JPH09118195A - Air bag collision judging device - Google Patents

Air bag collision judging device

Info

Publication number
JPH09118195A
JPH09118195A JP7278908A JP27890895A JPH09118195A JP H09118195 A JPH09118195 A JP H09118195A JP 7278908 A JP7278908 A JP 7278908A JP 27890895 A JP27890895 A JP 27890895A JP H09118195 A JPH09118195 A JP H09118195A
Authority
JP
Japan
Prior art keywords
collision
speed collision
time
low
ramp function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7278908A
Other languages
Japanese (ja)
Inventor
Hiroyuki Konishi
博之 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP7278908A priority Critical patent/JPH09118195A/en
Publication of JPH09118195A publication Critical patent/JPH09118195A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the performance for judging collision by determining inclination of ramp in ramp function data concerning decrease of accumulated integrated value and removal of direct current component by considering a difference of output characteristics of an acceleration sensor when a vehicle collides at a high speed and a low speed. SOLUTION: An accumulated integrated value at the time of high speed collision and low speed collision which decreases at a fixed ratio every time when detected data is input and accumulated and integrated in an air bag collision judging device which judges collision based on the accumulated integrated value of the detected data for deceleration detected by an acceleration sensor is obtained to expand an air bag provided in a vehicle. An integration means 51 which makes an decrease ratio at the time of high speed collision larger than a ratio at the time of low speed collision and a judging means 52 which judges collision when the accumulated integrated value at the time of high speed and low speed collision is higher than a predetermined threshold value at the time of high speed and low speed collision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はエアバッグ衝突判別
装置に関し、特に、高速衝突、低速衝突での加速度セン
サの出力特性の相違を考慮して衝突判別の性能を向上す
るエアバッグ衝突判別装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an airbag collision discriminating apparatus, and more particularly to an airbag collision discriminating apparatus which improves the performance of collision discrimination in consideration of the difference in output characteristics of acceleration sensors in high-speed collision and low-speed collision. .

【0002】[0002]

【従来の技術】従来このような分野のエアバッグシステ
ムでは、衝突時の衝撃(減速度)を車体に取り付けた加
速度(G)センサで検出し、ECU(electronic contro
l unit) でエアバッグを展開させるべき衝突か否かを判
定し、必要な場合には電気信号をステアリングホイール
内に装着されたインフレータに送り、ガス発生剤を燃焼
させてエアバッグを膨張させている。エアバッグは乗員
の頭部あるいは胸部を拘束し、頭部、胸部がステアリン
グホイールあるいはウインドシールドに二次衝突するこ
とを防ぐ。これらの一連の動作は、衝突形態、衝突速度
により異なるが、衝突から衝突判定まで10〜30m
s、電気信号が出てからエアバッグが完全に膨張するま
で30〜40msとごく短時間で行わなければならな
い。エアバッグは乗員を受け止めて保護し、同時にガス
を抜くことによってエネルギーを吸収しながら縮んで行
き、すべての動作完了時間は約0.1〜0.15秒程度
の時間である。エアバッグシステムは、車両の一生のう
ちで1度作動するかしないかという頻度であるにも拘わ
らず、その1回のときには確実に作動しなければならな
いし、逆に作動すべきでないとき(非衝突やバッグの展
開の必要のない軽微な衝突)には作動しないようにしな
ければならない。このため、エアバッグシステムの高信
頼度が要求される。
2. Description of the Related Art Conventionally, in an airbag system in such a field, an impact (deceleration) at the time of a collision is detected by an acceleration (G) sensor attached to a vehicle body, and an ECU (electronic control) is used.
l unit) to determine whether or not the airbag should be deployed, and if necessary, send an electric signal to the inflator installed in the steering wheel to burn the gas generating agent and inflate the airbag. There is. The airbag restrains the head or chest of the occupant and prevents the head and chest from colliding with the steering wheel or the windshield. These series of operations vary depending on the collision type and collision speed, but it is 10 to 30 m from collision to collision judgment.
s, it should be done in a very short time of 30 to 40 ms after the electric signal is output until the airbag is completely inflated. The airbag receives and protects an occupant, and at the same time shrinks while absorbing energy by venting gas, and the completion time of all operations is about 0.1 to 0.15 seconds. The airbag system must operate reliably at one time and not at the other time, regardless of whether or not the airbag system operates once in the life of the vehicle. It should not be activated for collisions and minor collisions that do not require bag deployment. Therefore, high reliability of the airbag system is required.

【0003】したがって、エアバッグ衝突判別装置に
は、加速度センサの出力を累積積分し、積分値がある値
に達した時点で点火信号が発生するのを可能にしてあ
る。この累積積分を無限積分処理により行う場合には、
非衝突時を考慮して、この累積積分値を一定の時定数で
減衰させている。実際の衝突ではない場合にも、加速度
センサの出力が徐々に累積されて、衝突と判別するのを
防止するためである。
Therefore, the airbag collision determination device is capable of cumulatively integrating the output of the acceleration sensor and generating an ignition signal when the integrated value reaches a certain value. When performing this cumulative integration by infinite integration processing,
In consideration of the non-collision time, this cumulative integrated value is attenuated with a constant time constant. This is to prevent the output of the acceleration sensor from being gradually accumulated even when the collision is not an actual collision, and to determine that the collision is a collision.

【0004】また、エアバッグ衝突判別装置には、加速
度センサの出力に衝突時の減速度と無関係な直流成分が
重畳されているので、衝突時の減速度に関する交流デー
タに対して直流成分としてとランプ関数データを用い
て、交流データとランプ関数データとの差を取ってこの
直流成分を除去するようにしてある。
Further, since the DC component unrelated to the deceleration at the time of collision is superposed on the output of the acceleration sensor in the airbag collision judging device, the AC data relating to the deceleration at the time of collision is regarded as a DC component. By using the ramp function data, the difference between the AC data and the ramp function data is taken to remove this DC component.

【0005】[0005]

【発明が解決しようとする課題】図7は高速衝突、低速
衝突時の加速度センサの出力を示す図である。本図に示
すように、高速衝突時には加速度センサの出力は短時間
に大きな振幅を持ち、これに対して低速衝突時には加速
度センサの出力は長時間で小さな振幅となる特性であ
る。このため、上記累積積分値の減衰を高速衝突時と低
速衝突時とで同じくすると、例えば高速衝突時に合わせ
て減衰時定数を大きくすると、低速衝突時の場合には累
積積分値が減衰の影響を受けて過少となり、衝突の判断
が遅れるとの問題がある。次に、例えば低速衝突時に合
わせて減衰時定数を小さくすると、高速衝突時の場合に
は累積積分値が、実際の衝突ではない、加速度センサの
出力の影響を受けて過大となり、衝突の判断が早くなる
との問題がある。
FIG. 7 is a diagram showing the output of the acceleration sensor during a high speed collision and a low speed collision. As shown in the figure, the output of the acceleration sensor has a large amplitude in a short time during a high-speed collision, whereas the output of the acceleration sensor has a small amplitude in a long time during a low-speed collision. For this reason, if the damping of the above-mentioned cumulative integrated value is made to be the same during high-speed collision and during low-speed collision, for example, if the damping time constant is increased at the time of high-speed collision, the cumulative integrated value will affect the damping in the case of low-speed collision. However, there is a problem that it becomes too small and the judgment of collision is delayed. Next, for example, if the damping time constant is made smaller at the time of a low-speed collision, the cumulative integration value at the time of a high-speed collision becomes too large due to the influence of the output of the acceleration sensor, which is not an actual collision, and the collision judgment can be made. There is a problem of getting faster.

【0006】さらに、仮に高速衝突時と低速衝突時で同
じランプ関数データを使用したとすると、高速衝突時に
合わせてランプの傾きを大きくした場合には低速衝突時
の場合には直流成分を大きく見積もることになり累積積
分値が過少となり、衝突の判断が遅れるとの問題があ
る。低速衝突時に合わせてランプの傾きを小さくした場
合には高速衝突時に加速度センサのノイズも減速度成分
とみなして累積積分値が過大となり、衝突の判断が早く
なるとの問題がある。
Further, if the same ramp function data is used for a high speed collision and a low speed collision, the DC component is estimated to be large in the case of a low speed collision when the inclination of the ramp is increased in accordance with the high speed collision. As a result, there is a problem that the cumulative integration value becomes too small and the judgment of collision is delayed. If the inclination of the ramp is reduced at the time of a low-speed collision, the acceleration sensor noise is also regarded as a deceleration component at the time of a high-speed collision, and the cumulative integrated value becomes excessive, resulting in a quick collision determination.

【0007】したがって、本発明は、上記問題に鑑み、
高速衝突時、低速衝突時に、加速度センサの出力の累積
積分の減衰、ランプ関数データの傾きを適正に設定で
き、衝突の判別正常を向上できるエアバッグ衝突判別装
置を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems.
An object of the present invention is to provide an airbag collision determination device capable of appropriately setting the attenuation of the cumulative integration of the output of the acceleration sensor and the slope of the ramp function data at the time of a high-speed collision or a low-speed collision and improving the normality of the collision determination.

【0008】[0008]

【課題を解決するための手段】本発明は、前記問題点を
解決するために、車両に装備されるエアバッグを展開す
るために、加速度センサにより検出された減速度の検出
データの累積積分値を基に、衝突を判断し、次の構成を
有するエアバッグ衝突判別装置を提供する。すなわち、
エアバッグ衝突判別装置に、前記検出データを入力し累
積積分する毎に一定の割合で減衰させる高速衝突時及び
低速衝突時の累積積分値を求め、高速衝突時の減衰割合
を低速衝突時の割合よりも大きくする積分手段と、前記
高速衝突時又は、低速衝突時の累積積分値が高速衝突時
又は、低速衝突時の所定閾値よりも大きい場合には衝突
と判定する判定手段とが設けられる。この装置により、
加速度センサの高速衝突、低速衝突時の出力特性に応じ
て累積積分の減衰を設定することが可能になるので、高
速衝突、低速衝突の判別を適正に行うことができるよう
になった。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a cumulative integration value of deceleration detection data detected by an acceleration sensor for deploying an airbag installed in a vehicle. Based on the above, a collision determination device is provided, and an airbag collision determination device having the following configuration is provided. That is,
To the airbag collision determination device, the detection data is input and cumulatively integrated and attenuated at a constant rate to obtain a cumulative integration value during a high-speed collision and a low-speed collision, and the attenuation rate during a high-speed collision is calculated as a ratio during a low-speed collision. There is provided an integrating means for making the value larger than the above, and a determining means for judging a collision when the cumulative integrated value at the time of the high speed collision or the low speed collision is larger than a predetermined threshold value at the time of the high speed collision or the low speed collision. With this device,
Since the attenuation of the cumulative integration can be set according to the output characteristics of the acceleration sensor at the time of a high speed collision or a low speed collision, it is possible to appropriately determine the high speed collision or the low speed collision.

【0009】さらに、今回の前記検出データと、前回の
ランプ関数データにランプ傾きを決める定数を加算した
定数加算値とを比較して小さい方を今回のランプ関数デ
ータとする高速衝突時及び低速衝突時のランプ関数を求
め、高速衝突時のランプ傾きを低速衝突時のランプ傾き
よりも大きくするランプ関数発生手段と、前記検出デー
タと高速衝突時のランプ関数データの高速衝突時の差
と、前記検出データと高速衝突時のランプ関数データの
低速衝突時の差を求め、これらの差を前記積分手段の入
力検出データとする差形成手段とが設けられる。この装
置により、前記累積積分の適正な減衰の設定に加えて、
加速度センサの高速衝突、低速衝突時の出力特性に応じ
て、ランプ関数データの傾きを適正に設定することが可
能になるので、高速衝突、低速衝突の判別をより適正に
行うことができるようになった。
Further, the detected data of this time is compared with a constant addition value obtained by adding a constant for determining the ramp slope to the previous ramp function data, and the smaller one is used as the current ramp function data. Ramp function generating means for obtaining a ramp function at the time of high-speed collision, and a ramp inclination at the time of high-speed collision larger than the ramp inclination at the time of low-speed collision; There is provided a difference forming means for obtaining a difference between the detection data and the ramp function data at the time of the high speed collision at the time of the low speed collision, and using the difference as the input detection data of the integrating means. With this device, in addition to setting the appropriate attenuation of the cumulative integration,
Since the slope of the ramp function data can be set appropriately according to the output characteristics of the acceleration sensor at the time of high-speed collision and low-speed collision, it is possible to more appropriately determine the high-speed collision and the low-speed collision. became.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態について
図面を参照して説明する。図1は本発明の実施の形態に
係るエアバッグ衝突判別装置の全体構成を示す図であ
る。本図に示すように、エアバッグ衝突判別装置は、車
両の減速度を検出する半導体式加速度(G)センサ1を
具備する。この加速度センサ1には検出信号を増幅する
ために増幅器2が接続される。この増幅器2には検出信
号に含まれる不要信号を除去するフィルタ3が接続され
る。このフィルタ3にはアナログ信号をディジタルデー
タに変換するためにA/D変換器4(Analog to Digita
lConverter)が接続される。このA/D変換器4には変
換された検出データから衝突の有無を判定する衝突判別
部5が設けられる。この衝突判別部5の後段にはこの判
断によりエアバッグを展開する点火装置6が設けられ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of an airbag collision determination device according to an embodiment of the present invention. As shown in the figure, the airbag collision determination device includes a semiconductor acceleration (G) sensor 1 that detects the deceleration of the vehicle. An amplifier 2 is connected to the acceleration sensor 1 in order to amplify the detection signal. A filter 3 for removing unnecessary signals included in the detection signal is connected to the amplifier 2. The filter 3 includes an A / D converter 4 (Analog to Digita) for converting an analog signal into digital data.
lConverter) is connected. The A / D converter 4 is provided with a collision discriminating section 5 for discriminating the presence / absence of a collision from the converted detection data. An ignition device 6 that deploys the airbag according to this determination is provided at the subsequent stage of the collision determination unit 5.

【0011】図2は図1の衝突判別部5の構成を示す図
である。本図に示すように、衝突判別部5には、積分手
段51と判定手段52が設けられる。積分手段51は、
A/D変換器4から変換された検出データを入力する加
算器53及び54と、加算器53及び54の出力をそれ
ぞれ接続され増幅率k1(<1)、増幅率k2(<1)
で増幅する増幅器55及び56と、増幅器55及び56
の出力を1サンプリング周期だけ遅延して前記加算器5
3及び54の他方の入力を形成する遅延器57及び58
とが設けられる。ここに、k1<k2である。このよう
にして、積分手段51には検出データを高速衝突時、低
速衝突時で別々に累積積分し、この累積積分の値を減衰
させるに際し、k1<k2として、非衝突時において、
高速衝突時の累積積分値SUMfの減衰を、低速衝突時
の累積積分値SUMsの減衰よりも大きくしてある。
FIG. 2 is a diagram showing the structure of the collision determination section 5 of FIG. As shown in the figure, the collision determination unit 5 is provided with an integration unit 51 and a determination unit 52. The integrating means 51 is
The adders 53 and 54 for inputting the detection data converted from the A / D converter 4 and the outputs of the adders 53 and 54 are connected to each other, and an amplification factor k1 (<1) and an amplification factor k2 (<1) are obtained.
Amplifiers 55 and 56 for amplifying with
Of the adder 5 with a delay of one sampling period
Delays 57 and 58 forming the other inputs of 3 and 54
Are provided. Here, k1 <k2. In this way, the integrating means 51 cumulatively integrates the detection data separately at the time of high-speed collision and at the time of low-speed collision, and when attenuating the value of this cumulative integration, k1 <k2 is set, and at the time of non-collision,
The damping of the cumulative integration value SUMf at the time of a high speed collision is made larger than the damping of the cumulative integration value SUMs at the time of a low speed collision.

【0012】さらに、判定手段52には、増幅器55及
び56の出力に接続され、高速衝突時、低速衝突時の累
積積分値SUMf、SUMsを入力しそれぞれ閾値TH
1、TH2と比較して高速衝突、低速衝突の判断を行う
コンパレータ59及び60と、コンパレータ59及び6
0の出力に接続されて高速衝突、低速衝突の判断のいず
れかの判断結果を出力する論理和部61とが設けられ
る。ここで、閾値TH1、TH2は高速衝突、低速衝突
の判断を行うための累積積分値である。
Further, the judging means 52 is connected to the outputs of the amplifiers 55 and 56, inputs the cumulative integration values SUMf and SUMs at the time of high speed collision and at the time of low speed collision, and respectively inputs the threshold values TH.
1, comparators 59 and 60 for judging a high speed collision and a low speed collision as compared with TH2, and comparators 59 and 6
A logical sum unit 61 is provided which is connected to the output of 0 and outputs the determination result of either high speed collision or low speed collision. Here, the thresholds TH1 and TH2 are cumulative integration values for determining a high speed collision and a low speed collision.

【0013】このようにして、高速衝突時、低速衝突時
で各別に累積積分値SUMf、SUMsを算出し、各累
積積分値に対して高速衝突時、低速衝突時の加速度セン
サの出力特性を考慮して非衝突時の減衰を適正に設定で
きるようになったので、従来と比較して高速衝突時、低
速衝突時での衝突の判別の向上が可能になる。図3は図
1の衝突判別部5の別の構成を示す図である。本図に示
すように、衝突判別部5には、積分手段51と判定手段
52の前段のランプ関数発生手段53と差形成手段54
とが設けられる。
In this way, the cumulative integrated values SUMf and SUMs are calculated separately for a high speed collision and a low speed collision, and the output characteristics of the acceleration sensor during a high speed collision and a low speed collision are taken into consideration for each cumulative integrated value. Since the damping at the time of non-collision can be set appropriately, it is possible to improve the discrimination of the collision at the time of high-speed collision and the collision at low-speed collision as compared with the conventional case. FIG. 3 is a diagram showing another configuration of the collision determination unit 5 of FIG. As shown in the figure, the collision determination unit 5 includes a ramp function generation unit 53 and a difference formation unit 54 in the preceding stage of the integration unit 51 and the determination unit 52.
Are provided.

【0014】このランプ関数発生手段53は、A/D変
換器4より加速度センサの検出データを入力し、高速衝
突時のランプ関数Rampf(n)、低速衝突時のラン
プ関数Ramps(n)として、 Rampf(n)=min(検出データ(n),Ram
pf(n−1)+kf) Ramps(n)=min(検出データ(n),Ram
ps(n−1)+ks) を発生する。ここに、nはサンプリングの序数であり、
kfは高速衝突時用のランプ発生定数、ksは低速衝突
時用のランプ発生定数であり、kf>ksである。
The ramp function generating means 53 receives the detection data of the acceleration sensor from the A / D converter 4, and outputs it as a ramp function Rampf (n) at the time of a high speed collision and a ramp function Ramps (n) at the time of a low speed collision. Rampf (n) = min (detection data (n), Ram
pf (n-1) + kf) Ramps (n) = min (detection data (n), Ram
generate ps (n-1) + ks). Where n is the ordinal number of the sampling,
kf is a ramp generation constant for high-speed collision, ks is a ramp generation constant for low-speed collision, and kf> ks.

【0015】図4はランプ関数発生手段53による高速
衝突時のランプ関数発生を説明する図である。本図に示
すように、検出データに対して、高速衝突時のランプ関
数Rampf(n)は、A1→A2、A3→A4、A5
→A6、A7→A8では、 Rampf(n)=Rampf(n−1)+kf であり、A2→A3、A4→A5、A6→A7では、 Rampf(n)=検出データ(n) である。
FIG. 4 is a diagram for explaining the ramp function generation by the ramp function generating means 53 during a high-speed collision. As shown in the figure, the ramp function Rampf (n) at the time of high-speed collision is A1 → A2, A3 → A4, A5 with respect to the detection data.
Rampf (n) = Rampf (n−1) + kf in A6 and A7 → A8, and Rampf (n) = detection data (n) in A2 → A3, A4 → A5, and A6 → A7.

【0016】図5はランプ関数発生手段53による低速
衝突時のランプ関数発生を説明する図である。本図に示
すように、検出データに対して、低速衝突時のランプ関
数Ramps(n)は、B1→B2、A3→A4では、 Ramps(n)=Ramps(n−1)+ks であり、B2→A3では、 Ramps(n)=検出データ(n) である。
FIG. 5 is a diagram for explaining the ramp function generation at the time of a low speed collision by the ramp function generating means 53. As shown in the figure, with respect to the detection data, the ramp function Ramps (n) at the time of a low speed collision is Ramps (n) = Ramps (n−1) + ks for B1 → B2 and A3 → A4, and B2 → At A3, Ramps (n) = detection data (n).

【0017】次に、差形成手段54はA/D変換器4よ
り検出データとランプ関数発生手段53からの高速衝突
時、低速衝突時のランプ関数とを入力し、以下の高速衝
突時、低速衝突時の差Af(n)、As(n)データを Af(n)=検出データ(n)−Rampf(n) As(n)=検出データ(n)−Ramps(n) として算出する。
Next, the difference forming means 54 inputs the detection data from the A / D converter 4 and the ramp function at the time of high-speed collision and low-speed collision from the ramp function generating means 53, and the following high-speed collision and low-speed collision are performed. Differences Af (n) and As (n) data at the time of collision are calculated as Af (n) = detection data (n) -Rampf (n) As (n) = detection data (n) -Ramps (n).

【0018】これらの差Af(n)、As(n)データ
は積分手段51の加算器53、54に入力される。図6
はエアバッグ衝突判別装置の一連の動作を説明するフロ
ーチャートである。ステップS1において、加速度セン
サの入力処理、フィルタ処理を行う。
These differences Af (n) and As (n) data are input to the adders 53 and 54 of the integrating means 51. FIG.
3 is a flowchart illustrating a series of operations of the airbag collision determination device. In step S1, an acceleration sensor input process and a filter process are performed.

【0019】ステップS2において、高速衝突用のラン
プ関数Rampfを計算する。ステップS3において、
高速衝突用の差Afを計算する。ステップS4におい
て、高速衝突用の減衰を伴う累積積分を行い、SUMf
を、以下のように、求める。 SUMf(n)={SUMf(n−1)+Af(n)}
・kf ステップS5において、低速衝突用のランプ関数Ram
psを計算する。
In step S2, the ramp function Rampf for high speed collision is calculated. In step S3,
Calculate the difference Af for high speed collisions. In step S4, cumulative integration with damping for high-speed collision is performed, and SUMf
Is calculated as follows. SUMf (n) = {SUMf (n-1) + Af (n)}
Kf In step S5, ramp function Ram for low-speed collision
Calculate ps.

【0020】ステップS6において、低速衝突用の差A
sを計算する。ステップS7において、低速衝突用の減
衰を伴う累積積分を行い、SUMsを、以下のように、
求める。 SUMs(n)={SUMs(n−1)+As(n)}
・ks ステップS8において、 SUMf>TH1 の判断を行う。この判断が「YES」なら高速衝突と判
断されステップS10に進み、「NO」ならステップS
9に進む。
In step S6, the difference A for low speed collision
Calculate s. In step S7, cumulative integration with damping for low speed collision is performed, and SUMs is calculated as follows.
Ask. SUMs (n) = {SUMs (n-1) + As (n)}
-Ks In step S8, SUMf> TH1 is determined. If this determination is "YES", it is determined that it is a high-speed collision and the process proceeds to step S10, and if "NO", it is step S
Go to 9.

【0021】ステップS9において、高速衝突でないな
らば、 SUMs>TH2 の判断を行う。この判断が「YES」ならステップS1
0に進み、「NO」なら割り込み終了を行う。ステップ
S10において、ステップS8、9の判断が「YES」
なら点火処理を行って、割り込み終了を行う。
In step S9, if it is not a high-speed collision, it is determined that SUMs> TH2. If this determination is “YES”, step S1
If it is "NO", the interruption is ended. In step S10, the determination in steps S8 and S9 is “YES”.
If so, the ignition process is performed and the interruption is ended.

【0022】このようにして、高速衝突時、低速衝突時
に、加速度センサの出力の累積積分の減衰、ランプ関数
データの傾きを適正に設定でき、衝突の判別正常を向上
できるようになった。
In this way, during high speed collision and low speed collision, it is possible to properly set the attenuation of the cumulative integration of the output of the acceleration sensor and the slope of the ramp function data, and improve the normality of collision judgment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るエアバッグ衝突判別
装置の全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of an airbag collision determination device according to an embodiment of the present invention.

【図2】図1の衝突判別部5の構成を示す図である。FIG. 2 is a diagram showing a configuration of a collision determination unit 5 in FIG.

【図3】図1の衝突判別部5の別の構成を示す図であ
る。
FIG. 3 is a diagram showing another configuration of the collision determination unit 5 in FIG.

【図4】ランプ関数発生手段53による高速衝突時のラ
ンプ関数発生を説明する図である。
FIG. 4 is a diagram illustrating ramp function generation by a ramp function generating means 53 during a high-speed collision.

【図5】ランプ関数発生手段53による低速衝突時のラ
ンプ関数発生を説明する図である。
FIG. 5 is a diagram for explaining ramp function generation at a low speed collision by a ramp function generating means 53.

【図6】エアバッグ衝突判別装置の一連の動作を説明す
るフローチャートである。
FIG. 6 is a flowchart illustrating a series of operations of the airbag collision determination device.

【図7】高速衝突、低速衝突時の加速度センサの出力を
示す図である。
FIG. 7 is a diagram showing the output of the acceleration sensor during a high speed collision and a low speed collision.

【符号の説明】[Explanation of symbols]

1…加速度センサ 5…衝突判別手段 51…積分手段 52…判定手段 53…ランプ関数発生手段 54…差形成手段 DESCRIPTION OF SYMBOLS 1 ... Acceleration sensor 5 ... Collision judging means 51 ... Integrating means 52 ... Judging means 53 ... Ramp function generating means 54 ... Difference forming means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車両に装備されるエアバッグを展開する
ために、加速度センサにより検出された減速度の検出デ
ータの累積積分値を基に、衝突を判断するエアバッグ衝
突判別装置において、 前記検出データを入力し累積積分する毎に一定の割合で
減衰させる高速衝突時及び低速衝突時の累積積分値を求
め、高速衝突時の減衰割合を低速衝突時の割合よりも大
きくする積分手段(51)と、 前記高速衝突時又は、低速衝突時の累積積分値が高速衝
突時又は、低速衝突時の所定閾値よりも大きい場合には
衝突と判定する判定手段(52)とを備えることを特徴
とするエアバッグ衝突判別装置。
1. An airbag collision determination device for determining a collision based on a cumulative integral value of detection data of deceleration detected by an acceleration sensor for deploying an airbag installed in a vehicle, comprising: Integrating means (51) for obtaining a cumulative integration value during high-speed collision and during low-speed collision, which is attenuated at a constant rate every time data is input and cumulatively integrated, and which makes the attenuation rate during high-speed collision larger than that during low-speed collision. And a determination means (52) for determining a collision when the cumulative integrated value at the time of high-speed collision or at the time of low-speed collision is larger than a predetermined threshold value at the time of high-speed collision or low-speed collision. Airbag collision determination device.
【請求項2】 さらに、今回の前記検出データと、前回
のランプ関数データにランプ傾きを決める定数を加算し
た定数加算値とを比較して小さい方を今回のランプ関数
データとする高速衝突時及び低速衝突時のランプ関数を
求め、高速衝突時のランプ傾きを低速衝突時のランプ傾
きよりも大きくするランプ関数発生手段(53)と、 前記検出データと高速衝突時のランプ関数データの高速
衝突時の差と、前記検出データと高速衝突時のランプ関
数データの低速衝突時の差を求め、これらの差を前記積
分手段(51)の入力検出データとする差形成手段(5
4)とを備えることを特徴とする、請求項1に記載のエ
アバッグ衝突判別装置。
2. Further, the detected data of this time is compared with a constant addition value obtained by adding a constant for determining the ramp slope to the previous ramp function data, and the smaller one is set as the current ramp function data at the time of high-speed collision and Ramp function generating means (53) for obtaining a ramp function at low speed collision and making the ramp inclination at high speed collision larger than the ramp inclination at low speed collision, and at the time of high speed collision of the detection data and the ramp function data at high speed collision Difference and the difference between the detection data and the ramp function data at the time of a high speed collision at the time of a low speed collision, and the difference forming means (5) that uses these differences as the input detection data of the integrating means (51).
4) The airbag collision determination device according to claim 1, further comprising:
JP7278908A 1995-10-26 1995-10-26 Air bag collision judging device Withdrawn JPH09118195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278908A JPH09118195A (en) 1995-10-26 1995-10-26 Air bag collision judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278908A JPH09118195A (en) 1995-10-26 1995-10-26 Air bag collision judging device

Publications (1)

Publication Number Publication Date
JPH09118195A true JPH09118195A (en) 1997-05-06

Family

ID=17603777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278908A Withdrawn JPH09118195A (en) 1995-10-26 1995-10-26 Air bag collision judging device

Country Status (1)

Country Link
JP (1) JPH09118195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065482A (en) * 2016-10-20 2018-04-26 本田技研工業株式会社 Occupant protection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065482A (en) * 2016-10-20 2018-04-26 本田技研工業株式会社 Occupant protection device
US10688949B2 (en) 2016-10-20 2020-06-23 Honda Motor Co., Ltd. Occupant protection device

Similar Documents

Publication Publication Date Title
JP3014313B2 (en) Airbag collision detection device
JP2580405B2 (en) Starting device for vehicle occupant protection device
CN102407820A (en) Collision determining apparatus for vehicle
US7278657B1 (en) Method and apparatus for controlling an actuatable occupant protection device using an ultrasonic sensor
JPH07270447A (en) Detection of collision by combination of accelerometer and high-frequency pressure transducer
JP4015552B2 (en) Method for triggering at least one airbag in a vehicle
JP2875040B2 (en) Vehicle safety device control system
US8527150B2 (en) Method and control device for triggering passenger protection means for a vehicle
JP4334114B2 (en) Vehicle collision determination method and collision determination device
JP4864242B2 (en) Vehicle collision determination device
JPH09118195A (en) Air bag collision judging device
JPH1067295A (en) Occupant protective device of vehicle
JP2006501095A (en) Device for activation control of occupant restraint means
JP4183880B2 (en) Vehicle collision determination device
JP4306543B2 (en) Activation control device for occupant protection device
JP4183881B2 (en) Vehicle collision determination device
JP4183882B2 (en) Vehicle collision determination device
JP2925455B2 (en) Airbag collision calculation device
JP3482435B2 (en) Airbag deployment control device
KR960021947A (en) Control system and method for airbag deployment, non-development situation determination and optimal start time determination
JP2006027290A (en) Collision mode determination apparatus and occupant crash protector
JP4263335B2 (en) Vehicle collision determination device
JP3082878B2 (en) Airbag activation control device
JP4417200B2 (en) Deployment determination method for occupant protection device and occupant protection device using the method
JPH07304412A (en) Air bag collision computing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107