JP2018014341A - Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet - Google Patents

Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet Download PDF

Info

Publication number
JP2018014341A
JP2018014341A JP2016141007A JP2016141007A JP2018014341A JP 2018014341 A JP2018014341 A JP 2018014341A JP 2016141007 A JP2016141007 A JP 2016141007A JP 2016141007 A JP2016141007 A JP 2016141007A JP 2018014341 A JP2018014341 A JP 2018014341A
Authority
JP
Japan
Prior art keywords
iron
rare earth
powder
nitrogen
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016141007A
Other languages
Japanese (ja)
Inventor
邦夫 渡辺
Kunio Watanabe
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016141007A priority Critical patent/JP2018014341A/en
Publication of JP2018014341A publication Critical patent/JP2018014341A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a rare earth-iron-nitrogen-based alloy powder for a bonded magnet that is excellent in weather resistance and can be stably used for a long period of time even in an environment where a use environment is severer.SOLUTION: Provided is the method of manufacturing a rare earth-iron-nitrogen based magnet powder excellent in weather resistance by providing the rare earth-iron-nitrogen based alloy powder with a copper containing phosphate coated film by pulverizing using crushing balls made of copper and crushing balls made of high carbon chromium steel (SUJ-2) a rare earth-iron-nitrogen based alloy powder obtained by subjecting a rare earth oxide raw material to reduction diffusion treatment followed by nitriding treatment in an organic solvent containing phosphoric acid.SELECTED DRAWING: None

Description

本発明は、ボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法に関し、さらに詳しくは、希土類酸化物原料を還元拡散処理した後に窒化処理して得た希土類−鉄−窒素系合金粉を、リン酸を含む有機溶剤中で、銅からなる粉砕ボールおよび高炭素クロム鋼(SUJ−2)からなる粉砕ボールを用いて微粉砕処理することにより銅を含むリン酸被覆膜を備える希土類−鉄−窒素系合金粉末とすることにより、耐候性に優れた希土類−鉄−窒素系磁石粉末を製造する方法に関する。   The present invention relates to a method for producing a rare earth-iron-nitrogen based magnet powder for bonded magnets, and more specifically, a rare earth-iron-nitrogen based alloy powder obtained by subjecting a rare earth oxide raw material to reduction diffusion treatment followed by nitriding treatment, Rare earth-iron provided with a phosphate coating film containing copper by pulverizing using a pulverized ball made of copper and a pulverized ball made of high carbon chromium steel (SUJ-2) in an organic solvent containing phosphoric acid -It relates to a method for producing a rare earth-iron-nitrogen based magnet powder having excellent weather resistance by using a nitrogen based alloy powder.

従来より、希土類−鉄−窒素系ボンド磁石は磁気特性の優れた磁石として知られている。このボンド磁石は、一般電化製品から、通信機器、音響機器、医療機器、一般産業機器に至る幅広い分野に利用されているが、用いられる機器等の使用環境がより厳しい環境でも長期安定して使用できるように、さらなる耐候性の向上が求められている。   Conventionally, rare earth-iron-nitrogen based bonded magnets are known as magnets having excellent magnetic properties. This bonded magnet is used in a wide range of fields, from general electrical appliances to communication equipment, acoustic equipment, medical equipment, and general industrial equipment, but it can be used stably for a long time even in harsh environments. There is a demand for further improvement in weather resistance so that it is possible.

近年の希土類−鉄−窒素系ボンド磁石は、様々な製造方法が提案されているが、高性能の希土類−鉄−窒素系ボンド磁石を作製するためには、出発原料の希土類酸化物、鉄、カルシウムを混合して還元拡散処理を行うことにより作製した希土類−鉄系合金粉末を窒化処理して得られる希土類−鉄−窒素系合金粉末を用いてボンド磁石を作製することが知られている。   In recent years, various manufacturing methods have been proposed for rare earth-iron-nitrogen based bonded magnets. In order to produce high performance rare earth-iron-nitrogen based bonded magnets, starting rare earth oxides, iron, It is known to produce a bonded magnet using a rare earth-iron-nitrogen alloy powder obtained by nitriding a rare earth-iron alloy powder produced by mixing calcium and performing a reduction diffusion treatment.

例えば、特許文献1には、磁石粉末を有機溶媒中で粉砕する際にリン酸を添加して磁石粉を清掃する方法が提案されているが80℃相対湿度90%環境下で24時間放置後では、保磁力の低下がないが、さらに長時間放置するなど厳しい条件となると、保磁力が低下する恐れがある。   For example, Patent Document 1 proposes a method in which phosphoric acid is added to pulverize magnet powder in an organic solvent and the magnet powder is cleaned, but after standing in an environment of 80 ° C. and 90% relative humidity for 24 hours. In this case, the coercive force does not decrease, but the coercive force may decrease under severe conditions such as standing for a longer time.

また、特許文献2には、平均粒径3μmの磁石粉末にエチルシリケートを添加して処理する方法が提案されているが、未処理の磁石粉末を大気中にさらすことで初期の磁気特性が低下する恐れがある。また、磁石粉末の凝集によりシリケート処理されてない磁石粉末ができる問題点がある。   Patent Document 2 proposes a method in which ethyl silicate is added to a magnetic powder having an average particle diameter of 3 μm, but the initial magnetic properties are reduced by exposing the untreated magnetic powder to the atmosphere. There is a fear. In addition, there is a problem that a magnet powder not subjected to a silicate treatment can be formed by agglomeration of the magnet powder.

特開2002−124406号公報JP 2002-124406 A 特開2000−309802号公報JP 2000-309802 A

本発明の目的は、このような状況に鑑み、希土類酸化物原料を還元拡散処理した後に窒化処理して得た希土類−鉄−窒素系合金粉を、リン酸を含む有機溶剤中で、銅からなる粉砕ボールおよび高炭素クロム鋼(SUJ−2)からなる粉砕ボールを含む粉砕ボールを用いて微粉砕処理することにより銅を含むリン酸被覆膜を備える希土類−鉄−窒素系合金粉末とすることにより、耐候性に優れた希土類−鉄−窒素系磁石粉末を製造する方法を提供することにある。   In view of such circumstances, the object of the present invention is to provide a rare earth-iron-nitrogen-based alloy powder obtained by nitriding after reducing diffusion treatment of a rare earth oxide raw material, from copper in an organic solvent containing phosphoric acid. A rare earth-iron-nitrogen based alloy powder having a phosphoric acid coating film containing copper is obtained by pulverizing using a pulverized ball including a pulverized ball and a pulverized ball including a high carbon chromium steel (SUJ-2). Thus, an object of the present invention is to provide a method for producing a rare earth-iron-nitrogen based magnet powder having excellent weather resistance.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、希土類−鉄−窒素系ボンド磁石の原料である希土類酸化物原料を還元拡散処理して母合金を得て、これを窒化処理して希土類−鉄−窒素系磁石粉の粗粉末を得た後に、リン酸を含む有機溶剤中に磁石粉末を入れて、粉砕ボールとして高炭素クロム鋼(SUJ−2)と銅の粉砕ボールを用いて微粉砕した磁石粉末を用いることで、希土類−鉄−窒素系ボンド磁石の耐候性が向上することを見出し、本発明を完成するに至った。   As a result of intensive research to achieve the above object, the present inventors have obtained a mother alloy by reducing and diffusing a rare earth oxide raw material, which is a raw material of a rare earth-iron-nitrogen based bonded magnet, After obtaining a rare earth-iron-nitrogen based magnet powder by nitriding, the magnet powder is put in an organic solvent containing phosphoric acid, and high carbon chromium steel (SUJ-2) and copper are pulverized as pulverized balls. It has been found that the weather resistance of the rare earth-iron-nitrogen based bonded magnet is improved by using magnet powder finely pulverized with a ball, and the present invention has been completed.

すなわち、本発明が提供するボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法は、希土類酸化物粉末を原料として還元拡散法により母合金を作製し、これを窒化処理して得られるボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法であって、
以下の第1の工程から第6の工程を含むことを特徴とする希土類−鉄−窒素系磁石粉末の製造方法である。
第1の工程:原料粉末混合工程
希土類酸化物粉末と、鉄粉末と、アルカリ金属、アルカリ土類金属またはこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合し、混合物を得る第1の工程。
第2の工程:還元拡散処理工程
第1の工程で得られた混合物に金属カルシウムを所定量加えて、不活性ガス雰囲気中において900℃以上1200℃以下の温度で加熱して、その後300℃以下に冷却して、還元拡散処理を施し反応生成物を得る第2の工程。
第3の工程:水素処理工程
第2の工程で得られた反応生成物を、不活性ガス雰囲気中で500℃以下に冷却した後、不活性ガスの少なくとも一部を排出してから水素を含むガスを供給し、該反応生成物に水素を吸収させ、その後水中に投入して湿式処理して希土類−鉄系合金粉末を得る工程。
第4の工程:窒化処理工程
第3の工程で得られた希土類−鉄系合金粉末を、120℃以上480℃以下で加熱処理し、得られた合金粗粉末をアンモニアと水素とを含有する混合ガス雰囲気中で昇温し、350℃以上500℃以下で合金粉末を窒化処理し希土類−鉄−窒素系合金粉末とする窒化処理工程。
第5の工程:微粉砕処理工程
第4の工程で得られた希土類−鉄−窒素系合金粉末を、リン酸を含む有機溶剤中で、銅からなる粉砕ボールと高炭素クロム鋼(SUJ−2)からなる粉砕ボールを含み、且つ銅からなる粉砕ボールの割合は、粉砕ボール全量の内2質量%以上10質量%以下である粉砕ボールを用いて微粉砕する微粉砕処理工程。
第6の工程:乾燥工程
第5の工程で微粉砕処理した希土類−鉄−窒素系合金粉末含むスラリーを、固液分離し、得られたケーキを150℃以上220℃以下の温度で加熱乾燥して希土類−鉄−窒素系磁石粉末を得る乾燥工程。
That is, the method for producing a rare earth-iron-nitrogen based magnet powder for bonded magnets provided by the present invention is a bonded magnet obtained by producing a mother alloy by a reduction diffusion method using rare earth oxide powder as a raw material, and nitriding it. A method for producing a rare earth-iron-nitrogen based magnet powder for use,
A method for producing a rare earth-iron-nitrogen based magnet powder comprising the following first to sixth steps.
First step: Raw material powder mixing step Rare earth oxide powder, iron powder, and at least one reducing agent powder selected from alkali metals, alkaline earth metals or hydrides thereof are mixed at a predetermined ratio, A first step of obtaining a mixture.
Second step: Reduction diffusion treatment step A predetermined amount of metallic calcium is added to the mixture obtained in the first step and heated at a temperature of 900 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere, and then 300 ° C. or lower. A second step of cooling to a temperature and applying a reduction diffusion treatment to obtain a reaction product.
Third step: Hydrogen treatment step After the reaction product obtained in the second step is cooled to 500 ° C. or lower in an inert gas atmosphere, hydrogen is contained after discharging at least a part of the inert gas. A step of supplying a gas, causing the reaction product to absorb hydrogen, and then adding it into water to perform wet processing to obtain a rare earth-iron alloy powder.
Fourth step: nitriding step The rare earth-iron-based alloy powder obtained in the third step is heat-treated at 120 ° C. or higher and 480 ° C. or lower, and the obtained alloy coarse powder is mixed containing ammonia and hydrogen. A nitriding treatment step of heating in a gas atmosphere and nitriding the alloy powder at 350 ° C. or more and 500 ° C. or less to obtain a rare earth-iron-nitrogen alloy powder.
Fifth step: fine pulverization treatment step In the organic solvent containing phosphoric acid, the rare earth-iron-nitrogen alloy powder obtained in the fourth step is pulverized with copper and high carbon chromium steel (SUJ-2). A pulverization treatment step of pulverizing using a pulverized ball that is 2% by mass to 10% by mass of the total amount of pulverized balls.
Sixth step: drying step The slurry containing the rare earth-iron-nitrogen alloy powder finely pulverized in the fifth step is subjected to solid-liquid separation, and the resulting cake is heated and dried at a temperature of 150 ° C to 220 ° C. Drying step to obtain rare earth-iron-nitrogen based magnet powder.

本発明のボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法により得られる磁石微粉末を用いることによって、高い磁気特性を維持したまま、耐候性が優れた希土類−鉄−窒素系ボンド磁石を得ることができる。   A rare earth-iron-nitrogen based bonded magnet having excellent weather resistance while maintaining high magnetic properties by using a magnet fine powder obtained by the method for producing a rare earth-iron-nitrogen based magnet powder for bonded magnets of the present invention. Can be obtained.

従って、本発明によって得られる磁石粉末は、例えば、一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において極めて有用であるため、その工業的価値は非常に高く、産業の発達に大いに寄与するものである。   Therefore, since the magnet powder obtained by the present invention is extremely useful in a wide range of fields such as general home appliances, communication / acoustic equipment, medical equipment, general industrial equipment, etc., its industrial value is very high. It contributes greatly to the development of

以下、本発明の希土類−鉄−窒素系磁石粉末の製造方法について詳しく説明する。   Hereinafter, the method for producing the rare earth-iron-nitrogen based magnet powder of the present invention will be described in detail.

本発明の希土類−鉄−窒素系磁石粉末の製造方法は、以下の第1の工程から第6の工程を含む。
第1の工程:原料粉末混合工程
第2の工程:還元拡散処理工程
第3の工程:水素処理工程
第4の工程:窒化処理工程
第5の工程:微粉砕処理工程
第6の工程:乾燥工程
The method for producing a rare earth-iron-nitrogen based magnet powder of the present invention includes the following first to sixth steps.
First step: Raw material powder mixing step Second step: Reduction diffusion treatment step Third step: Hydrogen treatment step Fourth step: Nitriding treatment step Fifth step: Fine grinding treatment step Sixth step: Drying step

以下に、工程順に詳細に説明する前に、本発明に係る希土類−鉄−窒素系磁石粉末について説明する。   Hereinafter, the rare earth-iron-nitrogen based magnet powder according to the present invention will be described before detailed description in the order of steps.

本発明に係る希土類−鉄−窒素系磁石粉末は、希土類元素がSm、Gd、Tb、Ceから選ばれる少なくとも1種類の元素、あるいはさらにPr、Nd、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも1種類の元素である合金が挙げられるが、希土類元素がサマリウム(Sm)であるSm−Fe−N系合金やSm−Fe−Ti−N系合金が挙げられ、Sm−Fe−N系合金であることが好ましく、特に、Sm量が磁石粉末全体に対して23.2質量%以上23.6質量%以下を含むSm2Fe173の組成のものに好ましく適用することができる。 In the rare earth-iron-nitrogen based magnet powder according to the present invention, the rare earth element is selected from at least one element selected from Sm, Gd, Tb, Ce, or from Pr, Nd, Dy, Ho, Er, Tm, Yb. An alloy that is at least one kind of element is mentioned, and Sm—Fe—N alloys and Sm—Fe—Ti—N alloys in which the rare earth element is samarium (Sm) are mentioned, and Sm—Fe—N alloys. An alloy is preferable, and in particular, it can be preferably applied to a composition of Sm 2 Fe 17 N 3 containing 23.2% by mass or more and 23.6% by mass or less of the Sm amount with respect to the whole magnet powder.

本発明の希土類−鉄−窒素系磁石粉末は、上記の製造方法によって得られ、表面が充分な厚さの銅を含むリン酸皮膜で均一に被覆され、安定化された磁石合金粉末である。また、
この磁石粉末は、平均粒径が1〜5μm、好ましくは2〜4μmである。平均粒径が1μm未満では製造コストが高くなり、5μmを超えると磁気特性が低下するので好ましくない。また、表面が充分な厚さの銅を含むリン酸皮膜で均一に被覆され、安定化されている
The rare earth-iron-nitrogen-based magnet powder of the present invention is a magnet alloy powder obtained by the above-described production method, the surface of which is uniformly coated and stabilized with a phosphate film containing copper having a sufficient thickness. Also,
This magnet powder has an average particle diameter of 1 to 5 μm, preferably 2 to 4 μm. If the average particle size is less than 1 μm, the production cost is high, and if it exceeds 5 μm, the magnetic properties are deteriorated. In addition, the surface is uniformly coated and stabilized with a phosphate film containing copper with sufficient thickness.

《1.希土類−鉄−窒素系磁石粉末の製造方法》
本発明の希土類−鉄−窒素系合金粉末の製造方法について、工程順に説明する。
(1)第1の工程:原料粉末混合工程
まず、希土類−鉄−窒素系磁石原料として、希土類酸化物粉末と鉄粉末との混合物、もしくは該混合物に希土類鉄複合酸化物、酸化鉄から選ばれる少なくとも一種をさらに含む混合物を出発原料として調製する。
<< 1. Method for producing rare earth-iron-nitrogen based magnet powder >>
The method for producing the rare earth-iron-nitrogen alloy powder of the present invention will be described in the order of steps.
(1) First step: raw material powder mixing step First, a rare earth-iron-nitrogen based magnet raw material is selected from a mixture of rare earth oxide powder and iron powder, or a rare earth iron composite oxide and iron oxide. A mixture further containing at least one kind is prepared as a starting material.

原料粉末の一つの鉄粉末は、後に生成される希土類−鉄母合金を小さくするため、粒子径は、平均粒子径で3μm以下であることが好ましく、1.5μm以下であることがより好ましい。これは、平均粒子径が3μmを超えると後に生成される希土類―鉄母合金の粗粒が平均粒子径で20μm以上にまで成長してしまうため、保磁力が大きく低下するほか、窒化処理の際に粒子内の窒化不足が起きる要因となるためである。また、上記と同じ理由で鉄粉以外に鉄を含有する酸化鉄(Fe23のほか、FeOやFe34など)、更にサマリウムを含有するサマリウム鉄複合酸化物(SmFeO3など)についても、粒子径は平均粒子径で3μm以下であることが好ましく、1.5μm以下であることがより好ましい。 One iron powder of the raw material powder has a mean particle size of preferably 3 μm or less, and more preferably 1.5 μm or less, in order to reduce the rare earth-iron master alloy produced later. This is because when the average particle size exceeds 3 μm, the coarse particles of the rare earth-iron mother alloy produced later grow to an average particle size of 20 μm or more, so the coercive force is greatly reduced and the nitriding process This is because of insufficient nitridation in the grains. For the same reason as above, iron oxide containing iron in addition to iron powder (Fe 2 O 3 as well as FeO and Fe 3 O 4 etc.) and samarium iron composite oxide containing samarium (SmFeO 3 etc.) However, the average particle size is preferably 3 μm or less, and more preferably 1.5 μm or less.

もう一方の原料粉末の希土類酸化物は、Sm、Gd、Tb、Ceから選ばれる少なくとも1種類の元素、あるいはさらにPr、Nd、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも1種類の元素が含まれるものを挙げることができる。中でもSmが含まれるものは、本発明の効果を顕著に発揮させることが可能になるので特に好ましい。Smが含まれる場合、高い保磁力を得るためにはSmを希土類元素全体の60質量%以上、好ましくは90質量%以上にすることが高い保磁力を得るためには好ましい。 The rare earth oxide of the other raw material powder is at least one element selected from Sm, Gd, Tb, Ce, or at least one element selected from Pr, Nd, Dy, Ho, Er, Tm, Yb. Can be mentioned. Among them, those containing Sm are particularly preferable because the effects of the present invention can be remarkably exhibited. When Sm is contained, in order to obtain a high coercive force, Sm is preferably 60% by mass or more, preferably 90% by mass or more of the entire rare earth element, in order to obtain a high coercive force.

希土類酸化物粉末の粒子径は、固相内拡散がしやすく、不均一な拡散が起こらないという点で、平均粒子径で5μm以下、さらに鉄粉末の粒子径より小さいことが好ましい。 The particle size of the rare earth oxide powder is preferably 5 μm or less in average particle size and smaller than the particle size of iron powder in that it is easy to diffuse in the solid phase and non-uniform diffusion does not occur.

混合粉末を得る方法としては、各粉末を水やアルコールを溶媒としたボールミル、ビーズミル、アトライターといった湿式混合あるいは、リボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、ハイスピードミキサー、振動ミルといった乾式混合のほか、反応晶析による共沈法によってすでに混ざり合った状態の水酸化物あるいはオキシ水酸化物を製造し熱処理によって酸化物を得るなどその混合方法には様々あるが、これらのように直接得る方法のほか、所望の物質の比率を得るために、一度高温での熱処理をすることや、サマリウム鉄複合酸化物を製造する、あるいは水素還元によって鉄粉を製造することを工程内に含ませる方法も行う。 As a method of obtaining a mixed powder, each powder is wet mixed with a ball mill, a bead mill, an attritor using water or alcohol as a solvent, or a ribbon blender, tumbler, S-shaped blender, V-shaped blender, Nauter mixer, Henschel mixer, high In addition to dry mixing such as speed mixers and vibration mills, there are various mixing methods such as producing hydroxides or oxyhydroxides already mixed by coprecipitation by reaction crystallization and obtaining oxides by heat treatment. However, in addition to these direct methods, in order to obtain a desired substance ratio, heat treatment is performed once at a high temperature, samarium iron composite oxide is produced, or iron powder is produced by hydrogen reduction. A method of including this in the process is also performed.

(2)第2の工程:還元拡散処理工程
次に上記工程1により得られた混合原料粉末にさらに金属カルシウムを混合して、不活性ガス雰囲気中、所定の温度で熱処理し、還元拡散法でTh2Zn17型結晶構造を有する希土類−鉄系母合金を得る。
(2) Second step: Reduction diffusion treatment step Next, metallic calcium is further mixed with the mixed raw material powder obtained in the above step 1, and heat treatment is performed at a predetermined temperature in an inert gas atmosphere. A rare earth-iron master alloy having a Th 2 Zn 17 type crystal structure is obtained.

還元拡散法は、前記したように還元剤である金属カルシウムとの混合物を反応容器に充填し、一度真空に引いてから不活性ガスを導入することで不活性ガス雰囲気に置換し、例えばアルゴンガス雰囲気中にて950℃以上1200℃以下の温度に加熱することによって、合金粉末を得る方法である。 In the reduction diffusion method, as described above, a mixture with metallic calcium as a reducing agent is filled in a reaction vessel, and after evacuation is performed, an inert gas is introduced to replace the inert gas atmosphere. In this method, alloy powder is obtained by heating to a temperature of 950 ° C. or higher and 1200 ° C. or lower in an atmosphere.

本発明においては、還元剤としてしようする金属カルシウムは、取り扱いの安全性とコストの点で、4メッシュ以下に分級した粒状金属カルシウムが好ましい。原料の酸化物を全て還元するのに必要とする金属カルシウムの量を1当量とした際の金属カルシウムの添加量については1.5当量以上3.0当量以下が好ましく、1.5当量以上2.0当量以下がより好ましい。これは、1.5当量より少ないと熱処理時の蒸発水分や金属カルシウムの蒸発による不足するためであり、3.0当量より多いと過剰に存在する金属カルシウムが粒成長を阻害する要因となって本焼の温度を上げても大きくなりにくいほか、還元拡散後の窒化の際のガスの吸収が余剰の金属カルシウムによって阻害され窒化が不均一になりやすいという問題がある。なお、還元剤は上記原料粉末と混合するか、金属蒸気が原料粉末と接触しうるように分離しておくが、混合して還元拡散されれば反応生成物が多孔質となり、引き続き行われる窒化処理を効率的に行うことができる。 In the present invention, the metallic calcium to be used as the reducing agent is preferably granular metallic calcium classified to 4 mesh or less in terms of handling safety and cost. The amount of metallic calcium added when the amount of metallic calcium required to reduce all the raw material oxide is 1 equivalent is preferably 1.5 equivalents or more and 3.0 equivalents or less, and more preferably 1.5 equivalents or more and 2 equivalents or less. Less than 0.0 equivalent is more preferable. This is because if it is less than 1.5 equivalents, it will be insufficient due to evaporation of evaporated water and metallic calcium during heat treatment, and if it is more than 3.0 equivalents, excessive metal calcium will be a factor that hinders grain growth. There is a problem that even if the temperature of the main calcination is raised, it becomes difficult to increase, and gas absorption at the time of nitriding after reductive diffusion is hindered by excess metallic calcium, so that nitriding tends to be uneven. The reducing agent is mixed with the raw material powder or separated so that the metal vapor can come into contact with the raw material powder. However, if the reducing agent is mixed and reduced and diffused, the reaction product becomes porous, and the subsequent nitriding is performed. Processing can be performed efficiently.

原料粉末や還元剤とともに、窒化処理後の湿式処理工程において反応生成物の崩壊を促進させる添加物を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属の塩や酸化物を用いることができ、原料粉末などと同時に均一に混合する。ここで不活性ガスは、アルゴン、ヘリウムから選ばれた1種類以上が用いられる。 It is also effective to mix an additive that promotes the decay of the reaction product in the wet treatment step after the nitriding treatment, together with the raw material powder and the reducing agent. As the disintegration accelerator, salts or oxides of alkaline earth metals such as calcium chloride can be used, and they are uniformly mixed simultaneously with the raw material powder. Here, the inert gas is at least one selected from argon and helium.

本発明においては、原料粉末の粒度をミクロンオーダーの小さな粒度に調製した出発原料を使用するため、還元拡散処理の熱処理温度において、還元温度は900℃以上1200℃以下の範囲とすることが好ましい。 In the present invention, since the starting raw material prepared with the raw material powder having a particle size as small as micron is used, the reduction temperature is preferably in the range of 900 ° C. to 1200 ° C. in the heat treatment temperature of the reduction diffusion treatment.

900℃未満であると粒成長が非常に遅く、残された微粉末が成形品を製造する際の加熱に弱く保磁力が急激に低下したり、また樹脂との混練時に流動性が悪くなって成形自体が出来なくなるおそれがある。 When the temperature is lower than 900 ° C., the grain growth is very slow, the remaining fine powder is weak against heating when producing a molded product, and the coercive force is drastically lowered, and the fluidity is deteriorated when kneaded with a resin. There is a possibility that the molding itself cannot be performed.

また、1200℃を超えると、粒成長が激しくなり、5μmを超える粗粉末が非常に多くなり保磁力の大幅な低下を引き起こすほか、Smの蒸発量も非常に多くなり、所望の組成の磁石粗粉末が得られなくなる恐れがあり、また過剰な量が必要となり高コストにも繋がる。 In addition, when the temperature exceeds 1200 ° C., the grain growth becomes intense, and the coarse powder exceeding 5 μm increases so much that the coercive force is greatly reduced. Also, the amount of evaporation of Sm increases so much that the magnet coarseness having a desired composition is obtained. There is a possibility that the powder cannot be obtained, and an excessive amount is required, which leads to high cost.

また還元時の保持時間については、2時間以上20時間以下が好ましく、4時間以上20時間以下がより好ましい。これは、鉄系原料の粒径が3μm以下と小さい場合、比表面積が高いため金属カルシウムの融体が全体に広がるのに多くの時間を必要とし、2時間より短いと金属カルシウムが全体に行き渡っていないうちに還元時間が終了してしまい、金属カルシウムによって広がり固相内拡散していくサマリウムが粒子毎に不均一になる。逆に20時間よりも長い場合は、これ以上長くしても既に金属カルシウムが全体に行き渡っており、これ以上の時間保持しても、特に効果が見込まれず、コスト高になる。   Further, the holding time at the time of reduction is preferably 2 hours or longer and 20 hours or shorter, more preferably 4 hours or longer and 20 hours or shorter. This is because when the particle size of the iron-based raw material is as small as 3 μm or less, the specific surface area is high, so it takes a lot of time for the melt of the calcium metal to spread throughout, and if it is shorter than 2 hours, the metal calcium spreads throughout. Before the reduction time ends, the samarium spreading by the metallic calcium and diffusing in the solid phase becomes non-uniform for each particle. On the other hand, if it is longer than 20 hours, even if it is longer than this, the metal calcium has already spread throughout, and even if it is maintained for longer than this, no particular effect is expected and the cost increases.

本発明では、第2の工程の還元拡散処理工程の最後に冷却を行う。還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま変えずに、引き続き、300℃以下、好ましくは50℃以上280℃以下、より好ましくは100℃以上250℃以下に冷却する。 In the present invention, cooling is performed at the end of the reduction diffusion treatment step of the second step. The reaction product after the reduction-diffusion reaction is continuously changed to 300 ° C. or lower, preferably 50 ° C. or higher and 280 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower without changing the atmosphere gas as an inert gas. Cooling.

冷却後の温度が300℃を越えていると、後の工程の窒化の際に反応生成物との窒化反応が急激に進んでしまい、α−Fe相を増加させてしまうことがあるので、300℃よりも低い温度まで冷却するのが望ましい。これは、300℃を越える温度では、反応生成物が活性であるために合金が急激に窒化されて、Th2Zn17型結晶構造を有する金属間化合物がFeリッチ相とSmNとに分解するものと推測されるからである。 If the temperature after cooling exceeds 300 ° C., the nitridation reaction with the reaction product proceeds rapidly during nitridation in the subsequent step, which may increase the α-Fe phase. It is desirable to cool to a temperature lower than ° C. This is because the reaction product is active at temperatures exceeding 300 ° C., so that the alloy is rapidly nitrided and the intermetallic compound having a Th 2 Zn 17 type crystal structure is decomposed into an Fe-rich phase and SmN. This is because it is assumed.

冷却後に、多孔質の塊状混合物である反応生成物を湿式処理せずに、次の水素化処理工程に移る。水素化処理工程前に反応生成物が大気中に曝されると、反応生成物中の活性な希土類−鉄母合金粉末が酸化されて反応性が失活し、結果として窒化の度合いをばらつかせるので、出来る限り大気(酸素)に曝されることのないように水素化処理工程に持ち込むことが有効である。 After cooling, the reaction product, which is a porous massive mixture, is transferred to the next hydrotreating step without wet treatment. If the reaction product is exposed to the atmosphere before the hydrotreating step, the active rare earth-iron mother alloy powder in the reaction product is oxidized and the reactivity is deactivated. As a result, the degree of nitriding varies. Therefore, it is effective to bring them into the hydrotreatment process so that they are not exposed to the atmosphere (oxygen) as much as possible.

(3)第3の工程:水素処理工程
次に、前記第2の工程で得られた反応生成物を、不活性ガス雰囲気中で300℃以下に冷却した後、不活性ガスの少なくとも一部を排出してから水素を含むガスを供給し、該反応生成物に水素を吸収させ、その後水中に投入して湿式処理して希土類−鉄系合金粉末を得る工程である。
(3) Third Step: Hydrogen Treatment Step Next, after cooling the reaction product obtained in the second step to 300 ° C. or lower in an inert gas atmosphere, at least part of the inert gas is removed. This is a process of supplying a gas containing hydrogen after exhausting, allowing the reaction product to absorb hydrogen, then throwing it into water and wet processing to obtain a rare earth-iron-based alloy powder.

さらに、この水素を吸収して崩壊した反応生成物を水中に投入した後、酢酸などを加え、撹拌しながら酸化カルシウムを除き、真空中において50℃以上200℃以下で数時間乾燥させて希土類−鉄系合金粉末とする。   Further, after the hydrogen-absorbed and decayed reaction product is put into water, acetic acid or the like is added, calcium oxide is removed with stirring, and the mixture is dried in a vacuum at 50 ° C. or higher and 200 ° C. or lower for several hours to form a rare earth- Use iron-based alloy powder.

(4)第4の工程:窒化処理工程
次に、前記第3の工程で得られた希土類−鉄系合金粉末を窒化処理して希土類−鉄−窒素系合金粗粉末とする工程である。
(4) Fourth step: nitriding treatment step Next, the rare earth-iron-nitrogen alloy powder obtained by nitriding the rare earth-iron alloy powder obtained in the third step is a step.

窒化工程の条件は、例えば、不活性ガス雰囲気中で120℃以上480℃以下の温度で加熱し、さらにアンモニアガスの流量は3L/分以上5L/分以下で、水素ガスの流量を3L/分以上5L/分以下として、アンモニアと水素を含有する混合ガス中で350℃以上500℃以下の温度で280分以上400分以下保持することで窒化処理することができる。   The conditions of the nitriding step are, for example, heating in an inert gas atmosphere at a temperature of 120 ° C. to 480 ° C., the flow rate of ammonia gas is 3 L / min to 5 L / min, and the flow rate of hydrogen gas is 3 L / min. The nitriding treatment can be performed by maintaining at a temperature of 350 ° C. or higher and 500 ° C. or lower for 280 minutes or more and 400 minutes or less in a mixed gas containing ammonia and hydrogen at 5 L / min or less.

(5)第5の工程:微粉砕処理工程
次に、前記第4の工程で得られた希土類−鉄−窒素系合金粗粉末を、リン酸を含む有機溶剤中において、銅からなる粉砕ボールと高炭素クロム鋼(SUJ−2)を含み、且つ銅からなる粉砕ボールの割合は、粉砕ボール全量の内2質量%以上10質量%以下である粉砕ボールを用いて微粉砕処理を行う工程である。
(5) Fifth step: fine pulverization treatment step Next, the rare earth-iron-nitrogen alloy coarse powder obtained in the fourth step is pulverized with copper in an organic solvent containing phosphoric acid. The ratio of the pulverized ball containing high carbon chromium steel (SUJ-2) and made of copper is a step of performing pulverization using a pulverized ball that is 2% by mass to 10% by mass of the total amount of the pulverized ball. .

本発明においては、この第5の工程の微粉砕処理が特に重要な工程である。リン酸を含む有機溶剤中で、粉砕ボールによる湿式微粉砕処理を行うことで、リン酸被覆膜を形成する。   In the present invention, the pulverization treatment of the fifth step is a particularly important step. A phosphoric acid coating film is formed by performing a wet pulverization treatment with a pulverization ball in an organic solvent containing phosphoric acid.

ここで、微粉砕処理を行う粉砕ボールとして、特に耐摩耗性に優れる高炭素クロム鋼のSUJ−2を用いるのが一般的であるが、銅からなる粉砕ボールを一部混合して湿式微粉砕することにより、粉砕時に形成されるリン酸被覆膜中に銅が含まれる。詳細なメカニズムは不明であるが、リン酸被覆膜中に銅が含まれないと、得られる粉末の粒径が不揃いとなったり、粉末表面に欠陥が生じて、高品質の磁石特性を得ることできないことが分かった。   Here, it is common to use SUJ-2, which is a high carbon chromium steel excellent in wear resistance, as a pulverized ball for fine pulverization treatment. By doing so, copper is contained in the phosphoric acid coating film formed at the time of a grinding | pulverization. The detailed mechanism is unknown, but if copper is not included in the phosphoric acid coating film, the particle size of the resulting powder will be uneven, or defects will occur on the powder surface, obtaining high quality magnet characteristics I found it impossible.

粉砕に用いる有機溶剤としては、特に制限はなく、2−プロパノール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できるが、安全性などの観点から特にエタノール、2−プロパノールが好ましい。   The organic solvent used for pulverization is not particularly limited, and alcohols such as 2-propanol, ethanol, and methanol, lower hydrocarbons such as pentane and hexane, aromatics such as benzene, toluene, and xylene, ketones, and the like. A mixture or the like can be used, but ethanol and 2-propanol are particularly preferable from the viewpoint of safety.

粉砕に用いる有機溶剤へのリン酸の添加量は、粉砕後の磁石粉末の粒径、表面積等に関係するので直接的に添加量を特定することは難しいが、粉砕する磁石粉末に対して0.1mol%以上0.5mol%以下を添加することで、粉砕後の粉末に均一な被膜を形成することができる。より好ましくは0.2mol%以上0.4mol%以下であり、0.25mol%以上0.35mol%以下とすることが特に好ましい。   The amount of phosphoric acid added to the organic solvent used for pulverization is related to the particle size, surface area, etc. of the magnet powder after pulverization, so it is difficult to specify the amount added directly, but it is 0 for the magnet powder to be pulverized. By adding 1 mol% or more and 0.5 mol% or less, a uniform film can be formed on the pulverized powder. More preferably, they are 0.2 mol% or more and 0.4 mol% or less, and it is especially preferable to set it as 0.25 mol% or more and 0.35 mol% or less.

粉砕に用いる有機溶剤へのリン酸の添加量が粉砕する磁石粉末の0.1mol%未満であると、磁石粉末の表面に被覆されるリン酸被覆膜が十分に形成されず、未被覆の表面があるために耐候性が改善されず、また大気中で乾燥させると酸化・発熱して磁気特性が極端に低下してしまうため好ましくない。粉砕に用いる有機溶剤へのリン酸の添加量が粉砕する磁石粉末の0.5mol%を超えると磁気特性の低下が起きる。また、耐候性の向上も見られない。   When the amount of phosphoric acid added to the organic solvent used for pulverization is less than 0.1 mol% of the magnet powder to be pulverized, the phosphoric acid coating film to be coated on the surface of the magnet powder is not sufficiently formed and uncoated Due to the presence of the surface, the weather resistance is not improved, and drying in the air is not preferable because it oxidizes and generates heat and the magnetic properties are extremely lowered. When the amount of phosphoric acid added to the organic solvent used for pulverization exceeds 0.5 mol% of the magnetic powder to be pulverized, the magnetic properties are degraded. Also, no improvement in weather resistance is seen.

粉砕に用いる有機溶剤へのリン酸の添加方法は、特に限定されず、例えば、媒体撹拌ミル等で粉砕するに際し、溶剤の有機溶剤にリン酸を添加することができる。リン酸は、最終的に所望の濃度になれば良く、粉砕開始前に一度に添加しても粉砕中に徐々に添加しても良いが、粉砕で生じた新生面が直ちに処理されるように、常に溶液中に含むリン酸を存在させることが重要である。粉砕終期に所望のリン酸濃度となるように粉砕溶剤の有機溶剤にリン酸を添加して粉砕することがより好ましい。また、粉砕装置には不活性ガスを供給して磁石粉末が酸化されにくい雰囲気とすることが望ましい。   The method for adding phosphoric acid to the organic solvent used for pulverization is not particularly limited. For example, phosphoric acid can be added to the organic solvent of the solvent when pulverizing with a medium stirring mill or the like. Phosphoric acid may be finally added to a desired concentration, and may be added all at once before the start of pulverization or may be gradually added during pulverization. It is important to always have phosphoric acid present in the solution. More preferably, phosphoric acid is added to the organic solvent of the grinding solvent so as to obtain a desired phosphoric acid concentration at the end of grinding. Further, it is desirable to supply an inert gas to the pulverizer so that the magnet powder is not easily oxidized.

この方法によれば、磁石粉末の粉砕によって凝集粒子に新生面が生じても瞬時に溶剤中のリン酸と反応することと、有機溶剤中に実質的に酸素が含まれないため、粉砕された粒子表面に安定なリン酸被覆膜が形成される。また、その後、粉砕された磁石粉末がその磁力などによって凝集しても、接触面はすでに安定化されており、その後解砕処理しても腐食が生じることはない。   According to this method, even if a new surface is generated on the agglomerated particles by pulverization of the magnet powder, it reacts instantaneously with phosphoric acid in the solvent, and the organic solvent does not substantially contain oxygen, so the pulverized particles A stable phosphate coating film is formed on the surface. Further, even if the pulverized magnet powder is subsequently aggregated by the magnetic force or the like, the contact surface is already stabilized, and corrosion does not occur even after the pulverization treatment.

粉砕時間は、装置の大きさ、処理すべき磁石粉末の粒径や処理量などによって異なるので、一概に規定できないが、前述したように本発明の磁石粉末の平均粒径1〜5μmとするためには、所定のリン酸濃度の有機溶剤中では0.1時間以上3時間以下、好ましくは0.1時間2時間以下の時間で粉砕処理することができる。   The pulverization time varies depending on the size of the apparatus, the particle size of the magnetic powder to be processed, the amount of processing, etc., and thus cannot be defined in general. However, as described above, the average particle size of the magnetic powder of the present invention is 1 to 5 μm. In an organic solvent having a predetermined phosphoric acid concentration, the pulverization treatment can be performed for 0.1 hour or more and 3 hours or less, preferably 0.1 hour or 2 hours or less.

本発明では、微粉砕処理工程において使用する粉砕ボールは、銅からなる粉砕ボールと高炭素クロム鋼(SUJ−2)とを含み、且つ銅からなる粉砕ボールの割合は、粉砕ボール全量の内2質量%以上10質量%以下である粉砕ボールを用いることが重要である。   In the present invention, the pulverized ball used in the fine pulverization treatment step includes a pulverized ball made of copper and high carbon chromium steel (SUJ-2), and the ratio of the pulverized balls made of copper is 2% of the total amount of pulverized balls. It is important to use a pulverized ball having a mass% of 10% by mass.

粉砕ボールには、耐摩耗性の優れた高炭素クロム鋼(SUJ−2)を用いるが、本発明の効果を奏するために、粉砕時に形成されるリン酸被覆膜中に銅を含ませることが重要であり、このために銅からなる粉砕ボールの割合を粉砕ボール全量の内、2質量%以上10質量%以下とする。2質量%未満であると、磁石粉末の表面に形成されるリン酸被覆膜中に銅が十分に含まれないために耐候性が改善されず、200時間の長時間では、保磁力が低下するため好ましくない。また、10質量%を超えると、磁気特性の低下が起きる。また、耐候性の向上も見られないため好ましくない。   For the pulverized ball, high-carbon chromium steel (SUJ-2) having excellent wear resistance is used. In order to achieve the effects of the present invention, copper should be included in the phosphate coating film formed during pulverization. Therefore, the ratio of the pulverized balls made of copper is 2% by mass or more and 10% by mass or less of the total amount of the pulverized balls. If it is less than 2% by mass, the phosphoric acid coating film formed on the surface of the magnet powder does not contain copper sufficiently, so that the weather resistance is not improved, and the coercive force is lowered after a long time of 200 hours. Therefore, it is not preferable. Moreover, when it exceeds 10 mass%, a magnetic characteristic will fall. Moreover, since the improvement of a weather resistance is not seen, it is unpreferable.

ここで、均一に被覆されるとは、通常は磁石粉末表面の80%以上、好ましくは85%以上、さらに好ましくは90%以上が銅を含むリン酸被覆膜で覆われることをいう。磁石粉末表面を保護するために必要な銅を含むリン酸被覆膜の厚さは、平均で5nm以上100nm以下である。銅を含むリン酸被覆膜の平均厚さが5nm未満であると十分な耐候性が得られず、また、100nmを超えると磁気特性が低下すると共にボンド磁石を作製する際の混練性や成形性が低下する。   Here, being uniformly coated means that 80% or more, preferably 85% or more, more preferably 90% or more of the surface of the magnet powder is covered with a phosphate coating film containing copper. The thickness of the phosphoric acid coating film containing copper necessary for protecting the magnet powder surface is 5 nm or more and 100 nm or less on average. When the average thickness of the phosphoric acid coating film containing copper is less than 5 nm, sufficient weather resistance cannot be obtained, and when it exceeds 100 nm, the magnetic properties are deteriorated and kneadability and molding when producing a bonded magnet are produced. Sex is reduced.

これに対して、銅を含むリン酸を用いないと、粉砕された希土類−鉄−窒素系合金粉末の粒径が不揃いになったり、あるいは粉末表面に欠陥が生じたりして、高品質の磁石粉末が得られにくい。   On the other hand, if phosphoric acid containing copper is not used, the particle size of the ground rare earth-iron-nitrogen alloy powder becomes uneven, or defects are generated on the powder surface, resulting in a high-quality magnet. It is difficult to obtain a powder.

また、磁石合金粗粉の粉砕終了後に銅を含むリン酸等の処理剤を添加しても、粉砕後の磁石粉末は、磁力などによって互いに凝集しているため、磁石粉末の接触面には被覆膜の形成が行われない。こうして得られた磁石粉末は、銅を含むリン酸被覆膜の形成が不十分であるため、ボンド磁石時に樹脂バインダーと混練されると、凝集していた磁石粉末が混練による剪断力で一部解砕され、被覆膜のない活性な粉末表面が露出する。このため、このような磁石粉末を成形して得られたボンド磁石は、実用上重要な湿度環境下で容易に腐食が生じ、磁気特性が低下する。特に、サマリウム−鉄−窒素系合金のような核発生型の保磁力発現機構を示す磁石粉末では、一部にこのような領域が生じると著しく保磁力が低下してしまう。   Even if a treatment agent such as phosphoric acid containing copper is added after the pulverization of the magnet alloy coarse powder, the magnet powder after pulverization is agglomerated with each other by a magnetic force or the like. No cover film is formed. Since the magnet powder obtained in this way has insufficient formation of a phosphoric acid coating film containing copper, when it is kneaded with a resin binder at the time of a bonded magnet, the agglomerated magnet powder is partly sheared by kneading. It is crushed and the active powder surface without the coating film is exposed. For this reason, the bonded magnet obtained by molding such magnet powder easily corrodes in a practically important humidity environment, and the magnetic properties are deteriorated. In particular, in a magnet powder showing a nucleation type coercive force manifestation mechanism such as a samarium-iron-nitrogen alloy, the coercive force is remarkably lowered when such a region is generated in part.

(6)第6の工程:乾燥工程
最後に、第5の工程で微粉砕処理した希土類−鉄−窒素系合金粉末含む有機スラリーを、固液分離し、得られたケーキを150℃以上220℃以下の温度で加熱乾燥して希土類−鉄−窒素系磁石粉末を得る。
(6) Sixth step: Drying step Finally, the organic slurry containing the rare earth-iron-nitrogen alloy powder finely pulverized in the fifth step is subjected to solid-liquid separation, and the resulting cake is 150 ° C to 220 ° C. Heat-dry at the following temperatures to obtain rare earth-iron-nitrogen magnet powder.

本発明において、こうして微粉砕された磁石粉末とリン酸及び有機溶剤を含むスラリーは、次いで大部分の液体を除去するために公知の固液分離装置に供給される。この有機スラリーは、固液分離装置内で処理されて、例えば含液率が5質量%以上30質量%以下の希土類−鉄系磁石合金粉末ケーキとなる。   In the present invention, the finely pulverized magnet powder, the slurry containing phosphoric acid and the organic solvent are then supplied to a known solid-liquid separator in order to remove most of the liquid. This organic slurry is processed in a solid-liquid separator and becomes, for example, a rare earth-iron-based magnet alloy powder cake having a liquid content of 5% by mass to 30% by mass.

次に、磁石合金粉末ケーキを加熱処理装置に移送し、引き続き、特定の排気速度で排気しながら、真空に保持して、150℃以上220℃以下の温度範囲で加熱処理する。この加熱処理には、ミキサー型乾燥機、処理物静置型の箱型乾燥機など公知の乾燥方法を用いることができる。   Next, the magnet alloy powder cake is transferred to a heat treatment apparatus, and subsequently heat-treated in a temperature range of 150 ° C. or higher and 220 ° C. or lower while being evacuated at a specific exhaust speed and kept in a vacuum. For this heat treatment, a known drying method such as a mixer-type dryer or a box-type dryer for standing treatment can be used.

以上の第1の工程から第6の工程を施すことにより、本発明の希土類−鉄−窒素系磁石粉末が得られ、本発明の効果を奏することができるが、本発明の趣旨を逸脱しない範囲で、さらに添加剤を加えたり、分級などの処理を加えることができる。   By applying the sixth to sixth steps, the rare earth-iron-nitrogen based magnet powder of the present invention can be obtained and the effects of the present invention can be achieved, but the scope of the present invention is not deviated. Thus, an additive or a treatment such as classification can be added.

以下に、本発明の実施例及び比較例を示して本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。なお、実施例や比較例に用いた希土類−鉄系磁石粉は、以下の評価方法により評価した。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the rare earth-iron-based magnet powder used in Examples and Comparative Examples was evaluated by the following evaluation methods.

[保磁力評価]
作製した磁石粉試料を、環境評価前と、環境評価として80℃相対湿度95%雰囲気中で24時間放置後と200時間放置後に、それぞれ保磁力iHc(単位:kA/m)を振動試料磁力計にて常温で測定した。
[Coercivity evaluation]
The produced magnetic powder sample was subjected to a coercive force iHc (unit: kA / m) before being evaluated for the environment and after being left for 24 hours and 200 hours in an atmosphere of 80 ° C. and 95% relative humidity as the environmental evaluation. At room temperature.

(実施例1)
酸化サマリウム粉末1,976g、鉄粉4,221g、カルシウム801.5gを混合して、1150℃で270分間還元拡散処理を行い、さらに水素気流中で室温、20時間保持して還元拡散物を得た。その後、還元拡散物を水中に入れ、酢酸を加えて4質量%酢酸溶液とした後、撹拌しながら酸化カルシウムを除去し、サマリウム−鉄系合金粉末を得た。
Example 1
Mixing 1,976 g of samarium oxide powder, 4,221 g of iron powder, and 801.5 g of calcium, subjecting to reduction diffusion treatment at 1150 ° C. for 270 minutes, and holding in a hydrogen stream at room temperature for 20 hours to obtain a reduction diffusion product It was. Thereafter, the reduced diffusion material was put into water, and acetic acid was added to make a 4% by mass acetic acid solution. Then, calcium oxide was removed while stirring to obtain a samarium-iron alloy powder.

次に、得られたサマリウム−鉄系合金粉末を450℃において、アンモニアガス4.7L/分、水素ガス9.3L/分の混合ガスを用いた条件で350分間保持して窒化処理した。得られたサマリウム−鉄−窒素系合金粉末(平均粒径20μm)を、エタノールと磁石粉末に対してりん酸を0.3mol/kg添加してスラリー化し、粉砕ボールとしてSUJ−2ボールと銅ボールを質量比で95:5にして媒体撹拌ミルを用いて微粉砕を行った。   Next, the obtained samarium-iron alloy powder was subjected to nitriding treatment at 450 ° C. for 350 minutes under a condition using a mixed gas of ammonia gas 4.7 L / min and hydrogen gas 9.3 L / min. The obtained samarium-iron-nitrogen alloy powder (average particle size 20 μm) was slurried by adding 0.3 mol / kg of phosphoric acid to ethanol and magnet powder, and SUJ-2 balls and copper balls as pulverized balls Was pulverized using a medium stirring mill at a mass ratio of 95: 5.

次に、粉砕後の磁石粉末を含んだスラリーをろ過装置に移送して固液分離し、含液率を15質量%に調整し、箱型真空乾燥機に入れて、1.33×103Pa以下の真空度に保持し、170℃で2時間乾燥させてサマリウム−鉄−窒素系磁石粉末を作製した。 Next, the slurry containing the magnet powder after pulverization is transferred to a filtration device and subjected to solid-liquid separation, the liquid content is adjusted to 15% by mass, placed in a box-type vacuum dryer, and 1.33 × 10 3. The samarium-iron-nitrogen-based magnet powder was produced by keeping the vacuum at Pa or lower and drying at 170 ° C. for 2 hours.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を前述の条件で評価した。その結果、環境評価前の保磁力iHcは、780KA/mで、環境評価24時間後の変化率は2.6%(保磁力760KA/m)で、200時間後の変化率は25.6%(保磁力580KA/m)であった。   The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated under the aforementioned conditions. As a result, the coercive force iHc before the environmental evaluation is 780 KA / m, the change rate after 24 hours of the environmental evaluation is 2.6% (coercive force 760 KA / m), and the change rate after 200 hours is 25.6%. The coercive force was 580 KA / m.

(実施例2)
粉砕ボールのSUJ−2ボールと銅ボールとの質量比を92:8にして媒体撹拌ミルを用いて微粉砕を行った以外は実施例1と同様にして、サマリウム−鉄−窒素系磁石粉末を作製した。
(Example 2)
A samarium-iron-nitrogen based magnet powder was prepared in the same manner as in Example 1 except that the mass ratio of SUJ-2 ball to copper ball of the pulverized ball was 92: 8 and finely pulverized using a medium stirring mill. Produced.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を評価した。その結果、環境評価前の保磁力iHcは、707KA/mで、環境評価24時間後の変化率は2.0%(保磁力693KA/m)で、環境評価200時間後の変化率は12.3%(保磁力620KA/m)であった。   The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated. As a result, the coercive force iHc before environmental evaluation was 707 KA / m, the rate of change after 24 hours of environmental evaluation was 2.0% (coercive force 693 KA / m), and the rate of change after 200 hours of environmental evaluation was 12. 3% (coercivity 620 KA / m).

(実施例3)
粉砕ボールのSUJ−2ボールと銅ボールとの質量比を97:3にして媒体撹拌ミルを用いて微粉砕を行った以外は実施例1と同様にして、サマリウム−鉄−窒素系磁石粉末を作製した。
(Example 3)
A samarium-iron-nitrogen magnet powder was obtained in the same manner as in Example 1 except that the mass ratio of SUJ-2 balls to copper balls of the pulverized balls was 97: 3 and pulverized using a medium stirring mill. Produced.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を評価した。その結果、環境評価前の保磁力iHcは、813KA/mで、環境評価24時間後の変化率は7.7%(保磁力750KA/m)で、環境評価200時間後の変化率は26.2%(保磁力600KA/m)であった。   The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated. As a result, the coercive force iHc before environmental evaluation was 813 KA / m, the rate of change after 24 hours of environmental evaluation was 7.7% (coercive force 750 KA / m), and the rate of change after 200 hours of environmental evaluation was 26. It was 2% (coercive force 600 KA / m).

(比較例1)
微粉砕する有機溶剤にリン酸を添加しないでエタノールだけで微粉砕した以外は、実施例1と同様にして、サマリウム−鉄−窒素系磁石粉末を作製した。
(Comparative Example 1)
A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that the organic solvent to be pulverized was finely pulverized with ethanol alone without adding phosphoric acid.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を評価した。その結果、環境評価前の保磁力iHcは、832KA/mであったが、環境評価24時間後、200時間後の試料は酸化して非磁性化してしまった。 The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated. As a result, the coercive force iHc before the environmental evaluation was 832 KA / m, but the sample after 24 hours and 200 hours after the environmental evaluation was oxidized and rendered non-magnetic.

(比較例2)
粉砕ボールのSUJ−2ボールと銅ボールとの質量比を99:1にして媒体撹拌ミルを用いて微粉砕を行った以外は実施例1と同様にして、サマリウム−鉄−窒素系磁石粉末を作製した。
(Comparative Example 2)
A samarium-iron-nitrogen based magnet powder was prepared in the same manner as in Example 1 except that the pulverized balls were finely pulverized using a medium stirring mill with a mass ratio of SUJ-2 balls and copper balls of 99: 1. Produced.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を評価した。その結果、環境評価前の保磁力iHcは、750KA/mで、環境評価24時間後の変化率は25.6%(保磁力558KA/m)で、環境評価200時間後の変化率は80.9%(保磁力143KA/m)であった。   The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated. As a result, the coercive force iHc before environmental evaluation was 750 KA / m, the rate of change after 24 hours of environmental evaluation was 25.6% (coercive force 558 KA / m), and the rate of change after 200 hours of environmental evaluation was 80. It was 9% (coercive force 143 KA / m).

(比較例3)
粉砕ボールのSUJ−2ボールと銅ボールとの質量比を85:15にして媒体撹拌ミルを用いて微粉砕を行った以外は実施例1と同様にして、サマリウム−鉄−窒素系磁石粉末を作製した。
(Comparative Example 3)
A samarium-iron-nitrogen based magnet powder was prepared in the same manner as in Example 1 except that the pulverized ball was finely pulverized using a medium agitating mill at a mass ratio of SUJ-2 ball to copper ball of 85:15. Produced.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を評価した。その結果、環境評価前の保磁力iHcは、700KA/mで、環境評価24時間後の変化率は7.1%(保磁力650KA/m)で、環境評価200時間後の変化率は14.3%(保磁力600KA/m)であった。   The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated. As a result, the coercive force iHc before environmental evaluation is 700 KA / m, the change rate after 24 hours of environmental evaluation is 7.1% (coercive force 650 KA / m), and the change rate after 200 hours of environmental evaluation is 14. 3% (coercive force 600 KA / m).

(比較例4)
粉砕ボールのSUJ−2ボールのみにして媒体撹拌ミルを用いて以外は、実施例1と同様にして、サマリウム−鉄−窒素系磁石粉末を作製した。
(Comparative Example 4)
A samarium-iron-nitrogen based magnet powder was produced in the same manner as in Example 1 except that only the SUJ-2 ball of the pulverized ball was used and a medium stirring mill was used.

得られたサマリウム−鉄−窒素系磁石粉末の保磁力を評価した。その結果、環境評価前の保磁力iHcは、717KA/mであったが、環境評価24時間後の変化率は3.2%(保磁力694KA/m)で、環境評価200時間後の変化率は74.5%(保磁力183KA/m)であった。   The coercive force of the obtained samarium-iron-nitrogen magnet powder was evaluated. As a result, the coercive force iHc before the environmental evaluation was 717 KA / m, but the change rate after 24 hours of environmental evaluation was 3.2% (coercive force 694 KA / m), and the change rate after 200 hours of environmental evaluation. Was 74.5% (coercive force 183 KA / m).

以上のように、本発明で規定した粉砕ボールの条件で作製した実施例1から実施例3にのサマリウム−鉄−窒素系磁石粉末の保磁力は、いずれも高い磁石特性を維持し、厳しい環境下でも保磁力の低下が少なく抑えられており、きわめて耐候性に優れている。   As described above, the coercive force of the samarium-iron-nitrogen based magnet powders in Examples 1 to 3 produced under the conditions of the pulverized balls defined in the present invention maintains high magnet characteristics and is a harsh environment. Even underneath, the decrease in coercive force is suppressed, and the weather resistance is extremely excellent.

Claims (3)

希土類酸化物粉末を原料として還元拡散法により母合金を作製し、これを窒化処理して得られるボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法であって、
以下の第1の工程から第6の工程を含むことを特徴とする希土類−鉄−窒素系磁石粉末の製造方法。
第1の工程:原料粉末混合工程
希土類酸化物粉末と、鉄粉末と、アルカリ金属、アルカリ土類金属またはこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合し、混合物を得る第1の工程。
第2の工程:還元拡散処理工程
第1の工程で得られた混合物に金属カルシウムを所定量加えて、不活性ガス雰囲気中において900℃以上1200℃以下の温度で加熱して、その後300℃以下に冷却して、還元拡散処理を施し反応生成物を得る第2の工程。
第3の工程:水素処理工程
第2の工程で得られた反応生成物を、不活性ガス雰囲気中で500℃以下に冷却した後、不活性ガスの少なくとも一部を排出してから水素を含むガスを供給し、該反応生成物に水素を吸収させ、その後水中に投入して湿式処理して希土類−鉄系合金粉末を得る工程。
第4の工程:窒化処理工程
第3の工程で得られた希土類−鉄系合金粉末を、120℃以上480℃以下で加熱処理し、得られた合金粗粉末をアンモニアと水素とを含有する混合ガス雰囲気中で昇温し、350℃以上500℃以下で合金粉末を窒化処理し希土類−鉄−窒素系合金粉末とする窒化処理工程。
第5の工程:微粉砕処理工程
第4の工程で得られた希土類−鉄−窒素系合金粉末を、リン酸を含む有機溶剤中で、銅からなる粉砕ボールと高炭素クロム鋼(SUJ−2)からなる粉砕ボールを含み、且つ銅からなる粉砕ボールの割合は、粉砕ボール全量の内2質量%以上10質量%以下である粉砕ボールを用いて微粉砕する微粉砕処理工程。
第6の工程:乾燥工程
第5の工程で微粉砕処理した希土類−鉄−窒素系合金粉末含むスラリーを、固液分離し、得られたケーキを150℃以上220℃以下の温度で加熱乾燥して希土類−鉄−窒素系磁石粉末を得る乾燥工程。
A method for producing a rare earth-iron-nitrogen based magnet powder for a bond magnet obtained by preparing a mother alloy by a reduction diffusion method using a rare earth oxide powder as a raw material, and nitriding the master alloy,
A method for producing a rare earth-iron-nitrogen based magnet powder comprising the following first to sixth steps.
First step: Raw material powder mixing step Rare earth oxide powder, iron powder, and at least one reducing agent powder selected from alkali metals, alkaline earth metals or hydrides thereof are mixed at a predetermined ratio, A first step of obtaining a mixture.
Second step: Reduction diffusion treatment step A predetermined amount of metallic calcium is added to the mixture obtained in the first step and heated at a temperature of 900 ° C. or higher and 1200 ° C. or lower in an inert gas atmosphere, and then 300 ° C. or lower. A second step of cooling to a temperature and applying a reduction diffusion treatment to obtain a reaction product.
Third step: Hydrogen treatment step After the reaction product obtained in the second step is cooled to 500 ° C. or lower in an inert gas atmosphere, hydrogen is contained after discharging at least a part of the inert gas. A step of supplying a gas, causing the reaction product to absorb hydrogen, and then adding it into water to perform wet processing to obtain a rare earth-iron alloy powder.
Fourth step: nitriding step The rare earth-iron-based alloy powder obtained in the third step is heat-treated at 120 ° C. or higher and 480 ° C. or lower, and the obtained alloy coarse powder is mixed containing ammonia and hydrogen. A nitriding treatment step of heating in a gas atmosphere and nitriding the alloy powder at 350 ° C. or more and 500 ° C. or less to obtain a rare earth-iron-nitrogen alloy powder.
Fifth step: fine pulverization treatment step In the organic solvent containing phosphoric acid, the rare earth-iron-nitrogen alloy powder obtained in the fourth step is pulverized with copper and high carbon chromium steel (SUJ-2). A pulverization treatment step of pulverizing using a pulverized ball that is 2% by mass to 10% by mass of the total amount of pulverized balls.
Sixth step: drying step The slurry containing the rare earth-iron-nitrogen alloy powder finely pulverized in the fifth step is subjected to solid-liquid separation, and the resulting cake is heated and dried at a temperature of 150 ° C to 220 ° C. Drying step to obtain rare earth-iron-nitrogen based magnet powder.
前記第5の工程のリン酸を含む有機溶剤は、リン酸の濃度が0.1mol%以上0.5mol%以下であることを特徴とする請求項1に記載のボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法。   The rare earth-iron-nitrogen for bonded magnet according to claim 1, wherein the organic solvent containing phosphoric acid in the fifth step has a phosphoric acid concentration of 0.1 mol% or more and 0.5 mol% or less. Of production of magnetic system magnet powder. 前記希土類−鉄−窒素系磁石粉末は、Sm−Fe−N系磁石粉末であることを特徴とする請求項1または2に記載のボンド磁石用希土類−鉄−窒素系磁石粉末の製造方法。   The method for producing a rare earth-iron-nitrogen based magnet powder for a bond magnet according to claim 1 or 2, wherein the rare earth-iron-nitrogen based magnet powder is an Sm-Fe-N based magnet powder.
JP2016141007A 2016-07-19 2016-07-19 Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet Pending JP2018014341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016141007A JP2018014341A (en) 2016-07-19 2016-07-19 Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141007A JP2018014341A (en) 2016-07-19 2016-07-19 Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet

Publications (1)

Publication Number Publication Date
JP2018014341A true JP2018014341A (en) 2018-01-25

Family

ID=61020182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141007A Pending JP2018014341A (en) 2016-07-19 2016-07-19 Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet

Country Status (1)

Country Link
JP (1) JP2018014341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530655A (en) * 2020-11-25 2021-03-19 广东泛瑞新材料有限公司 Low-power-consumption soft magnetic alloy material and preparation method and application thereof
CN114156033A (en) * 2021-11-29 2022-03-08 横店集团东磁股份有限公司 SmFeN powder and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530655A (en) * 2020-11-25 2021-03-19 广东泛瑞新材料有限公司 Low-power-consumption soft magnetic alloy material and preparation method and application thereof
CN112530655B (en) * 2020-11-25 2021-07-20 广东泛瑞新材料有限公司 Low-power-consumption soft magnetic alloy material and preparation method and application thereof
CN114156033A (en) * 2021-11-29 2022-03-08 横店集团东磁股份有限公司 SmFeN powder and preparation method thereof
CN114156033B (en) * 2021-11-29 2022-08-30 横店集团东磁股份有限公司 SmFeN powder and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
JP7364158B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP6980207B2 (en) Rare earth iron nitrogen-based magnetic powder and its manufacturing method
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
WO2018096733A1 (en) Rare earth-iron-nitrogen system magnetic powder and method for producing same
JP2018090892A (en) Rare-earth-iron-nitrogen-based magnetic powder and method for producing the same
JP2018014341A (en) Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JP2022177699A (en) Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder
JP6171922B2 (en) Rare earth-iron-nitrogen based magnetic alloy and method for producing the same
CN115515737A (en) Rare earth iron-nitrogen-based magnetic powder, composite for bonded magnet, and method for producing rare earth iron-nitrogen-based magnetic powder
JP2011214113A (en) Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby
JP2017218623A (en) Production method of rare earth-iron-nitrogen system alloy powder
JP6555197B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
CN116741484A (en) Samarium-iron alloy, samarium-iron-nitrogen permanent magnet material, and preparation methods and applications thereof
JP2007327101A (en) Method for producing rare earth-iron-nitrogen based magnet fine powder
JP7006156B2 (en) Rare earth-iron-nitrogen magnet powder manufacturing method
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP6878845B2 (en) Rare earth-iron-nitrogen magnet fine powder manufacturing method
JP3456958B2 (en) Method for producing R-Fe-B based sintered magnet, and method for preparing and storing alloy powder material for R-Fe-B based sintered magnet
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP2000104104A (en) Manufacture of samarium-iron-nitrogen alloy powder
JPH10261514A (en) Magnetic material
JP2017193744A (en) Rare earth-iron-nitrogen-based alloy powder and manufacturing method therefor