JPH09139304A - Mnnibi alloy magnetic powder - Google Patents

Mnnibi alloy magnetic powder

Info

Publication number
JPH09139304A
JPH09139304A JP7319475A JP31947595A JPH09139304A JP H09139304 A JPH09139304 A JP H09139304A JP 7319475 A JP7319475 A JP 7319475A JP 31947595 A JP31947595 A JP 31947595A JP H09139304 A JPH09139304 A JP H09139304A
Authority
JP
Japan
Prior art keywords
magnetic powder
mnnibi
alloy magnetic
alloy
mnbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7319475A
Other languages
Japanese (ja)
Other versions
JP3490201B2 (en
Inventor
Shinichi Kitahata
慎一 北畑
Toshio Kanzaki
壽夫 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP31947595A priority Critical patent/JP3490201B2/en
Publication of JPH09139304A publication Critical patent/JPH09139304A/en
Application granted granted Critical
Publication of JP3490201B2 publication Critical patent/JP3490201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make stable and not easily dissolved under a circumstance of acid atmosphere by replacing Ni to a specific atom percentage of a summation of Mn and Ni at a position of Mn of hexagonal crystal MnBi. SOLUTION: Ni is made to exist at a position of Mn of hexagonal crystal MnBi alloy magnetic powder by replacing Ni to 2-10 atomic percentage of a summation value of Mn and Ni. A mean particle diameter of the MnNiBi alloy magnetic powder is made to 0.5-5μm and magnetic maintenance capability at 20 deg.C degree is made to become 4000-18000 oersted. This means works for an electrochemical crystal structure of Ni which exists at the position of Mn as a third element by a part of Mn being replaced, to be stabilized, and a dissolution under a corrosion circumstance is prevented. Therefore the magnetic powder which is properly applicable to a magnetic recording media suck as a portable information recording card having an anticorrosion characteristic applicable to practical usage and not easily deleted at a room temperature, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は室温で容易に消去
されることのない情報記録用携帯カ−ド等に用いられる
MnNiBi合金磁性粉末に関し、さらに詳しくは、特
に、酸性雰囲気の腐食環境下において、安定で分解しに
くい前記のMnNiBi合金磁性粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder of MnNiBi alloy which is not easily erased at room temperature and is used for portable information recording cards, and more particularly, particularly in a corrosive environment in an acidic atmosphere. The present invention relates to the above MnNiBi alloy magnetic powder, which is stable and hardly decomposed.

【0002】[0002]

【従来の技術】MnBi合金磁性粉末を記録素子として
使用する磁気記録媒体は、一旦記録すると室温では容易
に書き換えができないという特徴を有し、特に、デ−タ
が誤って消去されたり、故意に書き換えらるなどの事故
や犯罪が多発しているクレジットカ−ド、プリペイドカ
−ドなどにおいて、事故や不正使用を防止できるものと
して注目されている。(特公昭52−46801号、特
公昭54−19244号、特公昭54−33725号、
特公昭57−38962号、特公昭57−38963
号、特公昭59−31764号)
2. Description of the Related Art A magnetic recording medium using magnetic powder of MnBi alloy as a recording element has a characteristic that once it is recorded, it cannot be easily rewritten at room temperature, and in particular, data is erroneously erased or intentionally written. In credit cards, prepaid cards, and the like, where accidents and crimes such as rewriting occur frequently, they are attracting attention as being able to prevent accidents and unauthorized use. (Japanese Patent Publication No. 52-46801, Japanese Patent Publication No. 54-19244, Japanese Patent Publication No. 54-33725,
Japanese Patent Publication No. 57-38962, Japanese Patent Publication No. 57-38963
No. 59/31764)

【0003】[0003]

【発明が解決しようとする課題】ところが、この種の磁
気記録媒体の記録素子として使用されるMnBi合金磁
性粉末は、腐食環境下において分解しやすいという欠点
を有し、磁気テ−プに使用される場合は、リ−ルに巻か
れた状態で、使用、保管されるため、磁性層が腐食ガス
等にさらされることが少なくあまり問題とならないが、
情報記録用携帯カ−ドに使用される場合は、磁性層が露
出し、人体に直接触れる頻度が高いため、人体から発す
る塩分、水分、炭酸ガス、アンモニア等により腐食され
やすく、腐食環境下における分解を未然に防止すること
が問題となる。
However, the MnBi alloy magnetic powder used as a recording element of this type of magnetic recording medium has a drawback that it is easily decomposed in a corrosive environment and is used for a magnetic tape. When used, the magnetic layer is not exposed to corrosive gas or the like because it is used and stored in a state of being wound on a reel, but it is not a serious problem.
When used in a portable information recording card, the magnetic layer is exposed and frequently comes into direct contact with the human body. Preventing decomposition is a problem.

【0004】そこで、このようなMnBi合金磁性粉末
の腐食を防止するため、MnBi合金磁性粉末の腐食の
原因となる特定の化学成分をMnBi合金磁性粉末とと
もに使用する結合剤樹脂から除外したり、また腐食を助
長する水分や炭酸ガスなどが磁性層中に侵入するのを防
止したり、MnBi合金磁性粉末の粒子表面に保護層を
設けたりすることが行われているが、これらの方法で
は、未だ、充分に腐食環境下における分解を未然に防止
することができない。
Therefore, in order to prevent such corrosion of the MnBi alloy magnetic powder, specific chemical components that cause the corrosion of the MnBi alloy magnetic powder are excluded from the binder resin used together with the MnBi alloy magnetic powder, or It has been attempted to prevent moisture or carbon dioxide gas that promotes corrosion from entering the magnetic layer, or to provide a protective layer on the particle surface of the MnBi alloy magnetic powder, but these methods have not yet been used. However, it is not possible to sufficiently prevent decomposition in a corrosive environment.

【0005】この発明は、かかる現状に鑑み種々検討を
行った結果なされたもので、MnBi合金磁性粉末に第
3の元素としてNiを添加することにより、この種の合
金磁性粉末の腐食を充分に防止し、特に、酸性雰囲気の
腐食環境下において、安定で分解しにくいMnNiBi
合金磁性粉末を提供しようとするものである。
The present invention has been made as a result of various investigations in view of the present situation. By adding Ni as the third element to the MnBi alloy magnetic powder, the corrosion of this type of alloy magnetic powder is sufficiently performed. MnNiBi which is stable and hard to decompose, especially in a corrosive environment of acidic atmosphere
It is intended to provide an alloy magnetic powder.

【0006】[0006]

【課題を解決するための手段】この発明のMnNiBi
合金磁性粉末は、六方晶MnBi合金磁性粉末のMnの
位置にNiをMnとNiとの合計量に対して2〜10原
子%置換して存在するようにしている。
Means for Solving the Problems MnNiBi of the present invention
The alloy magnetic powder is made to exist at the Mn position of the hexagonal MnBi alloy magnetic powder by substituting Ni by 2 to 10 atom% with respect to the total amount of Mn and Ni.

【0007】また、MnNiBi合金磁性粉末の平均粒
子径を0.5〜5μmとし、20℃における保磁力を40
00〜18000エルステッドとなるようにしている。
The MnNiBi alloy magnetic powder has an average particle size of 0.5 to 5 μm and a coercive force of 40 at 20 ° C.
It is set to be 00 to 18000 Oersted.

【0008】[0008]

【発明の実施の形態】この発明のMnNiBi合金磁性
粉末は、六方晶MnBi合金磁性粉末のMnの位置にN
iをMnとNiとの合計量に対して2〜10原子%置換
して存在させているため、六方晶構造を乱すことなく、
Mnの位置にその一部が置換されて存在する第3の元素
としてのNiが、詳しいメカニズムについては不明であ
るが、電気化学的に結晶構造を安定化させる作用をし
て、腐食環境下における分解が未然に防止され、特に、
酸性雰囲気の腐食環境下において安定となり、分解が未
然に防止される。
BEST MODE FOR CARRYING OUT THE INVENTION The MnNiBi alloy magnetic powder of the present invention has an N-position at the Mn position of the hexagonal MnBi alloy magnetic powder.
Since i is made to exist by substituting 2 to 10 atomic% with respect to the total amount of Mn and Ni, without disturbing the hexagonal crystal structure,
Although the detailed mechanism of Ni, which is present as a third element partially present in the Mn position by substitution, is unknown, it acts electrochemically to stabilize the crystal structure, so that it can be used in a corrosive environment. Disassembly is prevented beforehand, especially
It becomes stable in a corrosive environment in an acidic atmosphere and decomposition is prevented in advance.

【0009】このような六方晶MnBi合金磁性粉末の
Mnの位置に置換されて存在するNiの量は、MnとN
iとの合計量に対して2原子%より少ないと、酸性雰囲
気の腐食環境下における耐食性が充分に向上されず、1
0原子%より多くすると結晶構造が乱れ、磁気特性が著
しく低下して磁気記録媒体用として適さなくなるため、
2〜10原子%の範囲内にするのが好ましい。
[0009] The amount of Ni present in the hexagonal MnBi alloy magnetic powder by substitution at the Mn position is Mn and N.
If it is less than 2 atomic% with respect to the total amount with i, the corrosion resistance in a corrosive environment of an acidic atmosphere will not be sufficiently improved, and 1
If it is more than 0 atom%, the crystal structure will be disturbed and the magnetic properties will be significantly deteriorated, making it unsuitable for magnetic recording media.
It is preferably in the range of 2 to 10 atomic%.

【0010】また、この種の六方晶MnBi合金磁性粉
末のMnの位置にNiを置換して存在させたMnNiB
i合金磁性粉末は、平均粒子径が0.5μmより小さい
と、微細な粉末粒子の割合が増大するため耐食性の低下
が増大し、また、5μmより大きいと、磁気記録媒体の
表面平滑性の低下による出力の低下が著しいため、平均
粒子径は0.5〜5μmの範囲内であることが好ましく、
さらに、保磁力は4000エルステッドより小さいと、
不正使用防止の効果が小さく、18000エルステッド
より大きいと、記録電流特性を確保することが困難とな
るため、保磁力は4000〜18000エルステッドの
範囲内であることが好ましい。
Further, MnNiB which is present by substituting Ni at the Mn position of this type of hexagonal MnBi alloy magnetic powder
When the average particle diameter of the i alloy magnetic powder is smaller than 0.5 μm, the proportion of fine powder particles increases, so that the corrosion resistance decreases, and when it is larger than 5 μm, the surface smoothness of the magnetic recording medium decreases. Since the output decreases remarkably, the average particle size is preferably within the range of 0.5 to 5 μm,
Furthermore, if the coercive force is less than 4000 Oersted,
If the effect of preventing unauthorized use is small, and if it is larger than 18000 Oersted, it becomes difficult to secure the recording current characteristic. Therefore, the coercive force is preferably in the range of 4000 to 18000 Oersted.

【0011】このようなMnNiBi合金磁性粉末は、
図1の液体窒素温度から室温における保磁力の温度依存
性のグラフに示すように、MnBi合金磁性粉末と同じ
性質を有し、室温では保磁力が10000エルステッド
と高いが、温度が下がると低下して、−100℃以下で
は1000エルステッド以下と低くなり、この性質を利
用することにより、低温では容易に消磁でき、消磁後
は、室温で容易に着磁できる。
Such MnNiBi alloy magnetic powder is
As shown in the graph of temperature dependence of coercive force from liquid nitrogen temperature to room temperature in FIG. 1, it has the same properties as MnBi alloy magnetic powder, and the coercive force is as high as 10000 Oersted at room temperature, but decreases as the temperature decreases. At −100 ° C. or lower, it becomes as low as 1000 oersted or lower, and by utilizing this property, it is possible to easily demagnetize at low temperature and easily magnetize at room temperature after demagnetization.

【0012】また、図2はMnNiBi合金磁性粉末を
用いた磁気記録媒体の初期磁化曲線を示したもので、こ
の図からも明らかなように、MnBi合金磁性粉末と同
じ性質を有し、2000エルステッド程度の低い磁界で
容易に磁化することができる。また、この磁気記録媒体
は、一度磁化すると14000エルステッド程度の高い
保磁力を示すようになり、その後のデ−タの消去や書き
換えがほとんど不可能になる。
Further, FIG. 2 shows an initial magnetization curve of a magnetic recording medium using the MnNiBi alloy magnetic powder. As is clear from this figure, it has the same properties as the MnBi alloy magnetic powder and has 2000 Oersted. It can be easily magnetized in a low magnetic field. In addition, this magnetic recording medium exhibits a high coercive force of about 14000 Oersted once magnetized, making it almost impossible to erase or rewrite data thereafter.

【0013】しかして、このMnNiBi合金磁性粉末
を用いた磁気記録媒体は、予め−100℃以下で消去し
てから室温で通常の方法で記録し、次いで安定化処理を
施すことにより記録信号を容易に消去できなくするとい
う記録再生方法に使用され、再記録が極めて困難なた
め、故意の改ざんがほとんど不可能となり、最近社会問
題となっているデ−タ改ざんによるカ−ドの不正使用な
どを防止することができる。
However, the magnetic recording medium using this MnNiBi alloy magnetic powder is easily erased at -100 ° C. or less, recorded at room temperature by a usual method, and then subjected to a stabilization treatment to facilitate the recording signal. It is used in a recording and reproducing method that makes it impossible to erase, and since re-recording is extremely difficult, it is almost impossible to intentionally tamper with it, and the unauthorized use of the card due to data tampering has become a social problem recently. Can be prevented.

【0014】このようなMnNiBi合金磁性粉末は、
予めMnとNiをア−ク炉、高周波溶解炉等により合金
インゴットとし、これとBiとを粉末冶金法により合金
とし、粉砕することによりつくられ、この他、Mn,N
i,Biの三元合金をア−ク炉、高周波溶解炉、溶融急
冷法等により作製し、これを粉砕することによってもつ
くられる。
Such MnNiBi alloy magnetic powder is
The alloy ingot is prepared by previously using Mn and Ni in an arc furnace, a high-frequency melting furnace, etc., and this is alloyed with Bi by powder metallurgy, and crushed.
It can also be produced by producing a ternary alloy of i and Bi by an arc furnace, a high-frequency melting furnace, a melt-quenching method, etc., and crushing this.

【0015】たとえば、粉末冶金法でMnNiBiイン
ゴットを作製するときは、まず、ア−ク炉を用いてMn
とNiの合金を作製する。このときMnは予め酸等によ
り表面をエッチングし、表面の酸化物を除去しておくの
が好ましい。また、溶解時の電流値としては、その溶解
量にもよるが、100Aから300Aが好ましく、充分
に溶解させることが必要であるが電流値が高すぎるとM
nの蒸気圧が上昇し、組成が仕込み値に比べて変化する
ので好ましくない。
For example, when manufacturing an MnNiBi ingot by powder metallurgy, first, an Mn is used in an arc furnace.
And an alloy of Ni are produced. At this time, it is preferable that the surface of Mn is previously etched with an acid or the like to remove the oxide on the surface. The current value at the time of dissolution is preferably 100 A to 300 A, though it depends on the amount of dissolution, and it is necessary to sufficiently dissolve it, but if the current value is too high, M
The vapor pressure of n increases and the composition changes as compared with the charged value, which is not preferable.

【0016】このようにして得られたMnNi合金は、
次いで、酸化を防ぎながら機械的に100〜300メッ
シュにまで粉砕し、これと同じく100〜300メッシ
ュのBi粉とを不活性雰囲気中にて充分混合する。Mn
NiとBiの比率は、モル比で50:50から55:4
5であることが好ましく、原料とするBi粉としては、
あらかじめ粉砕してあるものを用いてもよいし、フレ−
クあるいはショット等の塊を粉砕により微粉化して用い
てもよい。また、焼結反応により合成する場合には、原
料の表面性に大きく反応が左右されるため、原料表面の
酸化被膜を除去しておくことが好ましく、このためあら
かじめ酸等により表面をエッチングしたり、溶剤により
脱脂するなど、粉末冶金法で行われている表面処理を施
しておくことが好ましい。なお、混合は自動乳鉢、ボ−
ルミル等任意の手段により行うことができる。
The MnNi alloy thus obtained is
Then, the powder is mechanically ground to 100 to 300 mesh while preventing oxidation, and Bi powder of 100 to 300 mesh is mixed sufficiently in an inert atmosphere in the same manner. Mn
The molar ratio of Ni and Bi is 50:50 to 55: 4.
5 is preferable, and as the Bi powder used as a raw material,
It is also possible to use those that have been crushed in advance.
A lump such as black or shot may be pulverized into fine powder for use. In the case of synthesis by a sintering reaction, the reaction is greatly affected by the surface properties of the raw material. Therefore, it is preferable to remove the oxide film on the surface of the raw material. It is preferable to perform a surface treatment performed by powder metallurgy, such as degreasing with a solvent. The mixing was performed using an automatic mortar,
It can be performed by any means such as Lumil.

【0017】混合が終わった原料は、加圧プレスを用い
て成型体とされ、これにより焼結反応が促進され、均一
なMnNiBiインゴットが作製される。このときの加
圧としては、1〜8t/cm2 とするのが好ましく、加
圧力が低ければMnNiBiインゴットの均一性が得ら
れず、高すぎる場合には、加圧装置が高価となる割りに
MnNiBiインゴットの特性が向上しない。
The raw material after the mixing is formed into a compact by using a pressure press, whereby the sintering reaction is promoted and a uniform MnNiBi ingot is produced. The pressure applied at this time is preferably 1 to 8 t / cm 2, and if the applied pressure is low, the uniformity of the MnNiBi ingot cannot be obtained. If the applied pressure is too high, the pressurizing device is expensive. The characteristics of the MnNiBi ingot are not improved.

【0018】得られた成型体は、ガラス容器あるいは金
属容器に密封され、容器内は真空あるいは不活性ガス雰
囲気として熱処理中の酸化が防止されて、電気炉に入れ
られ、260〜270℃で2〜15日間熱処理が行われ
る。この熱処理の温度が低いと熱処理に時間がかかり、
また、得られるMnNiBiインゴットの磁化量も低く
なる。反対に熱処理温度が高すぎると、Biが融解し、
均一なMnNiBiインゴットが得られなくなる。
The obtained molded body is sealed in a glass container or a metal container, and the inside of the container is placed in an electric furnace at a temperature of 260 to 270 ° C. under a vacuum or an inert gas atmosphere to prevent oxidation during heat treatment. Heat treatment is performed for ~ 15 days. If the temperature of this heat treatment is low, the heat treatment takes time,
Moreover, the amount of magnetization of the obtained MnNiBi ingot is also low. Conversely, if the heat treatment temperature is too high, Bi will melt,
A uniform MnNiBi ingot cannot be obtained.

【0019】このようにして作製されたMnNiBiイ
ンゴットは、取り出されて自動乳鉢により不活性ガス雰
囲気中で粗粉砕され、粒子サイズを100〜500μm
とした後、ボ−ルミル、遊星ボ−ルミル等を用いた湿式
粉砕、あるいはジエットミル等の乾式粉砕により微粒子
化される。元々、MnNiBiは六方晶構造を有するた
め、薄片状に劈開する性質を示し、このため高いエネル
ギ−をかけて粉砕する必要はない。湿式粉砕の場合の液
体としては、トルエン等の水分を含まない溶剤を用い、
乾式粉砕の場合は不活性ガス雰囲気にして行われる。粉
砕後の平均粒子サイズは約0.05〜3μmであり、粉砕
条件によりコントロ−ルできる。粒子サイズが0.05μ
mより小さいと、最終的に得られる磁性粉末が充分な磁
気特性を示さなくなり、3μmを越えると、最終的に得
られる磁性粉末を用いた磁気記録媒体の表面平滑性が低
下し、充分な記録が行えない。粉砕後、酸素を微量含む
不活性ガス雰囲気中で加熱することにより、表面に安定
な酸化被膜を形成することが好ましい。
The MnNiBi ingot thus produced was taken out and coarsely crushed in an inert gas atmosphere by an automatic mortar to have a particle size of 100 to 500 μm.
After that, fine particles are formed by wet pulverization using a ball mill, planetary ball mill or the like, or dry pulverization such as a jet mill. Originally, since MnNiBi has a hexagonal crystal structure, it exhibits the property of cleaving into flakes, and therefore, it is not necessary to grind with high energy. As the liquid in the case of wet pulverization, a solvent containing no water such as toluene is used,
In the case of dry pulverization, it is carried out in an inert gas atmosphere. The average particle size after pulverization is about 0.05 to 3 μm, and it can be controlled depending on the pulverization conditions. Particle size is 0.05μ
When it is smaller than m, the finally obtained magnetic powder does not show sufficient magnetic characteristics, and when it exceeds 3 μm, the surface smoothness of the magnetic recording medium using the finally obtained magnetic powder is deteriorated and sufficient recording is performed. Cannot be done. After crushing, it is preferable to form a stable oxide film on the surface by heating in an inert gas atmosphere containing a small amount of oxygen.

【0020】以上の工程により飽和磁化が20emu/
g以上あり、保磁力が3000〜10000エルステッ
ドのMnNiBi磁性粉末が得られる。
By the above steps, the saturation magnetization is 20 emu /
It is possible to obtain MnNiBi magnetic powder having g or more and coercive force of 3000 to 10,000 Oersted.

【0021】[0021]

【実施例】次に、この発明の実施例について説明する。 実施例1 Mnフレ−ク(フルウチ化学社製;純度99.9%)、N
iロッド(フルウチ化学社製;純度99.9%)を用い、
このMnフレ−クを4.85重量部、Niロッドを0.11
重量部秤量して、ア−ク溶解炉(大亜真空技研社製;A
CM−01)を用いて溶解し、均一な固溶体を作製し
た。このようにして得られたMnNi合金を酸化を防ぎ
ながら機械的に粉砕し、100メッシュのふるい掛けを
した。
EXAMPLES Next, examples of the present invention will be described. Example 1 Mn flakes (Furuuchi Chemical Co., Ltd .; purity 99.9%), N
Using an i-rod (Furuuchi Chemical Co., Ltd .; purity 99.9%),
4.85 parts by weight of this Mn flakes and 0.11 parts of Ni rods
Weigh parts by weight, and arc melting furnace (Dia Vacuum Engineering Co., Ltd .; A
CM-01) was used to dissolve and prepare a uniform solid solution. The MnNi alloy thus obtained was mechanically crushed while preventing oxidization, and sieved with 100 mesh.

【0022】次いで、Biショット(フルウチ化学社
製;純度99.9%)を乳鉢を用いて粉砕し、100メッ
シュのふるい掛けをした後、このBi粉を8.7重量部、
前記のようにして得られたMnNi粉を2.8重量部秤量
し、乳鉢を用いて充分に混合した。
Next, Bi shot (Furuuchi Chemical Co., Ltd .; purity 99.9%) was crushed using a mortar and sieved with 100 mesh, and 8.7 parts by weight of this Bi powder was added.
2.8 parts by weight of the MnNi powder obtained as described above was weighed and thoroughly mixed using a mortar.

【0023】次に、これを加圧プレス機を用いて4t/
cm2 の圧力で直径×長さが6mm×6mmの円柱状に
成型し、この成型体をパイレックスガラス管に真空封入
し、電気炉中にて265℃で10日間熱処理して、Mn
NiBiインゴットを作製した。
Next, this was pressed at 4 t /
It was molded into a cylinder having a diameter of 6 mm x 6 mm in diameter at a pressure of 2 cm2, and the molded body was vacuum-sealed in a Pyrex glass tube and heat-treated at 265 ° C for 10 days in an electric furnace to obtain Mn.
A NiBi ingot was produced.

【0024】次いで、得られたMnNiBiインゴット
をグロ−ボックスを使用し、不活性雰囲気中で乳鉢を用
いて粗粉砕し、さらに、遊星ボ−ルミルを用いてトルエ
ン中にて、150rpmで2時間粉砕した。トルエンを
除去した後、1000ppmの酸素を含有するN2 雰囲
気中で保持することにより安定化処理を行った。このよ
うにして得られたMnNiBi磁性粉末の平均粒径は、
約2μmであり、VSMを用いて測定した磁気特性は、
保磁力が9100エルステッド、飽和磁化が46.5em
u/g、最大印加磁界は16Kエルステッドであった。
Then, the obtained MnNiBi ingot was roughly crushed in a glove box in an inert atmosphere using a mortar, and further pulverized in toluene using a planetary ball mill at 150 rpm for 2 hours. did. After removing the toluene, a stabilizing treatment was carried out by holding it in an N 2 atmosphere containing 1000 ppm of oxygen. The average particle size of the MnNiBi magnetic powder thus obtained is
It is about 2 μm, and the magnetic characteristics measured using VSM are
Coercive force 9100 oersted, saturation magnetization 46.5 em
u / g, the maximum applied magnetic field was 16K oersted.

【0025】実施例2〜3、比較例1〜6 実施例1において、MnNi合金作製時に用いるMn
量、Ni量およびMnNiBi合金作製時におけるMn
Ni粉末、Bi粉末の使用量を、それぞれ下記の表1に
示すように変更した以外は、実施例1と同様にしてMn
NiBi磁性粉末を作製した。
Examples 2 to 3 and Comparative Examples 1 to 6 In Example 1, Mn used in the preparation of the MnNi alloy.
Amount, Ni amount, and Mn at the time of producing MnNiBi alloy
Mn was prepared in the same manner as in Example 1 except that the amounts of Ni powder and Bi powder used were changed as shown in Table 1 below.
NiBi magnetic powder was produced.

【0026】 [0026]

【0027】図3は、このようにして得られた各実施例
および比較例のMnNiBi合金磁性粉末およびMnB
i合金磁性粉末のX線回析図であり、このX線回析図か
らNiが20原子%を超えると結晶構造が乱れ、単相の
合金磁性粉末を得ることができないことがわかる。
FIG. 3 shows the MnNiBi alloy magnetic powders and MnB of the respective Examples and Comparative Examples thus obtained.
It is an X-ray diffraction diagram of the i alloy magnetic powder. From this X-ray diffraction diagram, it is understood that if Ni exceeds 20 atomic%, the crystal structure is disturbed and a single-phase alloy magnetic powder cannot be obtained.

【0028】また、各実施例および比較例で得られたM
nNiBi合金磁性粉末について、2種の条件下で腐食
テストを行った。第1の腐食条件は、1気圧、60℃,
90%の加湿環境下に1日保持し、第2の条件は、5重
量%の酢酸水溶液中に24時間保持して、それぞれ保持
後の飽和磁化を測定し、初期の飽和磁化に対する減少量
から劣化率を算出して調べた。下記表2はその結果であ
る。
Further, M obtained in each example and comparative example
Corrosion tests were performed on the nNiBi alloy magnetic powder under two conditions. The first corrosion condition is 1 atm, 60 ° C,
The second condition was maintained in a humidified environment of 90% for 1 day, and the second condition was maintained in a 5 wt% acetic acid aqueous solution for 24 hours, and the saturation magnetization after each retention was measured. The deterioration rate was calculated and examined. Table 2 below shows the results.

【0029】 [0029]

【0030】[0030]

【発明の効果】上記表2から明らかなように、Niを2
0原子%以上有する比較例2ないし6のMnNiBi合
金磁性粉末は、初期の飽和磁化が約29emu/g以下
ともともと低く、記録に適さないが、この発明で得られ
たMnNiBi合金磁性粉末(実施例1ないし3)は、
初期の飽和磁化が約40emu/g以上と高く、記録に
適している。また、この発明で得られたMnNiBi合
金磁性粉末(実施例1ないし3)は、加湿条件下におけ
る磁化減少率が、比較例1のMnBi合金磁性粉末とあ
まり変わらず、酢酸テストにおける劣化率は、比較例1
のMnBi合金磁性粉末が99.5%とほとんど磁化が消
失しているのに比べ、この発明で得られたMnNiBi
合金磁性粉末(実施例1ないし3)は、70%から90
%にとどまり、大幅に耐酢酸性が改善されている。これ
らのことから、この発明で得られるMnNiBi合金磁
性粉末は、特に、酸性雰囲気の腐食環境下において、安
定で分解しにくく、実用に適した耐食性を有し、室温で
容易に消去されることのない情報記録用携帯カ−ド等の
磁気記録媒体に適した磁性粉末であることがわかる。
As is clear from Table 2 above, the Ni content is 2%.
The MnNiBi alloy magnetic powders of Comparative Examples 2 to 6 having 0 atomic% or more are low in initial saturation magnetization of about 29 emu / g or less and are not suitable for recording, but the MnNiBi alloy magnetic powders obtained by the present invention (Examples 1 to 3) is
The initial saturation magnetization is as high as about 40 emu / g or more, which is suitable for recording. Further, the MnNiBi alloy magnetic powders obtained in the present invention (Examples 1 to 3) did not show much difference in the magnetization reduction rate under humidified conditions from the MnBi alloy magnetic powder of Comparative Example 1, and the deterioration rate in the acetic acid test was Comparative Example 1
The magnetic powder of MnBi alloy of No. 9 has almost disappeared the magnetization of 99.5%.
The alloy magnetic powder (Examples 1 to 3) contains 70% to 90%.
%, And the acetic acid resistance is greatly improved. From these facts, the MnNiBi alloy magnetic powder obtained in the present invention is stable and hard to decompose, especially in a corrosive environment of an acidic atmosphere, has a corrosion resistance suitable for practical use, and is easily erased at room temperature. It can be seen that the magnetic powder is suitable for a magnetic recording medium such as a portable information recording card.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液体窒素温度から室温の範囲におけるMnNi
Bi粒子の保磁力の温度依存性を示す保磁力と絶対温度
との関係図である。
FIG. 1 MnNi in the range of liquid nitrogen temperature to room temperature
FIG. 4 is a relationship diagram of a coercive force showing the temperature dependence of the coercive force of Bi particles and the absolute temperature.

【図2】MnNiBi磁性粉末を長手方向に配向した磁
性層の初期磁化曲線図である。
FIG. 2 is an initial magnetization curve diagram of a magnetic layer in which MnNiBi magnetic powder is oriented in the longitudinal direction.

【図3】各実施例および比較例で得られたMnNiBi
磁性粉末粒子のX線回析図である。
FIG. 3 shows MnNiBi obtained in each example and comparative example.
It is an X-ray diffraction diagram of magnetic powder particles.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 六方晶MnBiのMnの位置にNiをM
nとNiとの合計量に対して2〜10原子%置換して存
在させたことを特徴とするMnNiBi合金磁性粉末
1. Ni in the position of Mn of hexagonal MnBi is mixed with M
MnNiBi alloy magnetic powder characterized by being present by substituting 2 to 10 atomic% with respect to the total amount of n and Ni.
【請求項2】 平均粒子径が0.5〜5μmで、20℃に
おける保磁力が4000〜18000エルステッドであ
る請求項1記載のMnNiBi合金磁性粉末
2. The MnNiBi alloy magnetic powder according to claim 1, which has an average particle diameter of 0.5 to 5 μm and a coercive force at 20 ° C. of 4000 to 18000 oersteds.
JP31947595A 1995-11-14 1995-11-14 MnNiBi alloy magnetic powder Expired - Fee Related JP3490201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31947595A JP3490201B2 (en) 1995-11-14 1995-11-14 MnNiBi alloy magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31947595A JP3490201B2 (en) 1995-11-14 1995-11-14 MnNiBi alloy magnetic powder

Publications (2)

Publication Number Publication Date
JPH09139304A true JPH09139304A (en) 1997-05-27
JP3490201B2 JP3490201B2 (en) 2004-01-26

Family

ID=18110620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31947595A Expired - Fee Related JP3490201B2 (en) 1995-11-14 1995-11-14 MnNiBi alloy magnetic powder

Country Status (1)

Country Link
JP (1) JP3490201B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055010A (en) * 2013-09-12 2015-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド METHOD OF PREPARING MANGANESE-BISMUTH ALLOY NANOPARTICLE, MnBi NANOPARTICLE AND HARD MAGNET CONTAINING THE SAME
CN107408438A (en) * 2015-03-06 2017-11-28 户田工业株式会社 MnBi based magnetic powders and its manufacture method and bonded permanent magnet mixture, bonded permanent magnet and metallic magnet
KR20180101424A (en) 2016-01-07 2018-09-12 도다 고교 가부시끼가이샤 MnBi magnetic powder, process for producing the same, compound for bonded magnet, bonded magnet, MnBi-based metal magnet and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055010A (en) * 2013-09-12 2015-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド METHOD OF PREPARING MANGANESE-BISMUTH ALLOY NANOPARTICLE, MnBi NANOPARTICLE AND HARD MAGNET CONTAINING THE SAME
US10410773B2 (en) 2013-09-12 2019-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Synthesis and annealing of manganese bismuth nanoparticles
CN107408438A (en) * 2015-03-06 2017-11-28 户田工业株式会社 MnBi based magnetic powders and its manufacture method and bonded permanent magnet mixture, bonded permanent magnet and metallic magnet
KR20180101424A (en) 2016-01-07 2018-09-12 도다 고교 가부시끼가이샤 MnBi magnetic powder, process for producing the same, compound for bonded magnet, bonded magnet, MnBi-based metal magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JP3490201B2 (en) 2004-01-26

Similar Documents

Publication Publication Date Title
RU2629124C9 (en) Sintered magnet and methods of its obtaining
WO1999016086A1 (en) Oxide magnetic material, ferrite particles, bonded magnet, sintered magnet, method of manufacturing the same, and magnetic recording medium
JP3490201B2 (en) MnNiBi alloy magnetic powder
JP4734602B2 (en) Iron nitride magnetic powder with excellent storage stability
JP3777793B2 (en) Method for producing rare earth metal-iron-nitrogen based magnetic material
JP3624724B2 (en) Method for regenerating Sm-Fe-N alloy powder
JP3770734B2 (en) Method for producing Sm-Fe-N alloy powder
JP2018014341A (en) Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JPH0461041B2 (en)
JP2001257110A (en) Magnetic material and magnetic recording medium formed by use thereof
Poldy et al. Magnetization minima in yttrium-cobalt-nickel pseudobinary compounds
JPH10261514A (en) Magnetic material
JP3141461B2 (en) Method for producing Tb-containing rare earth-transition metal alloy powder
US5211770A (en) Magnetic recording powder having a high coercive force at room temperatures and a low curie point
JPS63105909A (en) Production of sintered alloy
JP2000294416A (en) Rare earth bonded magnet
JPH06151133A (en) Manufacture of magnet powder
JPH1167511A (en) Magnetic material
JPH02180003A (en) Ferromagnetic ultrafine particle and manufacture thereof, and magnetic recording medium and thermo magnetic recording medium
JPH06163230A (en) Method of manufacturing magnetic powder for bonded magnet
JPS6033286B2 (en) magnetic recording medium
JPH06163231A (en) Magnetic powder for bonded magnet and manufacture thereof
JPH05152115A (en) Manufacture of magnetic recording powder
Branagan et al. Eliminating degradation during bonding of gas atomized Nd-Fe-B
JPH09102117A (en) Magnetic recording medium, recording and reproducing method therefor, and recording and reproducing device therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031021

LAPS Cancellation because of no payment of annual fees