JPH0917571A - Heater for arc heating wind tunnel - Google Patents

Heater for arc heating wind tunnel

Info

Publication number
JPH0917571A
JPH0917571A JP16232795A JP16232795A JPH0917571A JP H0917571 A JPH0917571 A JP H0917571A JP 16232795 A JP16232795 A JP 16232795A JP 16232795 A JP16232795 A JP 16232795A JP H0917571 A JPH0917571 A JP H0917571A
Authority
JP
Japan
Prior art keywords
working fluid
flow path
anode
nozzle
wind tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16232795A
Other languages
Japanese (ja)
Inventor
Naoki Yasuda
尚記 安田
Naoyuki Matsumoto
尚之 松本
Michio Nishida
迪雄 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16232795A priority Critical patent/JPH0917571A/en
Publication of JPH0917571A publication Critical patent/JPH0917571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE: To provide a heater for an arc heating wind tunnel which can absorb part of heat lost by cooling with a cooling medium by an operating fluid and can improve in thermal efficiency. CONSTITUTION: A circular annular small diametric space 12 connected with an operating fluid supply flow path 11 is formed inside a cooling flow path 9 formed in an anode 2, also to form a circular annular large diametric space 13 inside the tip end of a nozzle 6. A heat exchanging flow path 10, having a constitution formed by connecting between the small/large diametric spaces 12, 13 by a connecting flow path 14 arranged with a required pitch in the peripheral direction of the nozzle 6, is provided to connect the large diametric space 13 to an operating fluid introducing flow path 4 through a pipe line 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アーク加熱風洞用ヒー
タに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc heating wind tunnel heater.

【0002】[0002]

【従来の技術】従来より、風洞内の所要位置に配置した
供試体に対し高温のプラズマ気流を吹き付けて、前記供
試体の熱試験(耐熱試験や焼蝕試験等)を行うようにし
たアーク加熱風洞が知られているが、前記プラズマ気流
を発生させる加熱装置としてアーク加熱風洞用ヒータが
使用される。
2. Description of the Related Art Conventionally, arc heating has been carried out by blowing a high-temperature plasma stream onto a test piece placed at a required position in a wind tunnel to perform a heat test (heat resistance test, corrosion test, etc.) on the test piece. A wind tunnel is known, but an arc heating wind tunnel heater is used as a heating device for generating the plasma airflow.

【0003】図3は従来のアーク加熱風洞用ヒータの一
例を表わすものであり、基本的には、カソード(陰極)
1とアノード(陽極)2との間に形成された放電路3に
外部から作動流体導入流路4を介して空気等の作動流体
を供給し、該作動流体を前記カソード1とアノード2と
の間に発生させたアーク放電により高温のプラズマ気流
5としてノズル6から噴出するようになっている。
FIG. 3 shows an example of a conventional heater for an arc heating wind tunnel. Basically, it is a cathode.
1 and an anode (anode) 2, a working fluid such as air is supplied from the outside via a working fluid introducing passage 4 to a discharge passage 3 formed between the cathode 1 and the anode 2. A high-temperature plasma stream 5 is ejected from a nozzle 6 by an arc discharge generated between them.

【0004】又、前記アーク加熱風洞用ヒータのカソー
ド1並びにアノード2は、きわめて高温に晒されるた
め、カソード1の基端側に、水等の冷却媒体が供給され
る冷却流路7を形成すると共に、アノード2の所要箇所
にも、水等の冷却媒体が供給される冷却流路8,9を形
成し、カソード1並びにアノード2が溶損することを防
止するようになっている。
Further, since the cathode 1 and the anode 2 of the heater for the arc heating wind tunnel are exposed to extremely high temperatures, the cooling passage 7 to which a cooling medium such as water is supplied is formed on the base end side of the cathode 1. At the same time, cooling passages 8 and 9 to which a cooling medium such as water is supplied are also formed at required portions of the anode 2 to prevent the cathode 1 and the anode 2 from being melted and damaged.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
如き従来のアーク加熱風洞用ヒータでは、放電路3を通
過する間に作動流体が得る熱量は、アーク放電の陽光柱
の長さや作動流体の流量によって決まっており、それ以
外の残りの熱に関しては、冷却媒体による冷却によって
失われているのが現状であり、熱効率の低下につながっ
ていた。
However, in the conventional arc heating wind tunnel heater as described above, the amount of heat obtained by the working fluid while passing through the discharge path 3 depends on the length of the positive column of the arc discharge and the flow rate of the working fluid. The rest of the heat is lost by cooling with the cooling medium, which has led to a decrease in thermal efficiency.

【0006】本発明は、斯かる実情に鑑み、冷却媒体に
よる冷却によって失われていた熱の一部を作動流体によ
って吸収し得、熱効率の向上を図り得るアーク加熱風洞
用ヒータを提供しようとするものである。
In view of the above situation, the present invention intends to provide an arc heating wind tunnel heater capable of absorbing a part of heat lost by cooling by a cooling medium by a working fluid and improving thermal efficiency. It is a thing.

【0007】[0007]

【課題を解決するための手段】本発明は、カソードとア
ノードとの間に形成された放電路に作動流体導入流路を
介して作動流体を供給し、該作動流体を前記カソードと
アノードとの間に発生させたアーク放電により高温のプ
ラズマ気流としてノズルから噴出するよう構成したアー
ク加熱風洞用ヒータにおいて、アノード内部とノズル内
部に、外部から供給される作動流体をアノード内部とノ
ズル内部へ導入してアノードとノズルを冷却した後、作
動流体導入流路へ導く熱交換用流路を形成したことを特
徴とするものである。
According to the present invention, a working fluid is supplied to a discharge passage formed between a cathode and an anode through a working fluid introducing passage, and the working fluid is supplied to the cathode and the anode. In a heater for an arc heating wind tunnel configured to eject from a nozzle as a high-temperature plasma airflow by an arc discharge generated between them, a working fluid supplied from the outside is introduced into the inside of the anode and the inside of the nozzle. After cooling the anode and the nozzle by means of this, a heat exchange flow path for leading to the working fluid introduction flow path is formed.

【0008】[0008]

【作用】従って、カソードとアノードとの間に形成され
た放電路にアーク放電を発生させた状態で、作動流体
は、外部からアノード内部とノズル内部の熱交換用流路
へ導入され、アノードとノズルを冷却しつつ、アーク放
電による熱の一部を吸収して昇温し、該昇温した作動流
体は、作動流体導入流路へ導入され、該作動流体導入流
路から放電路に供給され、前記カソードとアノードとの
間に発生させたアーク放電により高温のプラズマ気流と
してノズルから噴出される。
Therefore, the working fluid is introduced from the outside into the heat exchange passage inside the anode and inside the nozzle while arc discharge is generated in the discharge path formed between the cathode and the anode, and While cooling the nozzle, it absorbs part of the heat generated by the arc discharge to raise the temperature, and the raised working fluid is introduced into the working fluid introducing passage and supplied from the working fluid introducing passage to the discharge passage. A high temperature plasma stream is ejected from the nozzle by the arc discharge generated between the cathode and the anode.

【0009】この結果、放電路を通過する間に作動流体
が得る熱以外の残りの熱は、冷却媒体による冷却によっ
て単に失われるだけでなく、予め作動流体に吸収される
形となり、高温(高解離度)の作動流体が得られると共
に、熱効率も向上する。
As a result, the remaining heat other than the heat obtained by the working fluid while passing through the discharge path is not only lost by the cooling by the cooling medium but is also absorbed in advance by the working fluid, resulting in a high temperature (high temperature). A working fluid having a dissociation degree) is obtained, and thermal efficiency is improved.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例であって、図中、
図3と同一の符号を付した部分は同一物を表わしてお
り、基本的な構成は図3に示す従来のものと同様である
が、本実施例の特徴とするところは、図1に示す如く、
アノード2内部とノズル6内部に、外部から供給される
作動流体をアノード2内部とノズル6内部へ導入してア
ノード2とノズル6を冷却した後、作動流体導入流路4
へ導く熱交換用流路10を形成した点にある。
FIG. 1 shows an embodiment of the present invention.
Parts denoted by the same reference numerals as in FIG. 3 represent the same components, and the basic configuration is the same as that of the conventional one shown in FIG. 3, but the feature of this embodiment is shown in FIG. as,
After cooling the anode 2 and the nozzle 6 by introducing the working fluid supplied from the outside into the anode 2 and the nozzle 6 into the anode 2 and the nozzle 6, the working fluid introduction flow path 4
The point is that the heat exchange flow path 10 that leads to is formed.

【0012】本実施例において、前記熱交換用流路10
は、アノード2に形成された冷却流路9の内側に、作動
流体供給流路11が接続された円環状の小径空間12を
形成すると共に、ノズル6の先端内部に円環状の大径空
間13を形成し、前記小径空間12と大径空間13との
間を、図2に示す如くノズル6の周方向へ所要ピッチで
配設された連結流路14によって接続してなる構成を有
しており、前記大径空間13は、管路15を介して作動
流体導入流路4に接続してある。
In this embodiment, the heat exchange channel 10 is used.
Forms an annular small-diameter space 12 connected to the working fluid supply passage 11 inside the cooling passage 9 formed in the anode 2, and an annular large-diameter space 13 inside the tip of the nozzle 6. And the small-diameter space 12 and the large-diameter space 13 are connected by a connecting flow path 14 arranged at a required pitch in the circumferential direction of the nozzle 6 as shown in FIG. The large-diameter space 13 is connected to the working fluid introduction flow path 4 via a pipe 15.

【0013】尚、前記連結流路14は、ノズル6の基端
側から先端側へ向け略真っ直ぐに延びるようにする代り
に、ノズル6の基端側から先端側へ向けスパイラル状に
延びるようにしてもよいことは言うまでもない。
It should be noted that, instead of extending the connection passage 14 from the base end side of the nozzle 6 to the tip end side in a substantially straight line, it extends in a spiral shape from the base end side of the nozzle 6 to the tip end side. It goes without saying that it is okay.

【0014】次に、上記実施例の作動を説明する。Next, the operation of the above embodiment will be described.

【0015】カソード1とアノード2との間に形成され
た放電路3にアーク放電を発生させた状態で、作動流体
は、外部から作動流体供給流路11を介して小径空間1
2に導入され、該小径空間12から連結流路14を経由
し大径空間13へ流入する間に、アノード2とノズル6
を冷却しつつ、アーク放電による熱の一部を吸収して昇
温し、該昇温した作動流体が前記大径空間13から管路
15を経て作動流体導入流路4へ導入され、該作動流体
導入流路4から放電路3に供給された作動流体は、前記
カソード1とアノード2との間に発生させたアーク放電
により高温のプラズマ気流5としてノズル6から噴出さ
れる。
In a state where arc discharge is generated in the discharge path 3 formed between the cathode 1 and the anode 2, the working fluid is supplied from the outside through the working fluid supply passage 11 to the small diameter space 1
2 is introduced into the large diameter space 13 from the small diameter space 12 through the connecting flow path 14, and the anode 2 and the nozzle 6
While cooling, the temperature rises by absorbing a part of the heat generated by the arc discharge, and the raised working fluid is introduced from the large diameter space 13 into the working fluid introduction flow path 4 through the pipe line 15, and the operation is performed. The working fluid supplied from the fluid introduction flow path 4 to the discharge path 3 is ejected from the nozzle 6 as a high temperature plasma stream 5 by the arc discharge generated between the cathode 1 and the anode 2.

【0016】この結果、放電路3を通過する間に作動流
体が得る熱以外の残りの熱は、冷却媒体による冷却によ
って単に失われるだけでなく、予め作動流体に吸収され
る形となり、高温(高解離度)の作動流体が得られると
共に、熱効率も向上する。
As a result, the remaining heat other than the heat obtained by the working fluid while passing through the discharge path 3 is not only lost by the cooling by the cooling medium, but is absorbed in the working fluid in advance, and the high temperature ( A working fluid having a high dissociation degree is obtained, and thermal efficiency is also improved.

【0017】こうして、冷却媒体による冷却によって失
われていた熱の一部を作動流体によって吸収し得、熱効
率の向上を図り得る。
In this way, a part of the heat lost by the cooling by the cooling medium can be absorbed by the working fluid, and the thermal efficiency can be improved.

【0018】尚、本発明のアーク加熱風洞用ヒータは、
上述の実施例にのみ限定されるものではなく、本発明の
要旨を逸脱しない範囲内において種々変更を加え得るこ
とは勿論である。
The arc heating wind tunnel heater of the present invention is
Of course, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the scope of the present invention.

【0019】[0019]

【発明の効果】以上、説明したように本発明のアーク加
熱風洞用ヒータによれば、冷却媒体による冷却によって
失われていた熱の一部を作動流体によって吸収し得、熱
効率の向上を図り得るという優れた効果を奏し得る。
As described above, according to the heater for an arc heating wind tunnel of the present invention, a part of the heat lost by the cooling by the cooling medium can be absorbed by the working fluid, and the thermal efficiency can be improved. That is, the excellent effect can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】図1のII−II断面相当図である。FIG. 2 is a sectional view corresponding to the II-II section of FIG.

【図3】従来例の断面図である。FIG. 3 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 カソード 2 アノード 3 放電路 4 作動流体導入流路 5 プラズマ気流 6 ノズル 10 熱交換用流路 1 Cathode 2 Anode 3 Discharge Path 4 Working Fluid Introduction Flow Path 5 Plasma Air Flow 6 Nozzle 10 Heat Exchange Flow Path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カソードとアノードとの間に形成された
放電路に作動流体導入流路を介して作動流体を供給し、
該作動流体を前記カソードとアノードとの間に発生させ
たアーク放電により高温のプラズマ気流としてノズルか
ら噴出するよう構成したアーク加熱風洞用ヒータにおい
て、 アノード内部とノズル内部に、外部から供給される作動
流体をアノード内部とノズル内部へ導入してアノードと
ノズルを冷却した後、作動流体導入流路へ導く熱交換用
流路を形成したことを特徴とするアーク加熱風洞用ヒー
タ。
1. A working fluid is supplied to a discharge path formed between a cathode and an anode through a working fluid introduction flow path,
In an arc heating wind tunnel heater configured to eject the working fluid from a nozzle as a high-temperature plasma stream by an arc discharge generated between the cathode and the anode, an operation supplied from the outside to the inside of the anode and the inside of the nozzle. A heater for an arc heating wind tunnel, wherein a flow path for heat exchange is formed to introduce a fluid into the inside of the anode and the inside of the nozzle to cool the anode and the nozzle, and then to guide the working fluid.
JP16232795A 1995-06-28 1995-06-28 Heater for arc heating wind tunnel Pending JPH0917571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16232795A JPH0917571A (en) 1995-06-28 1995-06-28 Heater for arc heating wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16232795A JPH0917571A (en) 1995-06-28 1995-06-28 Heater for arc heating wind tunnel

Publications (1)

Publication Number Publication Date
JPH0917571A true JPH0917571A (en) 1997-01-17

Family

ID=15752437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16232795A Pending JPH0917571A (en) 1995-06-28 1995-06-28 Heater for arc heating wind tunnel

Country Status (1)

Country Link
JP (1) JPH0917571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446335B1 (en) * 2002-09-11 2004-09-01 주식회사 로템 Heater for wind tunnel
CN104406763A (en) * 2014-10-17 2015-03-11 北京航天益森风洞工程技术有限公司 Spray pipe throat channel segment water cooling structure
CN111220340A (en) * 2020-01-09 2020-06-02 中国空气动力研究与发展中心超高速空气动力研究所 Shell cooling structure of wind tunnel heating section and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446335B1 (en) * 2002-09-11 2004-09-01 주식회사 로템 Heater for wind tunnel
CN104406763A (en) * 2014-10-17 2015-03-11 北京航天益森风洞工程技术有限公司 Spray pipe throat channel segment water cooling structure
CN111220340A (en) * 2020-01-09 2020-06-02 中国空气动力研究与发展中心超高速空气动力研究所 Shell cooling structure of wind tunnel heating section and manufacturing method thereof

Similar Documents

Publication Publication Date Title
RU176854U1 (en) PLASMA ARC CUTTING SYSTEM, INCLUDING COOLER TUBES AND OTHER CONSUMPTION COMPONENTS
JP5744994B2 (en) Vortex tube
KR100221500B1 (en) Combustion apparatus
JP2006170607A (en) Exhaust gas heat exchanger in cogeneration system
JPH038872B2 (en)
JPH0917571A (en) Heater for arc heating wind tunnel
JPS634113B2 (en)
BRPI1002138B1 (en) heat exchanger for reaction gas cooling
BRPI0809072A2 (en) LIQUID FUEL SPRAYING INJECTOR, BURNER, OVEN, MELTED GLASS THERMAL TREATMENT PROCESS AND USE OF THE INJECTOR OR BURNER
ES1212363U (en) BURNER AND GAS WATER HEATER (Machine-translation by Google Translate, not legally binding)
JP4289740B2 (en) Heat exchanger with connecting piece
CN110678706B (en) Water storage type boiler with vortex guiding part
WO2018099149A1 (en) Hot-air oxygen-free brazing system
JPH11257613A (en) Burner
JP3065290B2 (en) Air conditioner heat exchanger
CN113000702B (en) Heat setting method
HUH3869A (en) Burner
KR100595993B1 (en) Cooling device of co2 gas welder
CN218443354U (en) Air duct structure of quenching furnace
CN212719712U (en) Spray gun with air cooling sleeve
JP3736694B2 (en) Regenerative burner
JPH08246022A (en) Lance nozzle for blowing-in converter
KR200193764Y1 (en) Apparatus for recycling heat in a boiler chimney
KR20180007379A (en) Hybrid water heater
CN2413246Y (en) Combined hot-blast stove heat exchanger