lid 7 Heat Dissipator 8 Adhesive 9 Semiconductor Element 10 Terminal Electrode 11 External Electric Circuit Board 12 External Wiring Layer 13 Solder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】配線層を有し、室温から400℃における
熱膨張係数が9〜14ppm/℃の絶縁基板と、該絶縁
基板の表面に搭載された半導体素子と、前記絶縁基板に
接合された放熱体とを具備してなる半導体装置におい
て、前記放熱体が、銅を30〜80重量%と、残部が室
温から400℃における熱膨張係数が6ppm/℃以下
の低熱膨張金属と、焼結助剤金属との焼結体からなると
ともに、前記絶縁基板との熱膨張差が±0.5ppm/
℃であることを特徴とする半導体装置。
1. An insulating substrate having a wiring layer and having a coefficient of thermal expansion from room temperature to 400 ° C. of 9 to 14 ppm / ° C., a semiconductor element mounted on the surface of the insulating substrate, and bonded to the insulating substrate. In a semiconductor device comprising a heat radiator, the heat radiator comprises 30 to 80% by weight of copper, and the rest is a low thermal expansion metal having a thermal expansion coefficient of 6 ppm / ° C or less at room temperature to 400 ° C, and a sintering aid. It is made of a sintered body with an agent metal and has a thermal expansion difference of ± 0.5 ppm /
A semiconductor device having a temperature of ° C.
【請求項2】前記絶縁基板が、有機樹脂を主成分とする
複合材料またはガラス−セラミックス複合材料からなる
請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the insulating substrate is made of a composite material containing an organic resin as a main component or a glass-ceramic composite material.
【請求項3】前記配線層が銅からなる請求項1または請
求項2記載の半導体装置。
3. The semiconductor device according to claim 1, wherein the wiring layer is made of copper.
JP33749995A 1995-12-25 1995-12-25 Semiconductor device Expired - Fee Related JP3426827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33749995A JP3426827B2 (en) 1995-12-25 1995-12-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33749995A JP3426827B2 (en) 1995-12-25 1995-12-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH09181220A true JPH09181220A (en) 1997-07-11
JP3426827B2 JP3426827B2 (en) 2003-07-14

Family

ID=18309234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33749995A Expired - Fee Related JP3426827B2 (en) 1995-12-25 1995-12-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3426827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007940A (en) * 2001-06-25 2003-01-10 Kyocera Corp Heat radiation member and package for housing semiconductor element
US6611056B2 (en) 1999-03-16 2003-08-26 Hitachi, Ltd. Composite material, and manufacturing method and uses of same
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
JP2016216795A (en) * 2015-05-25 2016-12-22 住友金属鉱山株式会社 Alloy target for sputtering, and production method of alloy target for sputtering

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909185B1 (en) 1998-12-07 2005-06-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
US6611056B2 (en) 1999-03-16 2003-08-26 Hitachi, Ltd. Composite material, and manufacturing method and uses of same
US6630734B2 (en) 1999-03-16 2003-10-07 Hitachi, Ltd. Composite material, and manufacturing method and uses of same
JP2003007940A (en) * 2001-06-25 2003-01-10 Kyocera Corp Heat radiation member and package for housing semiconductor element
JP4574071B2 (en) * 2001-06-25 2010-11-04 京セラ株式会社 Package for housing heat dissipation member and semiconductor element
JP2016216795A (en) * 2015-05-25 2016-12-22 住友金属鉱山株式会社 Alloy target for sputtering, and production method of alloy target for sputtering

Also Published As

Publication number Publication date
JP3426827B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
JP3426827B2 (en) Semiconductor device
JP3631638B2 (en) Mounting structure of semiconductor device package
JP2001338999A (en) Semiconductor element storing package
JP3297567B2 (en) Package for housing semiconductor element and its mounting structure
JPH09142880A (en) Glass-ceramic sintered compact and wiring board using the same
JP3347583B2 (en) Wiring board mounting structure
JP3323074B2 (en) Wiring board, package for housing semiconductor element and its mounting structure
JP3323043B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3339999B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3193275B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3740225B2 (en) Wiring board mounting structure
JP3450167B2 (en) Package for storing semiconductor elements
JP3305579B2 (en) Wiring board, semiconductor element storage package and mounting structure
JP3210837B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3502759B2 (en) Semiconductor element mounting structure and wiring board mounting structure
JP3420447B2 (en) Wiring board mounting structure
JP2001015649A (en) Semiconductor element mounting wiring substrate and wiring substrate mounting structure
JP3210844B2 (en) Wiring board, semiconductor device storage package using the same, and mounting structure thereof
JP3450998B2 (en) Wiring board and its mounting structure
JP3850312B2 (en) Semiconductor element storage package and semiconductor device
JP3677468B2 (en) Package and its mounting structure
JP2001102492A (en) Wiring board and mounting structure thereof
JPH1117344A (en) Multilayer wiring board
JPH10135370A (en) Wiring board, package for semiconductor element and mounting structure thereof
JPH08167674A (en) Package for semiconductor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees