JPH06163231A - Magnetic powder for bonded magnet and manufacture thereof - Google Patents

Magnetic powder for bonded magnet and manufacture thereof

Info

Publication number
JPH06163231A
JPH06163231A JP4341284A JP34128492A JPH06163231A JP H06163231 A JPH06163231 A JP H06163231A JP 4341284 A JP4341284 A JP 4341284A JP 34128492 A JP34128492 A JP 34128492A JP H06163231 A JPH06163231 A JP H06163231A
Authority
JP
Japan
Prior art keywords
solution
type
magnetic powder
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4341284A
Other languages
Japanese (ja)
Inventor
Kouji Sezaki
好司 瀬▲ざき▼
Takuji Nomura
卓司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4341284A priority Critical patent/JPH06163231A/en
Publication of JPH06163231A publication Critical patent/JPH06163231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide magnetic powder for bonded magnet, which possesses high magnetic characteristic and a high cost performance in combination, and a method of manufacturing the magnetic powder by a method wherein the magnetic powder is realized in such a process that a grinding process is not required. CONSTITUTION:One kind or more than two kinds of metal salts made to dissolve in a solution are mixed with a precipitating medium made to dissolve or dispersed in the solution and precipitated fine particles are made to produce in the solution as a precursor. After that, magnetic powder is produced by a method of reducing fine particles. Thereby, magnetic powder for bonded magnet, which is an aggregate consisting of alloy fine particles having a mean particle diameter of 0.001 to 1.0mum and is made of aggregated particles having a mean particle diameter of 1.0 to 500mum, can be obtained. Accordingly, it becomes possible to realize the magnetic powder by a single process, which does not require grinding process unlike a conventional process, and magnetic powder for bonded magnet, which is superior in cost performance, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気特性に優れ、且つ
コストパフォーマンスにも優れたボンド磁石用磁粉およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic powder for bonded magnets having excellent magnetic properties and cost performance, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器、電子部品の発展に伴っ
て、これらに使用される永久磁石材料も多様なものが用
いられている。これらの永久磁石材料の態様としては、
大別して粉末冶金法もしくは鋳造法に代表されるバルク
磁石と、永久磁石粉を結合剤によって成形せしめたボン
ド磁石がある。かかるボンド磁石は形状の自由度、寸法
精度の良さ、軽量、等の長所を生かして増加の一途にあ
る。
2. Description of the Related Art In recent years, with the development of electronic devices and electronic parts, various permanent magnet materials have been used. Examples of these permanent magnet materials include:
Broadly classified, there are a bulk magnet represented by a powder metallurgy method or a casting method, and a bonded magnet obtained by molding a permanent magnet powder with a binder. The number of such bonded magnets is increasing owing to their advantages such as freedom of shape, good dimensional accuracy, and light weight.

【0003】かかるボンド磁石に使用される永久磁石材
料粉としては、ハードフェライト系、アルニコ系及び希
土類−遷移金属系が使用されており、例えば希土類−遷
移金属系としては、Sm−Co系の1−5型、2−17
型、Nd−Fe−B系、さらには最近発見され、現在研
究が進んでいるSm−Fe−N系などが実用化、または
開発されつつある。これらの内で高磁気特性を要求され
る場合は、希土類−遷移金属系磁石粉を用いている。
As the permanent magnet material powder used for such a bonded magnet, hard ferrite type, alnico type and rare earth-transition metal type are used. For example, rare earth-transition metal type is Sm-Co type. -5 type, 2-17
Type, Nd-Fe-B system, and more recently, Sm-Fe-N system, which has been recently discovered and is currently being researched, are being put to practical use or being developed. When high magnetic properties are required among these, rare earth-transition metal magnet powder is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
永久磁石粉は、ハードフェライトは安価であるが磁気特
性が低く、アルニコ系は比較的安価であるが磁気特性の
うち保磁力が低く、また希土類−遷移金属系は磁気特性
は高いもののかなり高価であるという問題がある。ま
た、従来のボンド磁石用磁粉は、いずれも冶金的手法に
よって製造されており、理論的に保有するiHcよりか
なり低いレベルのiHcしか実現されていない。この原
因は、冶金的手法の場合、合金もしくは酸化物を所望の
結晶系にするために、かなり高温での熱処理が必要であ
るため、内部に構造的な欠陥や、歪が残るためであると
考えられる。且つ、粉状とするためには、作製した合金
塊またはリボンを1mm以下の磁粉に粉砕する必要があ
るが、この場合はほとんどが機械的粉砕法によって磁粉
にしているのが現状である。このような機械的粉砕によ
っても磁粉内部に構造的な欠陥や歪が残るために、磁粉
のiHcは理論的な値より相当下回ったものしか実現さ
れていない。
However, in the conventional permanent magnet powder, hard ferrite is inexpensive but has low magnetic properties, and alnico series is relatively inexpensive, but coercive force is low among magnetic properties, and rare earth elements are also rare. -Transition metal systems have the problem that they are quite expensive although they have high magnetic properties. In addition, all the conventional magnetic powders for bonded magnets are manufactured by a metallurgical method, and only iHc at a level considerably lower than theoretically held iHc is realized. This is because the metallurgical method requires heat treatment at a considerably high temperature in order to make the alloy or oxide into a desired crystal system, so that structural defects and strain remain inside. Conceivable. Moreover, in order to make powder, it is necessary to crush the produced alloy lump or ribbon into magnetic powder of 1 mm or less, but in this case, most of them are magnetic powder by the mechanical pulverization method at present. Due to structural defects and strains remaining inside the magnetic powder even by such mechanical pulverization, only iHc of the magnetic powder is significantly lower than the theoretical value.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の様な従
来技術が有する問題を解決し、高い磁気特性を有し、コ
ストパフォーマンスに優れたボンド磁石用磁粉およびそ
の製造方法を提供することを目的とする。
The present invention solves the problems of the prior art as described above, and provides a magnetic powder for bonded magnets having high magnetic properties and excellent cost performance, and a method for producing the same. With the goal.

【0006】具体的には、本発明は、以下に述べる方法
により前述の従来技術の課題を解決するものである。 (1) 溶液中に溶解させた1種または2種以上の金属
塩と溶液中に溶解または分散させた沈殿剤とを混合し、
溶液中に前駆体として沈殿微粒子を生成させた後に、前
記微粒子を還元する方法で生成せしめた0.001〜
1.0μmの平均粒子径を有する合金微粒子の集合体で
あり、前記集合粒子の平均粒子径が1.0〜500μm
であるボンド磁石用磁粉。 (2) 溶液中に溶解させた1種または2種以上の金属
塩または前記金属塩と非金属塩及び/または錯化剤を溶
液中に溶解または分散させた溶液と、還元剤を溶液中に
溶解または分散させた溶液を混合し反応せしめる方法で
生成せしめた0.001〜1.0μmの平均粒子径を有
する合金微粒子の集合体であり、前記集合粒子の平均粒
子径が1.0〜500μmであるボンド磁石用磁粉。 (3) 前記合金微粒子の集合体の容易磁化方向が一方
向に整列されている前記(1)または(2)記載のボン
ド磁石用磁粉。 (4) 前記合金微粒子がFe、Co、Ni、Mnの少
なくとも1種以上を主成分とし、B、C、N、P、S
i、Al、Ti、V、Mo、Pt、Pd、Ge、Ga、
Sn、Zr、Nb、As、Ta、Hf、BiまたはCr
の内から選択される1種以上の元素を含有する前記
(1)、(2)または(3)記載のボンド磁石用磁粉。 (5) 前記合金微粒子の結晶構造が、AuCuI型、
AuCu3 I型、MnBi型、W2 C型、CuPt型、
Ni2 Cr型、Cr2 Al型、CuAuII型、Fe2
型、ZnS型、PbO型、TiO2 型、FeS2 型、β
−U型、Ag3 Mg型、Ni3 V型、Ni2 In型、F
3 C型のいずれか1種または複数の組合せである前記
(1)、(2)、(3)または(4)記載のボンド磁石
用磁粉。 (6) 溶液中に溶解させた1種または2種以上の金属
塩と溶液中に溶解または分散させた沈殿剤とを混合し、
溶液中に前駆体として沈殿微粒子を生成させた後に、前
記微粒子を還元する方法で0.001〜1.0μmの平
均粒子径を有する合金微粒子を生成せしめ、前記合金微
粒子を一次粒子として1.0〜500μmの平均粒子径
を有する集合体粒子としたボンド磁石用磁粉の製造方
法。 (7) 溶液中に溶解させた1種または2種以上の金属
塩または前記金属塩と非金属塩及び/または錯化剤を溶
液中に溶解または分散させた溶液と、還元剤を溶液中に
溶解または分散させた溶液を混合し反応せしめる方法で
0.001〜1.0μmの平均粒子径を有する合金微粒
子を生成せしめ、前記合金微粒子を一次粒子として1.
0〜500μmの平均粒子径を有する集合体粒子とした
ボンド磁石用磁粉の製造方法。 (8) 前記集合体粒子を形成する方法が、還元性もし
くは不活性雰囲気中での熱処理である前記(6)または
(7)記載のボンド磁石用磁粉の製造方法。
Specifically, the present invention solves the above-mentioned problems of the prior art by the method described below. (1) Mixing one or more kinds of metal salts dissolved in a solution with a precipitant dissolved or dispersed in the solution,
After the precipitated fine particles were formed as a precursor in the solution, 0.001 produced by the method of reducing the fine particles
It is an aggregate of alloy fine particles having an average particle diameter of 1.0 μm, and the average particle diameter of the aggregate particles is 1.0 to 500 μm.
Is a magnetic powder for bonded magnets. (2) A solution in which one or more kinds of metal salts dissolved in a solution or the metal salt and a non-metal salt and / or a complexing agent are dissolved or dispersed in the solution, and a reducing agent in the solution. It is an aggregate of alloy fine particles having an average particle diameter of 0.001 to 1.0 μm produced by a method of mixing and reacting a dissolved or dispersed solution, and the average particle diameter of the aggregate particles is 1.0 to 500 μm. Is a magnetic powder for bonded magnets. (3) The magnetic powder for bonded magnets according to the above (1) or (2), wherein the easy magnetization direction of the alloy fine particle aggregate is aligned in one direction. (4) The alloy fine particles contain at least one of Fe, Co, Ni, and Mn as main components, and contain B, C, N, P, and S.
i, Al, Ti, V, Mo, Pt, Pd, Ge, Ga,
Sn, Zr, Nb, As, Ta, Hf, Bi or Cr
The magnetic powder for a bonded magnet according to the above (1), (2) or (3), which contains one or more elements selected from the above. (5) The crystal structure of the alloy fine particles is AuCuI type,
AuCu 3 I type, MnBi type, W 2 C type, CuPt type,
Ni 2 Cr type, Cr 2 Al type, CuAuII type, Fe 2 P
Type, ZnS type, PbO type, TiO 2 type, FeS 2 type, β
-U type, Ag 3 Mg type, Ni 3 V type, Ni 2 an In type, F
e 3 C type wherein is any one or more combinations of (1), (2), (3) or (4) magnetic powder for bonded magnets according. (6) Mixing one or more metal salts dissolved in a solution with a precipitant dissolved or dispersed in the solution,
After generating fine particles of a precipitate as a precursor in a solution, alloy fine particles having an average particle diameter of 0.001 to 1.0 μm are generated by a method of reducing the fine particles, and the fine alloy particles are used as primary particles to obtain 1.0. A method for producing magnetic powder for a bonded magnet, which is an aggregate particle having an average particle diameter of ˜500 μm. (7) One or more metal salts dissolved in a solution or a solution in which the metal salt and a non-metal salt and / or a complexing agent are dissolved or dispersed in a solution, and a reducing agent in the solution. 1. The alloy fine particles having an average particle diameter of 0.001 to 1.0 μm are produced by the method of mixing and reacting the dissolved or dispersed solutions, and the alloy fine particles are used as primary particles.
A method for producing magnetic powder for a bonded magnet, which comprises aggregate particles having an average particle diameter of 0 to 500 μm. (8) The method for producing a magnetic powder for a bonded magnet according to the above (6) or (7), wherein the method of forming the aggregate particles is a heat treatment in a reducing or inert atmosphere.

【0007】[0007]

【作用】本発明のような構成とすることによって、粉砕
工程を必要としないため、高い磁気特性と高いコストパ
フォーマンスを兼ね備えたボンド磁石用磁粉およびその
製造方法を提供することが出来る。
With the structure of the present invention, since no crushing step is required, it is possible to provide a magnetic powder for a bonded magnet having both high magnetic properties and high cost performance, and a method for producing the same.

【0008】[0008]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれらにより何ら制限されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0009】本発明における合金微粒子の合成方法は以
下の内容である。すなわち、本発明における合成方法の
1実施態様は溶液中で化学反応によって金属を含んだ沈
殿物を生成させるため、反応温度は通常は常温である。
使用する沈殿剤によっては、反応熱を伴うか、溶液の温
度を上昇させて行うものもあるが、この場合でも反応時
の温度は200℃を超えることはない。さらに、沈殿微
粒子を還元気体中で合金微粒子とする場合も、熱処理温
度は800℃までであり、粉末冶金法による合金化の温
度と比較するとかなり低温度で合金化出来る。更に他の
実施態様は、溶液中で金属塩及びまたは非金属塩を還元
剤を加えることによって直接合金化するものであり、こ
の場合も微粉生成過程において、過剰の熱や粉砕歪が入
ることはない。以上述べた本発明のように、複数の金属
イオンを化学反応によって沈殿させた場合、金属が分子
レベルで均一に混合された沈殿物が得られるため、低温
で容易に合金化、もしくは金属間化合物を作製すること
が可能となる。さらに、本発明のように溶液中で微粒子
を生成させることで、粉末冶金法のように粉砕をする必
要がなく、粉砕による歪、欠陥を残すこともない。この
ように、低温で目的とする単一金属または複数の金属か
らなる合金または金属間化合物を作製し、かつ粉砕工程
を経ないで金属微粒子を作製できる事より、従来技術の
欠点である磁粉内部の歪や欠陥を極力除去することが可
能となり、磁粉の磁気特性を向上させることが容易に達
成可能となる。
The method for synthesizing the alloy fine particles in the present invention is as follows. That is, since one embodiment of the synthesis method of the present invention produces a precipitate containing a metal by a chemical reaction in a solution, the reaction temperature is usually room temperature.
Depending on the precipitating agent used, there are some which are accompanied by heat of reaction or by raising the temperature of the solution, but even in this case, the temperature during the reaction does not exceed 200 ° C. Further, even when the precipitated fine particles are made into alloy fine particles in a reducing gas, the heat treatment temperature is up to 800 ° C., and alloying can be performed at a considerably low temperature as compared with the alloying temperature by the powder metallurgy method. Still another embodiment is to directly alloy a metal salt and / or a non-metal salt in a solution by adding a reducing agent, and in this case too, excessive heat and crushing strain are not generated in the fine powder generation process. Absent. When a plurality of metal ions are precipitated by a chemical reaction as in the present invention described above, a precipitate in which the metals are uniformly mixed at the molecular level is obtained, which facilitates alloying at low temperatures or intermetallic compounds. Can be manufactured. Furthermore, by generating fine particles in a solution as in the present invention, it is not necessary to pulverize as in the powder metallurgy method, and distortion and defects due to pulverization are not left. In this way, it is possible to produce an alloy or intermetallic compound composed of a target single metal or a plurality of metals at a low temperature, and to produce fine metal particles without going through a crushing step. It is possible to remove the distortion and the defect as much as possible, and it is possible to easily improve the magnetic characteristics of the magnetic powder.

【0010】さらに、本発明のボンド磁石用磁粉は上記
の製造方法によって合成された合金微粒子の平均粒子径
が0.001〜1.0μmである微粉を集合体としたも
のである。この合金微粒子の平均粒子径は上記の範囲で
実用上全く問題ないが、より高い磁気特性を得るために
は単磁区粒子径以下であることが好ましい。ボンド磁石
用の磁粉として必要な性状はその粒子径が1.0〜50
0μmであることが重要であり、前記の合成した微粉で
は粒子径が小さすぎる。よって、前記微粒子を集合体と
し、集合粒子の大きさを1.0〜500μmとすること
が本発明の重要な構成要素である。集合粒子が1.0μ
m以下であるとボンド磁石とした場合、工程上の取扱い
がむずかしくなり、高い密度のボンド磁石が得られにく
く、500μm以上になると、集合粒子そのものに空孔
を多く含むことになり好ましくない。
Further, the magnetic powder for bonded magnets of the present invention is an aggregate of fine powders having the average particle diameter of the alloy fine particles synthesized by the above manufacturing method of 0.001 to 1.0 μm. The average particle size of the alloy fine particles is practically no problem within the above range, but it is preferably not more than the single domain particle size in order to obtain higher magnetic properties. The property required as magnetic powder for a bonded magnet is that the particle size is 1.0 to 50.
It is important that the particle size is 0 μm, and the particle size of the above-mentioned synthesized fine powder is too small. Therefore, it is an important component of the present invention that the fine particles are aggregated and the aggregated particles have a size of 1.0 to 500 μm. Aggregate particle is 1.0μ
If it is m or less, it becomes difficult to handle the bonded magnet in the process, and it is difficult to obtain a high-density bonded magnet. If it is 500 μm or more, the aggregated particles themselves include many voids, which is not preferable.

【0011】本発明の微粒子の集合体において、磁気特
性の面から好ましくは、集合体を構成する微粒子の磁化
容易方向が一方向に整列していることである。このこと
によって、集合体粒子は異方性を有することになり、異
方性ボンド磁石が製造可能となる。
In the aggregate of fine particles of the present invention, from the viewpoint of magnetic characteristics, it is preferable that the easy magnetization directions of the fine particles forming the aggregate are aligned in one direction. As a result, the aggregate particles have anisotropy, and the anisotropic bonded magnet can be manufactured.

【0012】合金微粒子の集合体を作製する方法は、前
記合金微粉の溶液中での析出過程において凝集粒子とな
ることを利用することによって容易に達成できる。すな
わち、前駆体微粒子を生成させた後に還元する方法で
は、還元工程で熱処理を施す際に、微粒子の粒成長を起
こさない範囲で微粒子集合体粒子の形成と粒子径の制御
が可能である。また、溶液中で直接還元する方法におい
ては、反応後の凝集粒子を不活性ガス中で熱処理するこ
とによって、同様に集合体粒子を形成させることができ
る。前記の方法で作製した微粒子の集合体の粒子径をさ
らに制御するためには、集合体形成後に解砕を施して粒
度調整することが好ましい。
The method of producing an aggregate of alloy fine particles can be easily achieved by utilizing the fact that the alloy fine powder becomes aggregated particles in the precipitation process in the solution. That is, in the method in which precursor particles are generated and then reduced, when heat treatment is performed in the reduction step, it is possible to form particle aggregate particles and control the particle diameter within a range that does not cause particle growth of the particles. Further, in the method of directly reducing in solution, aggregate particles can be similarly formed by heat-treating the aggregated particles after the reaction in an inert gas. In order to further control the particle size of the aggregate of fine particles produced by the above method, it is preferable to crush the aggregate after forming the aggregate to adjust the particle size.

【0013】本発明における合金微粒子の組成として好
ましい態様は、Fe(鉄)、Co(コバルト)、Ni
(ニッケル)、Mn(マンガン)の内1種以上を主成分
とし、B(ホウ素)、C(炭素)、P(リン)、Si
(ケイ素)、Al(アルミニウム)、Ti(チタニウ
ム)、Ge(ゲルマニウム)、Ga(ガリウム)、V
(バナジウム)、Mo(モリブデン)、Pt(白金)、
Pd(パラジウム)、Sn(すず)、Zr(ジルコニウ
ム)、Nb(ニオブ)、As(ヒ素)、Ta(タンタ
ル)、Hf(ハフニウム)、Bi(ビスマス)およびC
r(クロム)から選択される1種以上の元素を含有する
ことが磁気特性の面から好ましい。添加元素の含有量は
50原子%以下、特に35原子%以下であることが好ま
しい。添加元素の含有量が前記範囲を超えると、飽和磁
化の大幅な低下を招き好ましくない。また、Feの一部
をCoまたはNiで置換することがより好ましい態様で
ある。
A preferred embodiment of the composition of the alloy fine particles in the present invention is Fe (iron), Co (cobalt), Ni.
One or more of (nickel) and Mn (manganese) are the main components, and B (boron), C (carbon), P (phosphorus), Si
(Silicon), Al (aluminum), Ti (titanium), Ge (germanium), Ga (gallium), V
(Vanadium), Mo (molybdenum), Pt (platinum),
Pd (palladium), Sn (tin), Zr (zirconium), Nb (niobium), As (arsenic), Ta (tantalum), Hf (hafnium), Bi (bismuth) and C
From the viewpoint of magnetic properties, it is preferable to contain at least one element selected from r (chromium). The content of the additional element is preferably 50 atomic% or less, and particularly preferably 35 atomic% or less. When the content of the additional element exceeds the above range, the saturation magnetization is significantly reduced, which is not preferable. Further, it is a more preferable embodiment that a part of Fe is replaced with Co or Ni.

【0014】本発明で合成される合金微粉は0.5kO
e以上の保磁力を有することが必要である。高い保磁力
を得るためにはその結晶磁気異方性定数が高いことが好
ましく、そのためには結晶構造の対称性が低いことが重
要である。この観点からは、結晶系が六方晶、正方晶、
斜方晶であることが好ましく、さらには結晶構造がAu
CuI型、AuCu3 I型、MnBi型、W2 C型、C
uPt型、Ni2 Cr型、Cr2 Al型、CuAuII
型、Fe2 P型、ZnS型、PbO型、TiO2型、F
eS2 型、β−U型、Ag3 Mg型、Ni3 V型、Ni
2 In型、Fe3C型のいずれか1種または複数の組合
せであることが好ましい。
The fine alloy powder synthesized in the present invention is 0.5 kO.
It is necessary to have a coercive force of e or more. In order to obtain a high coercive force, it is preferable that the magnetocrystalline anisotropy constant is high, and for that purpose, it is important that the symmetry of the crystal structure is low. From this viewpoint, the crystal system is hexagonal, tetragonal,
It is preferably orthorhombic, and moreover, the crystal structure is Au.
CuI type, AuCu 3 I type, MnBi type, W 2 C type, C
uPt type, Ni 2 Cr type, Cr 2 Al type, CuAuII
Type, Fe 2 P type, ZnS type, PbO type, TiO 2 type, F
eS 2 type, β-U type, Ag 3 Mg type, Ni 3 V type, Ni
Any one of 2 In type and Fe 3 C type or a combination of a plurality of them is preferable.

【0015】本発明における金属塩の塩とは、コスト面
と安定性の面から硫酸塩、硝酸塩、リン酸塩、塩化物を
用いることが好ましい。これらの塩を用いた場合は、反
応に供する溶液は通常は、水を用いるが、反応によって
は非水溶媒を用いることもできる。非水溶媒としては、
メタノール、エタノール、等のアルコール類、アセト
ン、メチルエチルケトン、等のケトン類、またはエーテ
ル類、等が例示できる。そして、沈殿剤とは、シュウ
酸、水酸化ナトリウム、水酸化カリウム、アンモニア
水、炭酸、硫化水素、等の金属元素と反応して溶液に難
溶性の沈殿物を生成するものである。
As the metal salt of the present invention, it is preferable to use a sulfate, a nitrate, a phosphate or a chloride from the viewpoint of cost and stability. When these salts are used, water is usually used as the solution to be subjected to the reaction, but a non-aqueous solvent can be used depending on the reaction. As a non-aqueous solvent,
Examples thereof include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, and ethers. The precipitating agent is one that reacts with metal elements such as oxalic acid, sodium hydroxide, potassium hydroxide, aqueous ammonia, carbonic acid and hydrogen sulfide to form a hardly soluble precipitate in the solution.

【0016】さらに、本発明の他の金属塩の塩として
は、沈殿粒子の組成の均一性が良いことから金属アルコ
キシド、金属アセチルアセトナートなどの溶液中で水を
加えることによって容易に加水分解し、沈殿物を生成す
るものが好ましい態様である。これらの塩を用いた場合
の沈殿剤は水であり、溶媒は非水溶媒とする必要があ
る。加水分解を促進するために、溶液のpH値を高くす
ることも可能である。特に、金属アセチルアセトナート
を用いた場合はアルカリ雰囲気にすることが好ましい。
Further, as salts of other metal salts of the present invention, since the composition of the precipitated particles is good in uniformity, they can be easily hydrolyzed by adding water in a solution of metal alkoxide, metal acetylacetonate or the like. The one that produces a precipitate is a preferred embodiment. When these salts are used, the precipitant is water and the solvent needs to be a non-aqueous solvent. It is also possible to increase the pH value of the solution in order to accelerate the hydrolysis. In particular, when metal acetylacetonate is used, it is preferable to use an alkaline atmosphere.

【0017】本発明における非金属塩とは、合金微粉中
に含有せしめる非金属元素を含有する化合物であり、ホ
ウ酸、リン酸などが例示出来る。
The non-metal salt in the present invention is a compound containing a non-metal element contained in the alloy fine powder, and boric acid, phosphoric acid and the like can be exemplified.

【0018】本発明における沈殿微粒子を還元する方法
は、一般的な還元性を有する気体を流通させながら熱処
理する方法、金属Caまたは金属Mgと混合し熱処理す
る方法、等を用いることができるが、還元性を有する気
体を流通させながら熱処理する方法が好ましい。ここ
で、還元性を有する気体とは、水素、一酸化炭素、アン
モニアガス、一酸化窒素、一酸化硫黄または、これらの
気体の混合気体である。コスト、安全性の面から好まし
くは水素もしくは一酸化炭素を用いることが良い。ま
た、還元時の熱処理温度は、目的とする金属の種類によ
んで適宜選択できるが、好ましくは700℃以下であ
る。熱処理温度を高温にしすぎると金属微粒子の焼結現
象が起こり、粒子径の成長を伴うため保磁力の低下を招
く。
As the method of reducing the precipitated fine particles in the present invention, a general method of heat treatment while passing a gas having a reducing property, a method of heat treatment by mixing with metal Ca or metal Mg, etc. can be used. A method of performing heat treatment while circulating a reducing gas is preferable. Here, the reducing gas is hydrogen, carbon monoxide, ammonia gas, nitric oxide, sulfur monoxide, or a mixed gas of these gases. From the viewpoint of cost and safety, hydrogen or carbon monoxide is preferably used. The heat treatment temperature at the time of reduction can be appropriately selected depending on the kind of the target metal, but is preferably 700 ° C. or lower. If the heat treatment temperature is too high, the sintering phenomenon of the metal fine particles occurs, and the coercive force is lowered because the particle diameter grows.

【0019】本発明において溶液中で直接還元する場合
に用いられる還元剤とは還元作用を呈する物質であり、
次亜りん酸Naなどの次亜りん酸塩、亜りん酸塩、亜り
ん酸水素塩、水素化ほう素Na、水素化ほう素K、水素
化ほう素ヒドラジン、水素化ほう素ピリジンなどの水素
化ほう素化合物、ジメチルアミンボラン、ジエチルアミ
ンボラン、トリメチルアミンボラン、第3ブチルアミン
ボラン、ピリジンボラン、ホルムアルデヒド、ヒドラジ
ン、塩酸ヒドラジン、硫酸ヒドラジン、グリオキシル
酸、ヒドロキシメチルスルフィン酸Na、ビピリジン、
アスコルビン酸Naなどのアスコルビン酸塩、ヒドロキ
シルアミン塩酸塩、ぎ酸、酢酸、ベンジルアルコール、
メチルアルコールなどアルコール類などが例示できる。
尚、Li、K、Ba、Ca、Na、Mg、Al、Ti、
V、Mnなどの卑金属も本発明の還元剤の範ちゅうであ
る。還元剤は価格、反応性、溶解度、分散性などを考慮
し適宜選択しなければならない。
In the present invention, the reducing agent used when directly reducing in a solution is a substance exhibiting a reducing action,
Hydrogen such as hypophosphite such as sodium hypophosphite, phosphite, hydrogen phosphite, sodium borohydride, boron hydride K, borohydride hydrazine, borohydride pyridine, etc. Boron bromide compound, dimethylamine borane, diethylamine borane, trimethylamine borane, tert-butylamine borane, pyridine borane, formaldehyde, hydrazine, hydrazine hydrochloride, hydrazine sulfate, glyoxylic acid, sodium hydroxymethylsulfinate, bipyridine,
Ascorbic acid salts such as sodium ascorbate, hydroxylamine hydrochloride, formic acid, acetic acid, benzyl alcohol,
Examples thereof include alcohols such as methyl alcohol.
In addition, Li, K, Ba, Ca, Na, Mg, Al, Ti,
Base metals such as V and Mn are also included in the reducing agent of the present invention. The reducing agent must be appropriately selected in consideration of price, reactivity, solubility, dispersibility and the like.

【0020】しかしながら、還元剤はその酸化還元電位
が還元しようとする金属イオンの酸化還元電位よりも低
い場合にのみ金属イオンを還元でき、その結果、析出物
を得ることができるものであり、還元剤と金属塩の組合
せによっては必ずしも還元できるとは限らない。そこ
で、金属イオンの酸化還元電位を低下させる目的で錯化
剤を使用することは有効である。本発明に用いられる錯
化剤には−OH、−COOH、>C=O、−O−、−C
OOR、−CONH2 、−NO、−NO2 、−SO
3 H、−PHO(OH)、−P(OH)2 、−NH2
>NH、>N−、−N=N−、>C=N−、−CONH
2 、>C=N−OH、>C=NH、−SH、−S−、>
C=S、−COSH、>P−、などの配位基を有する化
合物であり、使用する金属塩類によって適宜選択するこ
とができ、1種または2種以上を使用することができ
る。また、これら錯化剤を金属イオンの溶媒中に於ける
安定化の目的で使用することもできる。
However, the reducing agent can reduce the metal ion only when its redox potential is lower than the redox potential of the metal ion to be reduced, and as a result, a precipitate can be obtained. It is not always possible to reduce depending on the combination of the agent and the metal salt. Therefore, it is effective to use a complexing agent for the purpose of lowering the redox potential of metal ions. The complexing agent used in the present invention includes -OH, -COOH,> C = O, -O-, -C.
OOR, -CONH 2, -NO, -NO 2, -SO
3 H, -PHO (OH), - P (OH) 2, -NH 2,
>NH,> N-, -N = N-,> C = N-, -CONH
2 ,> C = N-OH,> C = NH, -SH, -S-,>
It is a compound having a coordinating group such as C = S, -COSH,> P-, and can be appropriately selected depending on the metal salt used, and one kind or two or more kinds can be used. Further, these complexing agents can be used for the purpose of stabilizing metal ions in a solvent.

【0021】また、溶液中で直接還元して合金微粉を得
た場合は、その全部または一部が非晶質である場合があ
る。これは析出粉末中に多くの非金属元素を含有する場
合に多い傾向である。しかし、非晶質構造は磁気特性
上、特に保磁力に悪影響を及ぼすためこれらを結晶化さ
せることが好ましい。本発明に用いられる結晶化熱処理
とは、不活性雰囲気あるいは還元性雰囲気などの非酸化
性雰囲気中で加熱することであり、その雰囲気の選択、
加熱条件の設定は合金微粉の物性などを考慮し、行う必
要がある。
When alloy fine powder is obtained by direct reduction in a solution, the whole or a part thereof may be amorphous. This tends to be the case when many non-metallic elements are contained in the precipitated powder. However, since the amorphous structure adversely affects the coercive force in terms of magnetic characteristics, it is preferable to crystallize them. The crystallization heat treatment used in the present invention is heating in a non-oxidizing atmosphere such as an inert atmosphere or a reducing atmosphere, and the selection of the atmosphere,
It is necessary to set the heating conditions in consideration of the physical properties of the fine alloy powder.

【0022】次に、本発明の製造方法を、従来技術との
比較においてその効果を示すために、具体的な実験手順
とともに述べる。
Next, the manufacturing method of the present invention will be described together with specific experimental procedures in order to show its effect in comparison with the prior art.

【0023】(実施例1)出発原料としてFeCl2
7H2 O:19.5gとCoCl2 ・6H2 O:7.1
gを100mlイオン交換水に溶解させ、さらにNaO
H:20gをイオン交換水に溶解させた。FeとCo金
属塩が溶解している溶液にNaOH水溶液を室温でゆっ
くりと攪はんしながら添加した。この時すぐに沈殿物が
生成した。この状態で10分間攪はんを行なった後に、
過剰のイオン交換水を加えて、溶液pH値が7になるま
で沈殿物の洗浄を行った。得られた沈殿物を100℃の
温度で乾燥し、還元処理前の前駆体微粉を得た。次い
で、水素気流中(300ml/分)で400℃×4hr
の熱処理を行った。還元処理後の磁粉はトルエンに浸漬
して取り出し、空気中でトルエンを蒸発させることで徐
々に表面を酸化させた。
(Example 1) FeCl 2 · as a starting material
7H 2 O: 19.5 g and CoCl 2 · 6H 2 O: 7.1
g was dissolved in 100 ml of ion-exchanged water, and NaO was added.
H: 20 g was dissolved in ion-exchanged water. An aqueous solution of NaOH was added to the solution in which the Fe and Co metal salts were dissolved at room temperature with slow stirring. A precipitate formed immediately at this time. After stirring for 10 minutes in this state,
Excess ion-exchanged water was added, and the precipitate was washed until the solution pH value became 7. The obtained precipitate was dried at a temperature of 100 ° C. to obtain precursor fine powder before reduction treatment. Next, in a hydrogen stream (300 ml / min), 400 ° C x 4 hr
Was heat treated. The magnetic powder after the reduction treatment was immersed in toluene and taken out, and the surface was gradually oxidized by evaporating toluene in the air.

【0024】還元されたFeCo粒子の形態観察を電子
顕微鏡で実施したところ、合金微粒子の平均粒子径は
0.1μmであり、その集合体の平均粒子径は5μmで
あった。また、VSM(試料振動型磁力計)により前記
磁粉の磁気特性を測定した結果、σ=175emu/
g、iHc=1.2kOeであった。
When the morphology of the reduced FeCo particles was observed with an electron microscope, the average particle diameter of the alloy fine particles was 0.1 μm, and the average particle diameter of the aggregate was 5 μm. In addition, as a result of measuring the magnetic characteristics of the magnetic powder with a VSM (sample vibrating magnetometer), σ = 175 emu /
g, iHc = 1.2 kOe.

【0025】(実施例2)出発原料としてFe(O−n
−C3 7 3 :2g、Co(O−n−C3 73
1.52g、を乾燥したn−C3 7 OH中に溶解し、
均一溶液を調製した。次ぎに、調製した溶液を80℃に
保持しながら、蒸留水:1.55gとn−C3 7
H:15.5mlとを混合した溶液を加え、沈殿物を生
成させた。生成した沈殿物を遠心分離して取り出した
後、得られた沈殿物を100℃の温度で乾燥し、還元処
理前の前駆体微粉を得た。次いで、水素気流中(300
ml/分)で400℃×4hrの熱処理を行った。還元
処理後の磁粉はトルエンに浸漬して取り出し、空気中で
トルエンを蒸発させることで徐々に表面を酸化させた。
Example 2 Fe (O-n) was used as a starting material.
-C 3 H 7) 3: 2g , Co (O-n-C 3 H 7) 3:
1.52 g, was dissolved in n-C 3 in H 7 OH drying the,
A homogeneous solution was prepared. Next, while maintaining the prepared solution at 80 ° C., distilled water: 1.55 g and n-C 3 H 7 O were added.
A solution in which H: 15.5 ml was mixed was added to generate a precipitate. The produced precipitate was centrifuged and taken out, and then the obtained precipitate was dried at a temperature of 100 ° C. to obtain a precursor fine powder before the reduction treatment. Then, in a hydrogen stream (300
Heat treatment was performed at 400 ° C. for 4 hours at (ml / min). The magnetic powder after the reduction treatment was immersed in toluene and taken out, and the surface was gradually oxidized by evaporating toluene in the air.

【0026】還元されたFeCo粒子の形態観察を電子
顕微鏡で実施したところ、平均粒子径は0.1μmであ
り、その集合体の平均粒子径は10μmであった。ま
た、VSMにより前記磁粉の磁気特性を測定した結果、
σ=183emu/g、iHc=1.5kOeであっ
た。
When the morphology of the reduced FeCo particles was observed with an electron microscope, the average particle diameter was 0.1 μm, and the average particle diameter of the aggregate was 10 μm. In addition, as a result of measuring the magnetic characteristics of the magnetic powder by VSM,
σ = 183 emu / g, iHc = 1.5 kOe.

【0027】(実施例3)イオン交換水100mlにF
eSO4 ・7H2 Oを19.46g、CoCl2・6H
2 Oを3.90g加え攪はん溶解し、塩溶液を得た。ま
た、イオン交換水100mlに水素化ほう素カリウムを
53.34gを加え攪はん混合し、還元剤溶液を得た。
これら塩溶液と還元剤溶液を混合攪はんし、反応せしめ
て析出粉末を得、ろ過、洗浄を行った後、アルゴンガス
雰囲気中で150℃、2時間の結晶化熱処理を行った。
作製した磁石粉末の形態観察を電子顕微鏡で実施したと
ころ、合金微粒子の平均粒子径は0.05μmであり、
その集合体の平均粒子径は3μmであった。また、作製
した磁石粉末の磁気特性をVSMを用いて測定したとこ
ろ、σ=156emu/g、iHc=1.02kOeで
あった。
(Example 3) F was added to 100 ml of deionized water.
eSO 4 · 7H 2 O and 19.46g, CoCl 2 · 6H
2.90 g of 2 O was added and dissolved with stirring to obtain a salt solution. Further, 53.34 g of potassium borohydride was added to 100 ml of ion-exchanged water and mixed by stirring to obtain a reducing agent solution.
These salt solution and reducing agent solution were mixed and stirred to react with each other to obtain a precipitated powder, which was filtered and washed, and then heat-treated for crystallization at 150 ° C. for 2 hours in an argon gas atmosphere.
When the morphology of the produced magnet powder was observed with an electron microscope, the average particle diameter of the alloy fine particles was 0.05 μm,
The average particle size of the aggregate was 3 μm. Moreover, when the magnetic characteristics of the produced magnet powder were measured using VSM, σ = 156 emu / g and iHc = 1.02 kOe.

【0028】(比較例1)出発原料として、Fe金属塊
とCo金属塊をFe70Co30(原子%)の組成となるよ
うにアーク溶解によって合金化した。得られた合金塊を
スタンプミルによって粗粉砕を行い、次いで遊星型ボー
ルミルによって、有機溶媒中で200rpm×10時間
の条件で微粉砕を行なった。
(Comparative Example 1) As starting materials, Fe metal lumps and Co metal lumps were alloyed by arc melting so as to have a composition of Fe 70 Co 30 (atomic%). The obtained alloy lump was roughly pulverized by a stamp mill, and then finely pulverized by a planetary ball mill in an organic solvent under the conditions of 200 rpm × 10 hours.

【0029】得られたFeCo粒子の形態観察を電子顕
微鏡で実施したところ、平均粒子径は1.0μmであっ
た。また、VSMにより前記磁粉の磁気特性を測定した
結果、σ=185emu/g、iHc=0.1kOeで
あった。
When the morphology of the obtained FeCo particles was observed with an electron microscope, the average particle size was 1.0 μm. Moreover, as a result of measuring the magnetic characteristics of the magnetic powder by VSM, σ = 185 emu / g and iHc = 0.1 kOe.

【0030】以上の本発明による実施例1〜3と従来技
術である比較例1との比較より明かなように、本発明に
よれば高いσ(飽和磁化)を維持したまま、保磁力を大
幅に向上させることが可能となる。
As is clear from the comparison between Examples 1 to 3 according to the present invention and Comparative Example 1 which is a conventional technique, according to the present invention, the coercive force is significantly increased while maintaining a high σ (saturation magnetization). It is possible to improve.

【0031】[0031]

【発明の効果】以上、詳述したように本発明によれば、
高い飽和磁化を維持したまま、良好な保磁力を有する永
久磁石粉を、従来のように粉砕工程を必要としない簡便
なプロセスで実現することが可能となり、コストパフォ
ーマンスに優れたボンド磁石用磁粉を提供することが出
来る。
As described above in detail, according to the present invention,
It is possible to realize permanent magnet powder with good coercive force while maintaining high saturation magnetization by a simple process that does not require a crushing step as in the past, and to provide magnetic powder for bonded magnets with excellent cost performance. Can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 33/02 G H01F 1/04 1/08 A // H01F 7/02 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C22C 33/02 G H01F 1/04 1/08 A // H01F 7/02 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 溶液中に溶解させた1種または2種以上
の金属塩と溶液中に溶解または分散させた沈殿剤とを混
合し、溶液中に前駆体として沈殿微粒子を生成させた後
に、前記微粒子を還元する方法で生成せしめた0.00
1〜1.0μmの平均粒子径を有する合金微粒子の集合
体であり、前記集合粒子の平均粒子径が1.0〜500
μmであるボンド磁石用磁粉。
1. A mixture of one or more kinds of metal salts dissolved in a solution and a precipitant dissolved or dispersed in the solution to form fine particles of a precipitate as a precursor in the solution, 0.00 produced by the method of reducing the fine particles
It is an aggregate of alloy fine particles having an average particle diameter of 1 to 1.0 μm, and the average particle diameter of the aggregate particles is 1.0 to 500.
Magnetic powder for bonded magnets having a size of μm.
【請求項2】 溶液中に溶解させた1種または2種以上
の金属塩または前記金属塩と非金属塩及び/または錯化
剤を溶液中に溶解または分散させた溶液と、還元剤を溶
液中に溶解または分散させた溶液を混合し反応せしめる
方法で生成せしめた0.001〜1.0μmの平均粒子
径を有する合金微粒子の集合体であり、前記集合粒子の
平均粒子径が1.0〜500μmであるボンド磁石用磁
粉。
2. A solution in which one or more metal salts dissolved in a solution, or a solution in which the metal salt and a non-metal salt and / or a complexing agent are dissolved or dispersed in a solution, and a reducing agent in solution It is an aggregate of alloy fine particles having an average particle diameter of 0.001 to 1.0 μm produced by a method of mixing and reacting a solution dissolved or dispersed therein, and the average particle diameter of the aggregate particles is 1.0. Magnetic powder for a bonded magnet having a size of 500 μm.
【請求項3】 前記合金微粒子の集合体の容易磁化方向
が一方向に整列されている請求項1または請求項2記載
のボンド磁石用磁粉。
3. The magnetic powder for a bonded magnet according to claim 1 or 2, wherein the direction of easy magnetization of the aggregate of alloy fine particles is aligned in one direction.
【請求項4】 前記合金微粒子がFe、Co、Ni、M
nの少なくとも1種以上を主成分とし、B、C、N、
P、Si、Al、Ti、V、Mo、Pt、Pd、Ge、
Ga、Sn、Zr、Nb、As、Ta、Hf、Biまた
はCrの内から選択される1種以上の元素を含有する請
求項1、2または請求項3記載のボンド磁石用磁粉。
4. The fine alloy particles are Fe, Co, Ni, M.
n, at least one or more of the main components, B, C, N,
P, Si, Al, Ti, V, Mo, Pt, Pd, Ge,
The magnetic powder for bonded magnets according to claim 1, 2 or 3, which contains at least one element selected from the group consisting of Ga, Sn, Zr, Nb, As, Ta, Hf, Bi and Cr.
【請求項5】 前記合金微粒子の結晶構造が、AuCu
I型、AuCu3 I型、MnBi型、W2 C型、CuP
t型、Ni2 Cr型、Cr2 Al型、CuAuII型、F
2 P型、ZnS型、PbO型、TiO2 型、FeS2
型、β−U型、Ag3 Mg型、Ni3 V型、Ni2 In
型、Fe3 C型のいずれか1種または複数の組合せであ
る請求項1、2、3または請求項4記載のボンド磁石用
磁粉。
5. The crystal structure of the alloy fine particles is AuCu
I type, AuCu 3 I type, MnBi type, W 2 C type, CuP
t type, Ni 2 Cr type, Cr 2 Al type, CuAuII type, F
e 2 P type, ZnS type, PbO type, TiO 2 type, FeS 2
Type, β-U type, Ag 3 Mg type, Ni 3 V type, Ni 2 In
5. The magnetic powder for a bonded magnet according to claim 1, 2, 3 or 4, which is one type or a combination of a plurality of types of Fe 3 C type and Fe 3 C type.
【請求項6】 溶液中に溶解させた1種または2種以上
の金属塩と溶液中に溶解または分散させた沈殿剤とを混
合し、溶液中に前駆体として沈殿微粒子を生成させた後
に、前記微粒子を還元する方法で0.001〜1.0μ
mの平均粒子径を有する合金微粒子を生成せしめ、前記
合金微粒子を一次粒子として1.0〜500μmの平均
粒子径を有する集合体粒子としたボンド磁石用磁粉の製
造方法。
6. A mixture of one or more kinds of metal salts dissolved in a solution and a precipitant dissolved or dispersed in the solution to form fine particles of a precipitate as a precursor in the solution, 0.001-1.0μ by the method of reducing the fine particles
A method for producing magnetic powder for a bonded magnet, wherein alloy fine particles having an average particle diameter of m are produced, and the alloy fine particles are used as primary particles to form aggregate particles having an average particle diameter of 1.0 to 500 μm.
【請求項7】 溶液中に溶解させた1種または2種以上
の金属塩または前記金属塩と非金属塩及び/または錯化
剤を溶液中に溶解または分散させた溶液と、還元剤を溶
液中に溶解または分散させた溶液を混合し反応せしめる
方法で0.001〜1.0μmの平均粒子径を有する合
金微粒子を生成せしめ、前記合金微粒子を一次粒子とし
て1.0〜500μmの平均粒子径を有する集合体粒子
としたボンド磁石用磁粉の製造方法。
7. A solution in which one or more metal salts dissolved in a solution or a solution in which the metal salt and a non-metal salt and / or a complexing agent are dissolved or dispersed in a solution, and a reducing agent in solution An alloy fine particle having an average particle diameter of 0.001 to 1.0 μm is produced by a method of mixing and reacting a solution dissolved or dispersed therein, and the alloy fine particle is a primary particle and an average particle diameter of 1.0 to 500 μm. A method for producing a magnetic powder for a bonded magnet, which is an aggregate particle having:
【請求項8】 前記集合体粒子を形成する方法が、還元
性もしくは不活性雰囲気中での熱処理である請求項6ま
たは請求項7記載のボンド磁石用磁粉の製造方法。
8. The method for producing magnetic powder for a bonded magnet according to claim 6, wherein the method of forming the aggregate particles is a heat treatment in a reducing or inert atmosphere.
JP4341284A 1992-11-26 1992-11-26 Magnetic powder for bonded magnet and manufacture thereof Pending JPH06163231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4341284A JPH06163231A (en) 1992-11-26 1992-11-26 Magnetic powder for bonded magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4341284A JPH06163231A (en) 1992-11-26 1992-11-26 Magnetic powder for bonded magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06163231A true JPH06163231A (en) 1994-06-10

Family

ID=18344866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4341284A Pending JPH06163231A (en) 1992-11-26 1992-11-26 Magnetic powder for bonded magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06163231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212610A (en) * 1999-01-27 2000-08-02 Tsurumi Soda Co Ltd Production of alloy powder and iron powder
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212610A (en) * 1999-01-27 2000-08-02 Tsurumi Soda Co Ltd Production of alloy powder and iron powder
JP2004056091A (en) * 2002-05-31 2004-02-19 Fuji Photo Film Co Ltd Magnetic particle and its manufacturing method, and magnetic recording medium and its manufacturing method
JP4524078B2 (en) * 2002-05-31 2010-08-11 富士フイルム株式会社 Magnetic particle and method for manufacturing the same, and magnetic recording medium and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JP3470032B2 (en) Rare earth permanent magnet material and manufacturing method thereof
Sato et al. Development of TbCu7-type Sm-Fe-N anisotropic magnet powder and its sintered magnets
JPH06349612A (en) Magnetic material, its manufacture and its usage method
JP2015204343A (en) Nano composite magnet and method for manufacturing nano composite magnet
JPH06163231A (en) Magnetic powder for bonded magnet and manufacture thereof
WO2009117718A1 (en) Direct chemical synthesis of rare earth-transition metal alloy magnetic materials
JPH10144509A (en) Powder for permanent magnet and its manufacture and anisotropic permanent magnet using the powder
JPH06151133A (en) Manufacture of magnet powder
JP3331306B2 (en) Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder
JP4166478B2 (en) Method for producing rare earth iron nitrogen-based magnetic powder
JPH06163230A (en) Method of manufacturing magnetic powder for bonded magnet
JPH06151135A (en) Manufacture magnet powder
JP3151959B2 (en) Method for producing raw material powder for R-TM-B permanent magnet
JP2001207201A (en) Sm-Fe-N SERIES COATED ALLOY POWDER FOR MAGNET AND PRODUCING METHOD THEREFOR
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPH0327502A (en) Manufacture of rare earth magnetic fine powder
JP2001217109A (en) Magnet composition and bonded magnet using the same
JP2005314743A (en) Magnetic powder
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06151134A (en) Manufacture of magnet powder
JPH06151136A (en) Powder of metal-based permanent magnet material
JP2001217108A (en) Magnet composition and bonded magnet using the same
JPH1092616A (en) Manufacture of rare-earth permanent magnet
JP3997764B2 (en) Exchange spring magnet and manufacturing method thereof