JP4183880B2 - Vehicle collision determination device - Google Patents

Vehicle collision determination device Download PDF

Info

Publication number
JP4183880B2
JP4183880B2 JP2000095911A JP2000095911A JP4183880B2 JP 4183880 B2 JP4183880 B2 JP 4183880B2 JP 2000095911 A JP2000095911 A JP 2000095911A JP 2000095911 A JP2000095911 A JP 2000095911A JP 4183880 B2 JP4183880 B2 JP 4183880B2
Authority
JP
Japan
Prior art keywords
collision
movement amount
difference
elapsed time
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000095911A
Other languages
Japanese (ja)
Other versions
JP2001277998A (en
Inventor
昌寿 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2000095911A priority Critical patent/JP4183880B2/en
Publication of JP2001277998A publication Critical patent/JP2001277998A/en
Application granted granted Critical
Publication of JP4183880B2 publication Critical patent/JP4183880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automotive Seat Belt Assembly (AREA)
  • Air Bags (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の衝突を判定して、例えばエアバック装置等の乗員保護装置を作動させる車両用衝突判定装置に関し、特に、衝突時の衝撃の大きさに応じて乗員保護装置の動作を制御する技術に関する。
【0002】
【従来の技術】
従来、例えば車両に加わる加速度(或いは減速度)を検出する加速度センサを備えて、加速度センサから出力される加速度信号によって車両の加速度変化を検出すると共に、この加速度信号を時間について1回積分、或いは2回積分して、これらの積分値が所定の各閾値を超えた場合に、例えばエアバック装置やシートベルト・プリテンショナ等の乗員保護装置を起動させる車両用衝突判定装置が知られている。
このような車両用衝突判定装置によって衝突と判定された場合、例えばエアバック装置は、インフレータ内でスクイブによりガス発生剤に点火して、インフレータよりガスを発生させ、このガスによってエアバックを膨らませて乗員と室内部品との2次衝突を抑制する。
【0003】
【発明が解決しようとする課題】
ところで、上記従来技術の一例による車両用衝突判定装置では、衝突時の衝撃の大きさや、車両内での乗員の位置等に関わらず、検出された加速度信号の演算値が所定の閾値を超えただけで、エアバックが一定の特性で展開されるように設定されている場合があり、衝突の状況に違いがあっても、同一の制御しかできないという問題がある。
本発明は上記事情に鑑みてなされたもので、衝突初期の加速度を利用することにより、単純かつ安価な構成で、衝突の激しさに応じた適正な衝突判定を短時間に行うことが可能な車両用衝突判定装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、第1の発明の車両用衝突判定装置は、車両に作用する加速度を検出する加速度検出手段(例えば、後述する実施の形態での加速度センサ11)と、前記加速度検出手段にて検出された加速度信号に対して、第1の時間区間(例えば、後述する実施の形態での、0≦t≦n)での区間積分値と、第2の時間区間(例えば、後述する実施の形態での、n≦t≦2n)での区間積分値との、差分値(例えば、後述する実施の形態での差分ΔG)を算出する差分算出手段(例えば、後述する実施の形態での差分算出部24)と、前記差分値に対する時間変化が所定の閾値以下か否かを判定するシビア衝突判定手段(例えば、後述する実施の形態での第1及び第2差分判定部25a,25b及び経過時間算出部26及び経過時間判定部27)と、前記シビア衝突判定手段による判定結果に応じて乗員保護装置(例えば、後述する実施の形態でのエアバック装置)の動作を制御する制御信号を発生する制御信号発生手段(例えば、後述する実施の形態でのシビア衝突信号発生部28及び非シビア衝突信号発生部29)とを備えたことを特徴としている。
【0005】
上記構成の車両用衝突判定装置によれば、衝突時の短時間の間に、車両速度に応じて異なる加速度、すなわち車体の反発減速度の相違を利用して衝突時の衝撃の大きさを検出して、この衝撃の大きさに応じて、例えばエアバック装置やシートベルト・プリテンショナ等の乗員保護装置の起動タイミングや動作、例えばエアバックの展開動作等を適正に制御することができる。
例えば、図1(a)〜(c)は、車両速度の異なる正面衝突における加速度信号G(減速度方向を正とする)の時間変化を示すグラフ図であり、図2は、図1(a)〜(c)に対する初期加速度と反発時間(初期加速度の継続時間)を示すグラフ図である。
ここで、図1(a)は高速(例えば、約50km/h)での衝突、図1(b)は中速(例えば、約20km/h)での衝突、図1(c)は低速(例えば、約12km/h)での衝突を示しており、衝突時の車両速度が大きいほど初期加速度が大きくかつ反発時間が短くなり、車両速度が小さいほど初期加速度が小さくかつ反発時間が長くなる。すなわち、車両速度が50km/h、20km/h、12km/hのそれぞれに対して、順に、最大初期減速度をG1、G2、G3とし、反発時間をt1、t2、t3とすると、G1>G2>G3、かつ、t1<t2<t3となっている。
【0006】
ここで、衝突時の車両速度に応じた初期加速度と反発時間との関係を抽出するために、下記数式(1)を設定する。
【0007】
【数1】

Figure 0004183880
【0008】
すなわち、所定の時間幅nに対する加速度信号Gの積分値を算出し、この積分値の時間変化、つまり異なる時間区間(例えば0≦t≦n、n≦t≦2n)での各積分値の差分ΔGを算出する。この差分ΔGは、例えば図3に示す図1(a)〜(c)に対する各差分ΔGの時間変化を示す図のように、衝突時の車両速度の大きさに応じて異なる変化を示す。
ここで、差分ΔGに対して、例えば2つの閾差分値ΔGTH1、ΔGTH2(ΔGTH1≦ΔGTH2)を設定しておき、差分ΔGが一方の閾差分値ΔGTH1を超えて他方の閾差分値ΔGTH2に至るまでの経過時間ΔTを測定する。
すると、この経過時間ΔTは高速での衝突ほど短くなり、例えば図3に示すように、高速での衝突(図3に示す実線a)における経過時間ΔT1は、中速での衝突(図3に示す実線b)における経過時間ΔT2よりも短くなり、低速での衝突(図3に示す実線c)では、差分ΔGが他方の閾差分値ΔGTH2に至ることなく減少する。
【0009】
従って、経過時間ΔTに対して、少なくとも1つ以上(例えば1つ)の閾経過時間ΔTTHを設定しておき、経過時間ΔTを閾経過時間ΔTTHと比較することで、衝突時の衝撃の大きさつまり激しさを判定することができる。例えば、経過時間ΔTが閾経過時間ΔTTH以下であれば、高速での衝突、つまり激しい衝突であると判定する。
そして、激しい衝突と判定された場合には、例えばエアバックを急展開して乗員の保護を優先する。逆に、激しい衝突では無いと判定された場合には、例えばエアバックを多段階に展開する等によって緩展開させる。
これにより、衝突の状況に応じて適正にエアバック装置等の乗員保護装置を制御することができる。
なお、加速度信号Gの積分区間は、特に限定されるものではないが、上述したように高速での衝突を判定する場合には、例えば時間幅nを高速での衝突に対する反発時間t1程度に設定しておくことで、中低速での衝突に比べて、高速での衝突に対する差分ΔGを一層顕著にすることができる。
【0010】
さらに、第2の発明の車両用衝突判定装置では、前記シビア衝突判定手段は、前記差分値が2つの閾差分値(例えば、後述する実施の形態での第1閾差分値ΔGTH1,第2閾差分値ΔGTH2)の間に位置する経過時間(例えば、後述する実施の形態での経過時間ΔT)を検出する経過時間検出手段(例えば、後述する実施の形態での経過時間算出部26)と、前記経過時間が閾時間(例えば、後述する実施の形態での閾経過時間ΔTTH)以下か否かを判定する経過時間判定手段(例えば、後述する実施の形態での経過時間判定部27)とを備えたことを特徴としている。
【0011】
上記構成の車両用衝突判定装置によれば、差分値が2つの閾差分値の間に位置する経過時間が、閾時間以下の場合には、差分値の時間変化が小さく、激しい衝突であると判断でき、逆に、経過時間が閾時間よりも大きい場合には、差分値の時間変化は相対的に大きく、激しい衝突ではないと判断できる。
【0012】
さらに、第3の発明の車両用衝突判定装置は、前記加速度信号に基づいて乗員の移動量(例えば、後述する実施の形態での乗員移動量S)を算出する移動量算出手段(例えば、後述する実施の形態での乗員移動量算出部21)と、前記乗員の移動量が閾移動量(例えば、後述する実施の形態での閾移動量STH)以上か否かを判定する移動量判定手段(例えば、後述する実施の形態での乗員移動量判定部22)と、前記移動量判定手段による判定結果に応じて前記差分算出手段の動作を制御する制御手段(例えば、後述する実施の形態での差分処理制御部23)とを備え、前記制御手段は、前記移動量が前記閾移動量以上の場合に、前記差分値の算出を停止させることを特徴としている。
【0013】
上記構成の車両用衝突判定装置によれば、乗員の移動量が閾移動量よりも小さい場合には、加速度信号に基づいて差分値を算出して、この差分値に基づいて、衝突時の衝撃の大きさ、つまり激しい衝突であるか否かの判定処理を実行する。そして、激しい衝突であると判定された場合には、例えばエアバックを急展開させて乗員の保護を計る。
一方、乗員の移動量が閾移動量以上の場合には、激しい衝突であるか否かの判定処理は実行せず、衝突時の衝撃の大きさに関わらずに、例えば一定の特性でエアバックを緩展開させる。
これにより、衝突時の衝撃の大きさに加えて、車両内での乗員の移動量に応じてエアバック装置等の乗員保護装置を適切に作動させることができる。
【0014】
さらに、第4の発明の車両用衝突判定装置は、前記加速度信号に基づいて衝突を検出する衝突判定手段(例えば、後述する実施の形態での衝突判定部12)を備え、前記制御信号発生手段は、前記シビア衝突判定手段による判定結果及び前記衝突判定手段による衝突の検出に基づいて前記制御信号を発生することを特徴としている。
【0015】
上記構成の車両用衝突判定装置によれば、例えば、衝突判定手段により衝突と判定された場合にはエアバックを緩展開させるように設定しておき、さらに、衝突判定手段により衝突と判定され、かつ、シビア衝突判定手段により激しい衝突であると判定された場合にはエアバックを急展開させるように設定することで、衝突の状態に応じてエアバック装置等の乗員保護装置を適正に制御することができる。
しかも、激しい衝突と判定される際には、衝突判定手段での判定結果と、シビア衝突判定手段での判定結果との、2つの判定結果に基づいて判断されるため、より一層、確実に判定処理を行うことができる。
【0016】
【発明の実施の形態】
以下、本発明の一実施形態に係る車両用衝突判定装置ついて添付図面を参照しながら説明する。
図4は本発明の一実施形態に係る車両用衝突判定装置10の構成図である。 本実施の形態による車両用衝突判定装置10は、加速度センサ(Gセンサ)11と、衝突判定部12と、シビア衝突検知部13とを備えて構成されている。
衝突判定部12は、例えば、加速度センサ11から出力される加速度信号Gからノイズ成分である高周波成分を除去する例えばローパスフィルタ等からなるフィルタ処理部と、フィルタ処理後の加速度信号Gを入力してデジタル信号に変換するA/D変換部と、デジタル化された加速度信号Gを時間について1回積分、或いは2回積分して、これらの積分値が所定の各閾値を超えた場合に衝突と判定する判定部とを備えている。
【0017】
そして、シビア衝突検知部13は、乗員移動量算出部21と、乗員移動量判定部22と、差分処理制御部23と、差分算出部24と、第1差分判定部25a、第2差分判定部25bと、経過時間算出部26と、経過時間判定部27と、シビア衝突信号発生部28とを備えて構成されている。
乗員移動量算出部21は、加速度センサ11から出力される加速度信号Gを時間について2回積分して、車両内の乗員移動量Sを算出する。
乗員移動量判定部22は、乗員移動量算出部21にて算出された乗員移動量Sが閾移動量STHよりも大きいか否かを判定して、この判定結果に基づく指令信号を出力する。
【0018】
差分処理制御部23は、乗員移動量判定部22での判定結果に応じて、例えば乗員移動量Sが閾移動量STHよりも大きい場合には、後述する差分算出部24の動作を停止する。すなわち、差分処理制御部23は例えばスイッチ等からなり、乗員移動量判定部22での判定結果に応じて、差分算出部24に対する加速度信号Gの入力を遮断する。
差分算出部24は、加速度信号Gに基づいて、例えば上記数式(1)により、差分ΔGを算出する。
【0019】
第1差分判定部25aは、差分算出部24にて算出された差分ΔGが、所定の第1閾差分値ΔGTH1よりも大きいか否かを判定して、例えば差分ΔGが所定の第1閾差分値ΔGTH1を超えた時刻xを出力する。
第2差分判定部25bは、差分算出部24にて算出された差分ΔGが、所定の第2閾差分値ΔGTH2よりも大きいか否かを判定して、例えば差分ΔGが所定の第2閾差分値ΔGTH2を超えた時刻yを出力する。
なお、第1及び第2閾差分値ΔGTH1,ΔGTH2に対して、例えばΔGTH1<ΔGTH2とされている。
【0020】
経過時間算出部26は、第1及び第2差分判定部25a,25bから出力された時刻x,yに基づいて、差分ΔGが第1閾差分値ΔGTH1と第2閾差分値ΔGTH2との間に存在する経過時間ΔT(ΔT=y−x)を算出する。
経過時間判定部27は、経過時間算出部26にて算出された経過時間ΔTが、閾経過時間ΔTTH以下か否かを判定して、この判定結果に基づく指令信号を出力する。
【0021】
シビア衝突信号発生部28は、発生した衝突の衝撃が大きいか否かを判定して、例えばエアバックを急速に展開させるための指令を出力する。このため、シビア衝突信号発生部28には、衝突判定部12から、エアバック装置等の乗員保護装置を起動させる必要のある衝突が発生したことを示す起動信号と、シビア衝突検知部13から、発生した衝突が激しい衝突であることを示すシビア衝突判定信号とが入力され、両信号のAND条件を満たす場合に、例えばエアバックを急展開させるための同時点火指令を出力する。
一方、両信号のAND条件に対するNOT信号と、衝突判定部12からの起動信号とが、非シビア衝突信号発生部29に入力されており、両信号のAND条件、つまりエアバック装置等の乗員保護装置を起動させる必要のある衝突が発生したが、激しい衝突では無いと判定された場合に、例えばエアバックを緩展開させるための多段(例えば2段)点火指令を出力する。
なお、多段点火指令とは、インフレータよりガスを発生させてエアバックを展開させる際に、一度に最高出力でガスを発生させるのではなく、例えば複数のガス発生剤を順次段階的に点火してガスを発生させるものである。
【0022】
本実施の形態による車両用衝突判定装置10は上記構成を備えており、次に、この車両用衝突判定装置10の動作、特に、シビア衝突検知部13にて、発生した衝突が激しい衝突であるか否かを判定する処理について図5を参照しながら説明する。
図5は車両用衝突判定装置10の動作を示すフローチャートである。
先ず、図5に示すステップS1において、加速度センサ11により検出された加速度信号Gを読み込む。
次に、ステップS2において、加速度信号Gは乗員移動量算出部21に送出されて、時間について2回積分されて乗員移動量Sが算出され、この乗員移動量Sが閾移動量STH以上か否かを判定する。
この判定結果が「YES」の場合には、ステップS7に進み、一連の処理を終了する。
【0023】
一方、判定結果が「NO」の場合には、ステップS3に進み、差分処理制御部23を介して加速度信号Gが差分算出部24に送出され、上記数式(1)により、所定の時間幅nで連続する時間区間(例えば0≦t≦n、n≦t≦2n)での各積分値の差分ΔGを算出する。
なお、時間幅nは、例えば図2に示すように、高速(例えば、約50km/h)での衝突に対する反発時間t1程度に設定する。
【0024】
次に、ステップS4において、差分ΔGの時間変化に対する傾き、つまり差分ΔGが所定の第1閾差分値ΔGTH1から第2閾差分値ΔGTH2まで変化する際の経過時間ΔTを算出する。
次に、ステップS5において、算出された差分ΔGの時間変化に対する傾きが、所定の閾値以上であるか否かを判定する。つまり、差分ΔGが所定の第1閾差分値ΔGTH1から第2閾差分値ΔGTH2まで変化する際の経過時間ΔTが、閾経過時間ΔTTH以下であるか否かを判定する。
この判定結果が「NO」の場合には、ステップS7に進み、一連の処理を終了する。
一方、判定結果が「YES」の場合には、ステップS6に進み、激しい衝突が発生したと判断して、例えばエアバックを急速に展開させるための指令等を出力して、ステップS7に進み、一連の処理を終了する。
【0025】
すなわち、エアバック装置等の乗員保護装置の起動が必要と判断された衝突発生時に、乗員移動量Sが閾移動量STHより小さく、かつ、差分ΔGに対する経過時間ΔTが閾経過時間ΔTTH以下の場合には、激しい衝突であると判断して、例えばエアバックを急展開させる。
一方、乗員移動量Sが閾移動量STH以上、又は、差分ΔGに対する経過時間ΔTが閾経過時間ΔTTHより大きい場合には、例えばエアバックを多段に緩展開させる。
【0026】
上述したように、本実施の形態による車両用衝突判定装置10によれば、衝突判定部12によって衝突と判定されてエアバック装置の起動が指令された場合に、シビア衝突検知部13での判定結果に応じてエアバックの展開動作を制御することから、衝突状況に応じて適正にエアバックを展開させることができる。
しかも、衝突時の衝撃の大きさに加えて、車両内での乗員の移動量に応じてエアバックの展開動作を制御するため、より一層、適正にエアバックを展開させることができる。
また、加速度信号Gの区間積分の差分値に基づいてシビア衝突の判定を行うため、短時間かつ確実に衝突の激しさを判定することができ、特に、小型車等のように相対的に高剛性に形成されて衝突時の初期加速度が相対的に大きい車両に対して、顕著に衝突の激しさを検知することができる。
さらに、車両内における乗員の移動量を加速度信号Gに基づいて算出することができ、例えば車内を監視するカメラや、例えば座席上での乗員の位置を検出する適宜のセンサ等を必要とせず、車両用衝突判定装置10を安価に構成することができる。
【0027】
なお、本実施形態においては、時間幅nは高速(例えば、約50km/h)での衝突に対する反発時間t1程度に設定するとしたが、これに限定されず、その他の時間幅に設定されても良い。
また、差分ΔGを、所定の時間幅nで連続する時間区間(例えば0≦t≦n、n≦t≦2n)での各積分値の差としたが、これに限定されず、2つの時間区間が互いに重複する区間を有していても良い。すなわち、k<nとして、差分ΔGを、時間区間0≦t≦nでの積分値と、時間区間(n−k)≦t≦(2n−k)での積分値との差としても良い。
【0028】
なお、本実施形態においては、差分ΔGが所定の第1閾差分値ΔGTH1から第2閾差分値ΔGTH2まで変化する際の経過時間ΔTに対して、1つの閾経過時間ΔTTHを設定したが、これに限定されず、複数の閾経過時間ΔTTH1,…,ΔTTHm(mは任意の自然数)を設定しても良い。
この場合、衝突時の衝撃の大きさを、より一層詳細に分類することができ、この衝撃の大きさに応じて、例えば3段階以上の多段階にエアバックを展開させることができる。
【0029】
さらに、本実施形態においては、差分ΔGに対して第1及び第2閾差分値ΔGTH1,ΔGTH2を設定するとしたが、これに限定されず、例えば1つの閾差分値ΔGTH3を設定しておき、差分ΔGが閾差分値ΔGTH3を超えた時点で激しい衝突であると判定しても良い。
この場合、第2差分判定部25bと、経過時間算出部26と、経過時間判定部27とを省略することができ、装置の構成を単純化して製作費用の削減に資することが可能である。
【0030】
【発明の効果】
以上説明したように、第1の発明の車両用衝突判定装置によれば、衝突時の短時間の間に、車両速度に応じて異なる加速度、すなわち車体の反発減速度の相違を利用して衝突時の衝撃の大きさを検出して、この衝撃の大きさに応じて、例えばエアバック装置やシートベルト・プリテンショナ等の乗員保護装置の起動タイミングや動作を適正に制御することができる。
さらに、第2の発明の車両用衝突判定装置によれば、差分値の時間変化を判定する際に、この差分値が、2つの閾差分値の間に位置する経過時間を検出して閾時間と比較するため、激しい衝突になるほど短時間で判定を行うことができる。
さらに、第3の発明の車両用衝突判定装置によれば、衝突時の衝撃の大きさに加えて、車両内での乗員移動量に応じて、エアバック装置等の乗員保護装置を適切に作動させることができる。
さらに、第4の発明の車両用衝突判定装置によれば、衝突の状態に応じて、より一層適切に、エアバック装置等の乗員保護装置を制御することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る車両速度の異なる正面衝突における加速度信号Gの時間変化を示すグラフ図である。
【図2】 図1(a)〜(c)に対する初期加速度と反発時間を示すグラフ図である。
【図3】 図1(a)〜(c)に対する差分ΔGの時間変化を示すグラフ図である。
【図4】 本発明の一実施形態に係る車両用衝突判定装置の構成図である。
【図5】 図4に示す車両用衝突判定装置の動作を示すフローチャートである。
【符号の説明】
10 車両用衝突判定装置
11 加速度センサ(加速度検出手段)
12 衝突判定部(衝突判定手段)
21 乗員移動量算出部(移動量算出手段)
22 乗員移動量判定部(移動量判定手段)
23 差分処理制御部(制御手段)
24 差分算出部(差分算出手段)
25a 第1差分判定部(シビア衝突判定手段)
25b 第2差分判定部(シビア衝突判定手段)
26 経過時間算出部(経過時間検出手段、シビア衝突判定手段)
27 経過時間判定部(経過時間判定手段、シビア衝突判定手段)
28 シビア衝突信号発生部(制御信号発生手段)
29 非シビア衝突信号発生部(制御信号発生手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle collision determination device that determines a vehicle collision and activates an occupant protection device such as an airbag device, and more particularly, controls the operation of the occupant protection device according to the magnitude of an impact at the time of a collision. Related to technology.
[0002]
[Prior art]
Conventionally, for example, an acceleration sensor that detects acceleration (or deceleration) applied to the vehicle is provided, and a change in acceleration of the vehicle is detected by an acceleration signal output from the acceleration sensor, and the acceleration signal is integrated once over time, or There is known a vehicle collision determination device that integrates twice and activates an occupant protection device such as an air bag device or a seat belt pretensioner when these integrated values exceed predetermined threshold values.
When a collision is determined by such a vehicle collision determination device, for example, an airbag device ignites a gas generating agent by a squib in an inflator, generates gas from the inflator, and inflates the airbag with this gas. Secondary collisions between passengers and interior parts are suppressed.
[0003]
[Problems to be solved by the invention]
By the way, in the vehicle collision determination device according to the above prior art example, the calculated value of the detected acceleration signal exceeds a predetermined threshold regardless of the magnitude of the impact at the time of the collision, the position of the occupant in the vehicle, or the like. However, there are cases where the airbag is set to be deployed with a certain characteristic, and there is a problem that only the same control can be performed even if there is a difference in the situation of the collision.
The present invention has been made in view of the above circumstances, and by using the acceleration at the initial stage of collision, it is possible to make a proper collision determination in a short time with a simple and inexpensive configuration according to the severity of the collision. An object of the present invention is to provide a vehicle collision determination device.
[0004]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, a vehicle collision determination device according to a first aspect of the present invention is an acceleration detection means for detecting acceleration acting on a vehicle (for example, an acceleration sensor 11 in an embodiment described later). ) And an integral value in a first time interval (for example, 0 ≦ t ≦ n in an embodiment described later) with respect to the acceleration signal detected by the acceleration detection means, Difference calculation means (for example, a difference ΔG in an embodiment described later) (eg, a difference ΔG in an embodiment described later) with a time interval (for example, an interval integral value in an embodiment described later, n ≦ t ≦ 2n) The difference calculation unit 24 in the embodiment described later) and severe collision determination means for determining whether the time change with respect to the difference value is equal to or less than a predetermined threshold (for example, the first and first in the embodiment described later) 2 Difference determination units 25a and 25b and elapsed time A control signal for controlling the operation of an occupant protection device (for example, an air bag device in an embodiment to be described later) according to the determination result by the exiting portion 26 and the elapsed time determination portion 27) and the severe collision determination means. Control signal generating means (for example, severe collision signal generation unit 28 and non-severe collision signal generation unit 29 in the embodiment described later) is provided.
[0005]
According to the vehicle collision determination device having the above-described configuration, the magnitude of the impact at the time of collision is detected during a short time at the time of collision by using the acceleration that varies depending on the vehicle speed, that is, the difference in the rebound deceleration of the vehicle body. Then, according to the magnitude of the impact, for example, the start timing and operation of an occupant protection device such as an airbag device or a seat belt pretensioner, for example, an airbag deployment operation can be appropriately controlled.
For example, FIGS. 1A to 1C are graphs showing temporal changes in the acceleration signal G (with the deceleration direction being positive) in a frontal collision with different vehicle speeds, and FIG. It is a graph which shows the initial acceleration and repulsion time (continuation time of initial acceleration) with respect to (c).
Here, FIG. 1A shows a collision at a high speed (for example, about 50 km / h), FIG. 1B shows a collision at a medium speed (for example, about 20 km / h), and FIG. For example, a collision at about 12 km / h) is shown. The larger the vehicle speed at the time of the collision, the larger the initial acceleration and the shorter the rebound time, and the smaller the vehicle speed, the smaller the initial acceleration and the longer the rebound time. That is, for vehicle speeds of 50 km / h, 20 km / h, and 12 km / h, assuming that the maximum initial deceleration is G1, G2, and G3 and the rebound times are t1, t2, and t3, G1> G2 > G3 and t1 <t2 <t3.
[0006]
Here, in order to extract the relationship between the initial acceleration corresponding to the vehicle speed at the time of collision and the repulsion time, the following formula (1) is set.
[0007]
[Expression 1]
Figure 0004183880
[0008]
That is, an integral value of the acceleration signal G with respect to a predetermined time width n is calculated, and a time change of the integral value, that is, a difference between the integral values in different time intervals (for example, 0 ≦ t ≦ n, n ≦ t ≦ 2n). ΔG is calculated. This difference ΔG shows different changes depending on the magnitude of the vehicle speed at the time of collision, as shown in the figure showing the time change of each difference ΔG with respect to FIGS. 1A to 1C shown in FIG.
Here, for the difference ΔG, for example, two threshold difference values ΔG TH1 and ΔG TH2 (ΔG TH1 ≦ ΔG TH2 ) are set, and the difference ΔG exceeds one threshold difference value ΔG TH1 and the other threshold difference value. The elapsed time ΔT until the value ΔG TH2 is reached is measured.
Then, the elapsed time ΔT becomes shorter as the collision at high speed becomes shorter. For example, as shown in FIG. 3, the elapsed time ΔT1 in the collision at high speed (solid line a shown in FIG. 3) is equal to the collision at medium speed (in FIG. In the collision at a low speed (solid line c shown in FIG. 3), the difference ΔG decreases without reaching the other threshold difference value ΔG TH2 .
[0009]
Thus, for the elapsed time [Delta] T, by comparing at least one or more (e.g., one) may be set the threshold age [Delta] T TH of the elapsed time [Delta] T threshold elapsed time [Delta] T TH, the collision of the impact The size, that is, the intensity can be determined. For example, if the elapsed time ΔT is equal to or less than the threshold elapsed time ΔT TH , it is determined that the collision is a high speed, that is, a severe collision.
If it is determined that the collision is severe, for example, the airbag is rapidly deployed to give priority to passenger protection. On the other hand, when it is determined that the collision is not severe, the airbag is slowly deployed by, for example, deploying the airbag in multiple stages.
Thereby, it is possible to appropriately control an occupant protection device such as an airbag device according to the situation of the collision.
The integration interval of the acceleration signal G is not particularly limited. However, when determining a high-speed collision as described above, for example, the time width n is set to about the repulsion time t1 for a high-speed collision. Thus, the difference ΔG with respect to the collision at the high speed can be made more conspicuous than the collision at the medium / low speed.
[0010]
Further, in the vehicle collision determination device according to the second aspect of the invention, the severe collision determination means is configured such that the difference value has two threshold difference values (for example, a first threshold difference value ΔG TH1 in a later-described embodiment, second Elapsed time detecting means for detecting an elapsed time (for example, an elapsed time ΔT in an embodiment to be described later) located between the threshold difference values ΔG TH2 ) (for example, an elapsed time calculation unit 26 in an embodiment to be described later) And elapsed time determining means for determining whether or not the elapsed time is equal to or less than a threshold time (for example, a threshold elapsed time ΔT TH in an embodiment described later) (for example, an elapsed time determination unit 27 in an embodiment described later). ).
[0011]
According to the vehicle collision determination device having the above-described configuration, when the elapsed time between the two threshold difference values is equal to or less than the threshold time, the difference value has a small time change and is a severe collision. On the contrary, when the elapsed time is larger than the threshold time, the time change of the difference value is relatively large and it can be determined that the collision is not severe.
[0012]
Further, the vehicle collision determination device of the third invention is a movement amount calculation means (for example, described later) that calculates a movement amount of the occupant (for example, an occupant movement amount S in an embodiment described later) based on the acceleration signal. An occupant movement amount calculation unit 21) in the embodiment to be performed, and a movement amount determination for determining whether or not the movement amount of the occupant is greater than or equal to a threshold movement amount (for example, a threshold movement amount S TH in an embodiment described later) Means (for example, an occupant movement amount determination unit 22 in an embodiment to be described later) and control means (for example, an embodiment to be described later) for controlling the operation of the difference calculation unit in accordance with a determination result by the movement amount determination unit. And the control means stops the calculation of the difference value when the movement amount is equal to or greater than the threshold movement amount.
[0013]
According to the vehicle collision determination device having the above-described configuration, when the movement amount of the occupant is smaller than the threshold movement amount, the difference value is calculated based on the acceleration signal, and the impact at the time of the collision is calculated based on the difference value. , I.e., a process of determining whether or not the collision is severe. When it is determined that the collision is severe, for example, the airbag is suddenly deployed to protect the passenger.
On the other hand, when the movement amount of the occupant is greater than or equal to the threshold movement amount, the process for determining whether or not the collision is severe is not executed, and the airbag has a certain characteristic, for example, regardless of the magnitude of the impact at the time of the collision. Loosely deploy.
Thereby, in addition to the magnitude | size of the impact at the time of a collision, passenger | crew protection apparatuses, such as an airbag apparatus, can be operated appropriately according to the movement amount of the passenger | crew in a vehicle.
[0014]
Furthermore, the vehicle collision determination device of the fourth invention includes a collision determination unit (for example, a collision determination unit 12 in an embodiment described later) that detects a collision based on the acceleration signal, and the control signal generation unit. Is characterized in that the control signal is generated based on the determination result by the severe collision determination means and the detection of the collision by the collision determination means.
[0015]
According to the vehicle collision determination device having the above-described configuration, for example, when the collision determination unit determines that a collision has occurred, the airbag is set to be gently deployed, and further, the collision determination unit determines that the collision has occurred. In addition, by determining that the severe collision is determined by the severe collision determination means, the airbag is set to be rapidly deployed, so that an occupant protection device such as an airbag device is appropriately controlled according to the state of the collision. be able to.
In addition, when it is determined that the collision is severe, the determination is based on two determination results: a determination result by the collision determination unit and a determination result by the severe collision determination unit. Processing can be performed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a vehicle collision determination device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 4 is a configuration diagram of the vehicle collision determination apparatus 10 according to an embodiment of the present invention. A vehicle collision determination device 10 according to the present embodiment includes an acceleration sensor (G sensor) 11, a collision determination unit 12, and a severe collision detection unit 13.
The collision determination unit 12 receives, for example, a filter processing unit including, for example, a low-pass filter that removes a high-frequency component that is a noise component from the acceleration signal G output from the acceleration sensor 11, and the acceleration signal G after the filter processing. A / D converter for converting to a digital signal and digitized acceleration signal G are integrated once or twice with respect to time, and when these integrated values exceed predetermined thresholds, a collision is determined. And a determination unit.
[0017]
The severe collision detection unit 13 includes an occupant movement amount calculation unit 21, an occupant movement amount determination unit 22, a difference processing control unit 23, a difference calculation unit 24, a first difference determination unit 25a, and a second difference determination unit. 25b, an elapsed time calculation unit 26, an elapsed time determination unit 27, and a severe collision signal generation unit 28.
The occupant movement amount calculation unit 21 integrates the acceleration signal G output from the acceleration sensor 11 twice with respect to time, and calculates the occupant movement amount S in the vehicle.
Occupant moving amount determining section 22 determines whether or not the occupant movement amount S calculated by the occupant moving amount calculating unit 21 is larger than the threshold amount of movement S TH, and outputs a command signal based on the determination result .
[0018]
Differential processing control unit 23, in accordance with the determination result in the occupant moving amount determining unit 22, for example, when the occupant moving amount S is greater than the threshold amount of movement S TH stops the operation of the difference calculation unit 24 to be described later . That is, the difference processing control unit 23 includes, for example, a switch or the like, and blocks the input of the acceleration signal G to the difference calculation unit 24 according to the determination result in the occupant movement amount determination unit 22.
The difference calculation unit 24 calculates the difference ΔG based on the acceleration signal G, for example, using the above mathematical formula (1).
[0019]
The first difference determination unit 25a determines whether or not the difference ΔG calculated by the difference calculation unit 24 is larger than a predetermined first threshold difference value ΔG TH1 . For example, the difference ΔG is a predetermined first threshold. The time x exceeding the difference value ΔG TH1 is output.
The second difference determination unit 25b determines whether or not the difference ΔG calculated by the difference calculation unit 24 is larger than a predetermined second threshold difference value ΔG TH2 , for example, the difference ΔG is a predetermined second threshold. The time y exceeding the difference value ΔG TH2 is output.
For example, ΔG TH1 <ΔG TH2 is satisfied with respect to the first and second threshold difference values ΔG TH1 and ΔG TH2 .
[0020]
Based on the times x and y output from the first and second difference determination units 25a and 25b, the elapsed time calculation unit 26 calculates the difference ΔG between the first threshold difference value ΔG TH1 and the second threshold difference value ΔG TH2 . An elapsed time ΔT (ΔT = y−x) existing between them is calculated.
The elapsed time determination unit 27 determines whether or not the elapsed time ΔT calculated by the elapsed time calculation unit 26 is equal to or less than the threshold elapsed time ΔT TH and outputs a command signal based on the determination result.
[0021]
The severe collision signal generation unit 28 determines whether or not the impact of the generated collision is large, and outputs, for example, a command for rapidly deploying the airbag. For this reason, the severe collision signal generation unit 28 receives from the collision determination unit 12 an activation signal indicating that a collision that needs to activate an occupant protection device such as an air bag device has occurred, and the severe collision detection unit 13. When a severe collision determination signal indicating that the generated collision is a severe collision is input and the AND condition of both signals is satisfied, for example, a simultaneous ignition command for rapidly deploying the airbag is output.
On the other hand, the NOT signal corresponding to the AND condition of both signals and the activation signal from the collision determination unit 12 are input to the non-severe collision signal generation unit 29, and the AND condition of both signals, that is, occupant protection such as an airbag device When a collision that requires the apparatus to start has occurred, but it is determined that the collision is not severe, for example, a multistage (for example, two-stage) ignition command for slowly deploying the airbag is output.
The multi-stage ignition command means that when the gas is generated from the inflator and the airbag is deployed, the gas is not generated at the maximum output at a time, but, for example, a plurality of gas generating agents are sequentially ignited step by step. It generates gas.
[0022]
The vehicle collision determination apparatus 10 according to the present embodiment has the above-described configuration. Next, the operation of the vehicle collision determination apparatus 10, in particular, the collision generated by the severe collision detection unit 13 is a severe collision. The process for determining whether or not will be described with reference to FIG.
FIG. 5 is a flowchart showing the operation of the vehicle collision determination apparatus 10.
First, in step S1 shown in FIG. 5, the acceleration signal G detected by the acceleration sensor 11 is read.
Next, in step S2, the acceleration signal G is sent to the occupant movement amount calculation unit 21 and integrated twice with respect to time to calculate the occupant movement amount S. Is this occupant movement amount S equal to or greater than the threshold movement amount STH ? Determine whether or not.
If this determination is “YES”, the flow proceeds to step S 7 and the series of processing is ended.
[0023]
On the other hand, if the determination result is “NO”, the process proceeds to step S 3, where the acceleration signal G is sent to the difference calculation unit 24 via the difference processing control unit 23, and the predetermined time width n is calculated according to the above equation (1). The difference ΔG between the integrated values in the continuous time interval (for example, 0 ≦ t ≦ n, n ≦ t ≦ 2n) is calculated.
For example, as shown in FIG. 2, the time width n is set to about a repulsion time t1 for a collision at a high speed (for example, about 50 km / h).
[0024]
Next, in step S4, an inclination of the difference ΔG with respect to time, that is, an elapsed time ΔT when the difference ΔG changes from a predetermined first threshold difference value ΔG TH1 to a second threshold difference value ΔG TH2 is calculated.
Next, in step S5, it is determined whether or not the slope of the calculated difference ΔG with respect to time is greater than or equal to a predetermined threshold value. That is, it is determined whether or not the elapsed time ΔT when the difference ΔG changes from the predetermined first threshold difference value ΔG TH1 to the second threshold difference value ΔG TH2 is equal to or less than the threshold elapsed time ΔT TH .
If this determination is “NO”, the flow proceeds to step S 7 and the series of processing is ended.
On the other hand, if the determination result is “YES”, the process proceeds to step S6, it is determined that a severe collision has occurred, and for example, a command for rapidly deploying the airbag is output, and the process proceeds to step S7. A series of processing ends.
[0025]
That is, when a collision is determined to require activation of an occupant protection device such as an air bag device, the occupant movement amount S is smaller than the threshold movement amount STH , and the elapsed time ΔT with respect to the difference ΔG is equal to or less than the threshold elapsed time ΔT TH. In this case, it is determined that the collision is severe and, for example, the airbag is suddenly deployed.
On the other hand, if the occupant movement amount S is greater than or equal to the threshold movement amount S TH or the elapsed time ΔT with respect to the difference ΔG is greater than the threshold elapsed time ΔT TH , for example, the airbag is slowly deployed in multiple stages.
[0026]
As described above, according to the vehicle collision determination device 10 according to the present embodiment, when the collision determination unit 12 determines that a collision has occurred and the start of the airbag apparatus is commanded, the determination by the severe collision detection unit 13 is performed. Since the airbag deployment operation is controlled according to the result, the airbag can be deployed appropriately according to the collision situation.
Moreover, since the airbag deployment operation is controlled in accordance with the amount of movement of the occupant in the vehicle in addition to the magnitude of the impact at the time of the collision, the airbag can be deployed more appropriately.
Further, since the severe collision is determined based on the difference value of the interval integral of the acceleration signal G, it is possible to determine the severity of the collision in a short time and surely. It is possible to detect the severity of the collision remarkably with respect to a vehicle that is formed in the above and has a relatively large initial acceleration at the time of collision.
Furthermore, the amount of movement of the occupant in the vehicle can be calculated based on the acceleration signal G, for example, without requiring a camera for monitoring the interior of the vehicle, an appropriate sensor for detecting the position of the occupant on the seat, for example, The vehicle collision determination device 10 can be configured at low cost.
[0027]
In the present embodiment, the time width n is set to about the repulsion time t1 for a collision at a high speed (for example, about 50 km / h). However, the time width n is not limited to this, and may be set to other time widths. good.
Further, the difference ΔG is a difference between the integrated values in a continuous time interval (for example, 0 ≦ t ≦ n, n ≦ t ≦ 2n) with a predetermined time width n. The sections may have sections that overlap each other. That is, assuming that k <n, the difference ΔG may be a difference between the integral value in the time interval 0 ≦ t ≦ n and the integral value in the time interval (n−k) ≦ t ≦ (2n−k).
[0028]
In the present embodiment, one threshold elapsed time ΔT TH is set for the elapsed time ΔT when the difference ΔG changes from the predetermined first threshold difference value ΔG TH1 to the second threshold difference value ΔG TH2 . However, the present invention is not limited to this, and a plurality of threshold elapsed times ΔT TH1 ,..., ΔT THm (m is an arbitrary natural number) may be set.
In this case, the magnitude of the impact at the time of the collision can be classified in more detail, and the airbag can be deployed in multiple stages, for example, three or more stages according to the magnitude of the impact.
[0029]
Furthermore, in the present embodiment, the first and second threshold difference values ΔG TH1 and ΔG TH2 are set for the difference ΔG. However, the present invention is not limited to this. For example, one threshold difference value ΔG TH3 is set. Alternatively, it may be determined that the collision is severe when the difference ΔG exceeds the threshold difference value ΔG TH3 .
In this case, the second difference determination unit 25b, the elapsed time calculation unit 26, and the elapsed time determination unit 27 can be omitted, and the configuration of the apparatus can be simplified to contribute to the reduction of manufacturing costs.
[0030]
【The invention's effect】
As described above, according to the vehicle collision determination device of the first aspect of the present invention, the collision using the acceleration that differs according to the vehicle speed, that is, the difference in the rebound deceleration of the vehicle body, during a short time at the time of the collision. The magnitude of the impact at the time is detected, and the activation timing and operation of an occupant protection device such as an airbag device or a seat belt pretensioner can be appropriately controlled according to the magnitude of the impact.
Furthermore, according to the vehicle collision determination device of the second aspect of the present invention, when determining the change in the difference value over time, the threshold time is determined by detecting the elapsed time at which the difference value is located between the two threshold difference values. Therefore, the determination can be made in a shorter time as the collision becomes more intense.
Furthermore, according to the vehicle collision determination device of the third aspect of the invention, the passenger protection device such as an air bag device is appropriately operated according to the amount of passenger movement in the vehicle in addition to the magnitude of the impact at the time of the collision. Can be made.
Furthermore, according to the vehicle collision determination device of the fourth aspect of the invention, it is possible to more appropriately control an occupant protection device such as an airbag device according to the state of the collision.
[Brief description of the drawings]
FIG. 1 is a graph showing a time change of an acceleration signal G in a frontal collision with different vehicle speeds according to an embodiment of the present invention.
FIG. 2 is a graph showing initial acceleration and repulsion time with respect to FIGS.
FIG. 3 is a graph showing the change over time of a difference ΔG with respect to FIGS.
FIG. 4 is a configuration diagram of a vehicle collision determination device according to an embodiment of the present invention.
FIG. 5 is a flowchart showing the operation of the vehicle collision determination device shown in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Vehicle collision determination apparatus 11 Acceleration sensor (acceleration detection means)
12 Collision judgment unit (collision judgment means)
21 Crew movement amount calculation unit (movement amount calculation means)
22 Passenger movement amount determination unit (movement amount determination means)
23. Difference processing control unit (control means)
24 Difference calculation unit (difference calculation means)
25a 1st difference determination part (severe collision determination means)
25b 2nd difference determination part (severe collision determination means)
26 Elapsed time calculation unit (elapsed time detection means, severe collision determination means)
27 Elapsed time determination unit (elapsed time determination means, severe collision determination means)
28 Severe collision signal generator (control signal generator)
29 Non-severe collision signal generator (control signal generator)

Claims (3)

車両に作用する加速度を検出する加速度検出手段と、
前記加速度検出手段にて検出された加速度信号に対して、第1の時間区間での区間積分値と、第2の時間区間での区間積分値との、差分値を算出する差分算出手段と、
前記差分値が第1閾差分値から第2閾差分値まで変化する際の経過時間を検出する経過時間検出手段と、
前記経過時間が閾経過時間以下か否かを判定する経過時間判定手段と
該経過時間判定手段による判定結果に応じて乗員保護装置の動作を制御する制御信号を発生する制御信号発生手段とを備えたことを特徴とする車両用衝突判定装置。
Acceleration detecting means for detecting acceleration acting on the vehicle;
A difference calculating means for calculating a difference value between the interval integral value in the first time interval and the interval integral value in the second time interval with respect to the acceleration signal detected by the acceleration detecting means;
An elapsed time detecting means for detecting an elapsed time when the difference value changes from the first threshold difference value to the second threshold difference value;
Elapsed time determining means for determining whether the elapsed time is equal to or less than a threshold elapsed time ;
Vehicle collision decision apparatus characterized by comprising a control signal generating means for generating a control signal for controlling the operation of the occupant protection device in accordance with the determination result by said elapsed time determining means.
前記加速度信号に基づいて乗員の移動量を算出する移動量算出手段と、前記乗員の移動量が閾移動量以上か否かを判定する移動量判定手段と、
前記移動量判定手段による判定結果に応じて前記差分算出手段の動作を制御する制御手段とを備え、
前記制御手段は、前記移動量が前記閾移動量以上の場合に、前記差分値の算出を停止させることを特徴とする請求項1に記載の車両用衝突判定装置。
A movement amount calculating means for calculating a movement amount of the occupant based on the acceleration signal; a movement amount determination means for determining whether or not the movement amount of the occupant is greater than or equal to a threshold movement amount;
Control means for controlling the operation of the difference calculation means according to the determination result by the movement amount determination means,
2. The vehicle collision determination device according to claim 1, wherein the control unit stops the calculation of the difference value when the movement amount is equal to or greater than the threshold movement amount . 3.
前記加速度信号に基づいて衝突を検出する衝突判定手段を備え、
前記制御信号発生手段は、前記経過時間判定手段による判定結果及び前記衝突判定手段による衝突の検出に基づいて前記制御信号を発生することを特徴とする請求項1又は請求項2の何れかに記載の車両用衝突判定装置。
A collision determination means for detecting a collision based on the acceleration signal;
3. The control signal generation unit according to claim 1, wherein the control signal generation unit generates the control signal based on a determination result by the elapsed time determination unit and a collision detection by the collision determination unit. Vehicle collision determination device.
JP2000095911A 2000-03-30 2000-03-30 Vehicle collision determination device Expired - Fee Related JP4183880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095911A JP4183880B2 (en) 2000-03-30 2000-03-30 Vehicle collision determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095911A JP4183880B2 (en) 2000-03-30 2000-03-30 Vehicle collision determination device

Publications (2)

Publication Number Publication Date
JP2001277998A JP2001277998A (en) 2001-10-10
JP4183880B2 true JP4183880B2 (en) 2008-11-19

Family

ID=18610750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095911A Expired - Fee Related JP4183880B2 (en) 2000-03-30 2000-03-30 Vehicle collision determination device

Country Status (1)

Country Link
JP (1) JP4183880B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802413B2 (en) * 2001-12-26 2006-07-26 株式会社ケーヒン Vehicle collision determination device
US7848885B2 (en) 2004-09-24 2010-12-07 Keihin Corporation Collision determining apparatus for a vehicle
JP4602038B2 (en) * 2004-09-24 2010-12-22 株式会社ケーヒン Vehicle collision determination device
WO2013118432A1 (en) * 2012-02-08 2013-08-15 ヤマハ発動機株式会社 Collision detection apparatus and moving body
CN103863235B (en) * 2012-12-12 2017-07-11 上海移为通信技术有限公司 Vehicular impact detection method and Vehicular impact detection means

Also Published As

Publication number Publication date
JP2001277998A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US6529810B2 (en) Method and apparatus for controlling an actuatable restraining device using switched thresholds based on transverse acceleration
JP4022050B2 (en) Method and apparatus for controlling an actuatable restraint device using a speed / displacement based safety function with a dead box
JP3481429B2 (en) Vehicle collision determination method and apparatus using virtual sensing
US6882914B2 (en) Vehicle occupant safety system
US6776435B2 (en) Method and apparatus for controlling an actuatable restraining device using switched thresholds based on crush zone sensors
EP1640219B1 (en) Collision determining apparatus for a vehicle
US7625006B2 (en) Method and apparatus for controlling an actuatable restraining device using crush zone sensors for safing function
US8234039B2 (en) Conserved energy metrics for frontal impact sensing algorithm enhancement in motor vehicles
US8118130B2 (en) Method and apparatus for controlling an actuatable restraining device using XY crush-zone satellite accelerometers
US6459366B1 (en) System and method for controlling an actuatable occupant protection device
JP4334114B2 (en) Vehicle collision determination method and collision determination device
JP4183880B2 (en) Vehicle collision determination device
JP4183882B2 (en) Vehicle collision determination device
JP4183881B2 (en) Vehicle collision determination device
JP4864242B2 (en) Vehicle collision determination device
JP4417200B2 (en) Deployment determination method for occupant protection device and occupant protection device using the method
JP2006027290A (en) Collision mode determination apparatus and occupant crash protector
JP2006007821A (en) Start control device of occupant protecting device
JP4141999B2 (en) Vehicle collision determination device
JP4372631B2 (en) Crew protection device
JP4704480B2 (en) Vehicle collision determination device
KR100884010B1 (en) Method and apparatus for controlling an actuatable restraining device using crush zone sensors for safing function
JP4667677B2 (en) Vehicle collision determination device
JP4602038B2 (en) Vehicle collision determination device
JP2006088913A (en) Collision judging device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees