JPH089518B2 - Method for producing compound semiconductor single crystal - Google Patents

Method for producing compound semiconductor single crystal

Info

Publication number
JPH089518B2
JPH089518B2 JP41810390A JP41810390A JPH089518B2 JP H089518 B2 JPH089518 B2 JP H089518B2 JP 41810390 A JP41810390 A JP 41810390A JP 41810390 A JP41810390 A JP 41810390A JP H089518 B2 JPH089518 B2 JP H089518B2
Authority
JP
Japan
Prior art keywords
compound
single crystal
substrate
growth
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP41810390A
Other languages
Japanese (ja)
Other versions
JPH04238890A (en
Inventor
勇 赤崎
浩 天野
健治 伊藤
Original Assignee
名古屋大学長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 名古屋大学長 filed Critical 名古屋大学長
Priority to JP41810390A priority Critical patent/JPH089518B2/en
Publication of JPH04238890A publication Critical patent/JPH04238890A/en
Publication of JPH089518B2 publication Critical patent/JPH089518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体(Ga1-x
Al X )1-yIn y Nの単結晶を作製する方法に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a compound semiconductor (Ga 1-x
The present invention relates to a method for producing a single crystal of Al X ) 1-y In y N.

【0002】[0002]

【従来の技術】((Ga1-xAl X )1-yIny N:0≦X
≦1、0≦y≦1)結晶は、室温でのエネルギーバンド
ギャップに対応する光の波長が 200〜700nm 帯にある直
接遷移型の半導体であり、特に可視短波長および紫外領
域の発光及び受光素子用材料として期待されている。
2. Description of the Related Art ((Ga 1-x Al X ) 1-y In y N: 0 ≦ X
≤ 1, 0 ≤ y ≤ 1) Crystal is a direct transition type semiconductor with a wavelength of light corresponding to the energy bandgap at room temperature in the 200 to 700 nm band, and in particular, it emits and receives light in the visible short wavelength and ultraviolet region. It is expected as a material for devices.

【0003】[0003]

【発明が解決しようとする課題】(Ga1-xAl X )1-y
n y N結晶においては、混晶を構成している GaN, AlN,
InN の各エピタキシャル成長速度が大きく異なり、InN
の分解温度が他の結晶の分解温度と比較して極めて低温
である。例えば、MOVPE 法においては、InN の単結晶と
GaNの単結晶とは成長温度で 500℃、V/III 比で約30
倍異なる。このため、特にInを多く含む混晶において、
結晶性の良好なエピタキシャル層を得ることが困難であ
った。また現在、おもに結晶成長の行われている温度
(およそ1000℃) 付近では、構成元素である窒素(N) の
平衡蒸気圧が極めて高いことにより窒素空孔が発生する
と考えられる。この点欠陥は、電気的にはドナーとして
作用し、伝導性制御を困難にし、また光学的にも深い準
位を形成することによってバンド端以外の長波長の発光
を誘起し、発光効率の低下を招く。また、結晶成長温度
が高いために、基板として用いられる結晶が高融点を有
している必要があったが、低温成長を実用できればこの
制限はなくなる。以上の点で(Ga1-xAl X )1-yIn y
N結晶の低温成長は重要である。しかし、窒素の水素化
物(例えばNH3)は分解温度が高く、800 ℃以下におけ
る(Ga1-xAl X )1-yIn y N結晶成長は困難であっ
た。
[Problems to be Solved by the Invention] (Ga 1-x Al X ) 1-y I
In the n y N crystal, GaN, AlN, which constitute a mixed crystal,
The epitaxial growth rates of InN are very different,
The decomposition temperature of is extremely low compared to the decomposition temperatures of other crystals. For example, in the MOVPE method, InN single crystal and
GaN single crystal means a growth temperature of 500 ℃ and a V / III ratio of about 30
Twice different. Therefore, especially in a mixed crystal containing a large amount of In,
It was difficult to obtain an epitaxial layer having good crystallinity. At present, it is considered that nitrogen vacancies are generated near the temperature at which crystals are grown (about 1000 ° C.) because the equilibrium vapor pressure of the constituent element nitrogen (N) is extremely high. This point defect electrically acts as a donor, makes it difficult to control conductivity, and also induces light emission at long wavelengths other than band edges by forming a deep level optically, resulting in a decrease in light emission efficiency. Invite. Further, since the crystal growth temperature is high, it was necessary for the crystal used as the substrate to have a high melting point, but if low temperature growth can be put to practical use, this limitation will disappear. From the above points, (Ga 1-x Al X ) 1-y In y
Low temperature growth of N crystals is important. However, nitrogen hydrides (for example, NH 3 ) have a high decomposition temperature, and it has been difficult to grow (Ga 1-x Al x ) 1-y In y N crystals at 800 ° C. or lower.

【0004】この問題点を解決する方法として、プラズ
マを用いる方法が検討されているが、膜形成時のプラズ
マ衝撃は、形成された膜の品質に大きな影響を与えるた
め、光素子の作製に十分な品質を有する膜の形成が困難
であり、結晶品質を損なわずに結晶成長温度を低温化で
きる技術の確立が望まれていた。
As a method for solving this problem, a method using plasma has been studied. However, the plasma impact at the time of film formation has a great influence on the quality of the formed film, so that it is sufficient for manufacturing an optical element. It is difficult to form a film having various qualities, and it has been desired to establish a technique capable of lowering the crystal growth temperature without impairing the crystal quality.

【0005】本発明の課題は、可視短波長および紫外光
発光及び受光素子用材料として期待される(Ga1-xAl
X )1-yIny N結晶を、300 〜 800℃の低温でエピタキ
シャル成長させうる方法を提供することである。
The object of the present invention is expected as a material for a visible short wavelength and ultraviolet light emitting and light receiving element (Ga 1-x Al).
It is an object of the present invention to provide a method by which an X ) 1-y In y N crystal can be epitaxially grown at a low temperature of 300 to 800 ° C.

【0006】[0006]

【課題を解決するための手段】本発明は、基板上に化合
物半導体(Ga1-xAl X )1-yIn y N単結晶を作製する
方法において、ガリウムの有機金属化合物、ガリウムの
塩素化合物、アルミニウムの有機金属化合物、アルミニ
ウムの塩素化合物、インジウムの有機金属化合物及びイ
ンジウムの塩素化合物からなる群より選ばれた化合物を
含む雰囲気を反応管内に供給してこの雰囲気に対して前
記基板を曝し、この間窒素の水素化合物を含む雰囲気の
反応管内への供給を止める工程と、窒素の水素化合物を
含む雰囲気を反応管内に供給してこの雰囲気に対して基
板を曝し、この間ガリウムの有機金属化合物、ガリウム
の塩素化合物、アルミニウムの有機金属化合物、アルミ
ニウムの塩素化合物、インジウムの有機金属化合物及び
インジウムの塩素化合物からなる群より選ばれた化合物
を含む雰囲気の反応管内への供給を止める工程とを、交
互に実施することで、基板上に(Ga1-xAlX )1-yIn
y N単結晶を成長させることを特徴とする、化合物半導
体単結晶の作製方法に係るものである。 (0≦x≦1、0≦y≦1) ここで、基板の温度は 300℃〜800 ℃とすることが好ま
しく、基板としては単結晶サファイア基板が好ましい。
The present invention provides a method for producing a compound semiconductor (Ga 1-x Al x ) 1-y In y N single crystal on a substrate, which comprises an organometallic compound of gallium and a chlorine compound of gallium. An organometallic compound of aluminum, a chlorine compound of aluminum, an organometallic compound of indium, and a compound selected from the group consisting of chlorine compounds of indium are supplied into the reaction tube to expose the substrate to the atmosphere. During this period, the step of stopping the supply of the atmosphere containing the hydrogen compound of nitrogen into the reaction tube, and the step of supplying the atmosphere containing the hydrogen compound of nitrogen into the reaction tube and exposing the substrate to this atmosphere, during which the organometallic compound of gallium, gallium Chlorine compounds, aluminum organometallic compounds, aluminum chlorine compounds, indium organometallic compounds and indium chlorination A step of stopping the supply of the reaction tube of an atmosphere containing a compound selected from the group consisting of object, by alternately performed on a substrate (Ga 1-x Al X) 1-y In
The present invention relates to a method for producing a compound semiconductor single crystal, which comprises growing a yN single crystal. (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) Here, the temperature of the substrate is preferably 300 ° C. to 800 ° C., and a single crystal sapphire substrate is preferable as the substrate.

【0007】[0007]

【作用】本発明の発明者は、原料として有機金属化合物
を用いた気相成長法により、従来よりも低温で高品質な
(Ga1-xAl X )1-yIn y N単結晶をサファイア基板上
に得るべく結晶成長条件を種々検討した結果、上記発明
を完成した。
The inventor of the present invention uses a vapor phase growth method using an organometallic compound as a raw material to sapphire a (Ga 1-x Al x ) 1-y In y N single crystal having a higher quality at a lower temperature than before. As a result of various studies on crystal growth conditions for obtaining on a substrate, the above invention was completed.

【0008】(Ga1-xAl X )1-yIn y Nの単結晶成長
におけるもっとも大きな問題点は、Al NおよびGa N
の単結晶成長温度と比較してIn Nの分解温度がそれよ
りも低温にあるため、Ga1-xAl X Nの単結晶成長温度
で(Ga1-xAl X )1-yIn yNの成長を行った場合、I
nNの分解によってInの取り込み量が極めて少なくな
り、In液滴が発生することにあった。そこで本発明者
は、(Ga1-xAl X )1-y In y NのInN分解温度以
下での結晶成長が必要であると考え、種々の結晶成長方
法を検討した結果、III 族(Ga, Al, In)原料ガスとV族
(N) 原料ガスを交互に基板上に供給し、かつIII 族(Ga,
Al, In)原料ガスを供給しているときにはV族(N) 原料
ガスの供給を止め、V族(N) 原料ガスを供給していると
きにはIII 族(Ga, Al, In)原料ガスの供給を止めること
によって、従来よりも低温で高品質な(Ga1-xAl X )
1-yIn y N単結晶を得られることを見いだした。この
際、III 族原料ガスとして金属塩化物を使用した場合に
も同様な結果が得られると考えられる。
The biggest problem in the growth of single crystals of (Ga 1-x Al x ) 1-y In y N is Al N and Ga N.
Since the decomposition temperature of the comparison to an In N single crystal growth temperature is cooler than that of a single-crystal growth temperature of Ga 1-x Al X N ( Ga 1-x Al X) 1-y In y N If the growth of
The amount of In incorporated was extremely small due to the decomposition of nN, and In droplets were generated. Therefore, the present inventor considered that crystal growth of (Ga 1-x Al x ) 1-y In y N below the InN decomposition temperature is necessary, and studied various crystal growth methods, and as a result, group III (Ga , Al, In) Source gas and group V
(N) The source gases are alternately supplied onto the substrate, and the group III (Ga,
When supplying Al, In) source gas, supply of group V (N) source gas is stopped, and when supplying group V (N) source gas, supply of group III (Ga, Al, In) source gas By stopping the, high quality at lower temperature than before (Ga 1-x Al X ).
It found that obtained with 1-y In y N single crystal. At this time, it is considered that similar results can be obtained when metal chloride is used as the group III source gas.

【0009】本発明により、(Ga1-xAl X )1-yIn y
N結晶を従来よりも低温で得られるようになる。従って
成長用基板の条件として必要であった分解温度が高いこ
とという条件は緩和され、これによって、より安価で結
晶性の優れたGaAs, GaP を基板として用いた結晶成長も
可能となる。また、この成長方法によれば1サイクル当
たりの結晶成長速度はほぼ1分子層であるため、窒化物
系半導体超格子の作製が容易になる。
According to the invention, (Ga 1-x Al x ) 1-y In y
The N crystal can be obtained at a lower temperature than before. Therefore, the condition that the decomposition temperature is high, which was necessary as the condition for the growth substrate, is relaxed, and this makes it possible to grow crystals using GaAs and GaP, which are cheaper and have excellent crystallinity, as the substrate. Further, according to this growth method, the crystal growth rate per cycle is almost one molecular layer, so that the nitride-based semiconductor superlattice can be easily manufactured.

【0010】[0010]

【実施例】以下、本発明による(Ga1-xAl X )1-yIn
y N単結晶の作製方法の実施例を説明する。しかし、以
下に説明する実施例は、本発明の方法を例示するにすぎ
ず、本発明を限定するものではない。上記化合物半導体
単結晶の作製には、図1に概略的に示す縦型化合物半導
体成長装置を用いた。
EXAMPLES (Ga 1-x Al x ) 1-y In according to the present invention will be described below.
An example of a method for producing a yN single crystal will be described. However, the examples described below merely illustrate the method of the present invention and do not limit the present invention. A vertical type compound semiconductor growth apparatus schematically shown in FIG. 1 was used for producing the compound semiconductor single crystal.

【0011】ここで、石英製反応管2の上部には、石英
製原料ガス導入管1が取り付けられる。この石英製原料
ガス導入管1のガス導入部分は二叉に分かれており、一
方からは窒素を含む原料ガスを、他方からは III族元素
(Ga, Al, In) を含む原料ガスを導入できるようになっ
ている。石英製反応管2の側周には高周波加熱用コイル
3が設置され、また内部にはグラファイト製サセプタ5
が設置され、サセプタ5がサセプタ支持棒7によって支
持されている。グラファイト製サセプタ5の上面には結
晶成長部4が設けられ、また石英製反応管2の底部に排
気口6が設けられる。
Here, a quartz raw material gas introduction pipe 1 is attached to the upper portion of the quartz reaction pipe 2. The gas introduction portion of the quartz raw material gas introduction pipe 1 is bifurcated, and a raw material gas containing nitrogen can be introduced from one side and a source gas containing a group III element (Ga, Al, In) can be introduced from the other side. It is like this. A high-frequency heating coil 3 is installed around the side of the quartz reaction tube 2, and a graphite susceptor 5 is provided inside.
Is installed, and the susceptor 5 is supported by the susceptor support rod 7. A crystal growth portion 4 is provided on the upper surface of the graphite susceptor 5, and an exhaust port 6 is provided at the bottom of the quartz reaction tube 2.

【0012】次いで、化合物半導体単結晶の作製手順を
順を追って説明する。 (1) 図2に示すサファイア(0001) 面基板11を有機洗浄
し、結晶成長部4に結晶成長基板として設置した。 (2) 石英製反応管(成長炉)2内を真空排気した後、水
素を供給し、1200℃まで昇温し、これによりサファイア
基板表面を清浄化した。 (3) 基板温度を、AlN 単結晶の成長温度よりも低い温
度、例えば 950℃とし、原料として例えばトリメチルア
ルミニウム及びNH3 を石英製反応管内に導入し、AlN
層10を堆積した。これを緩衝層として用いた。 (4) AlN 層10が必要な膜厚となるだけ堆積させた後、ト
リメチルアルミニウム(TMA)の供給を止めた。 (5) 必要であれば、石英製反応管内にトリメチルガリウ
ムを導入し、GaN 層9を例えば1030℃で成長させた。 (6) トリメチルガリウムのみ供給を止め、基板11の温度
を 300℃〜800 ℃、例えば340 ℃まで降温した。 (7) 水素の供給を続けつつ、NH3 のみ供給を止めた。
この後、図3に示すように、トリメチルインジウム (T
MI)とNH3 との交互供給を開始した。 (8) 図3に示すように、例えば2秒間トリメチルインジ
ウムを供給した後、この供給を止め、例えば3秒間水素
のみを供給し、トリメチルインジウムを排気した。 (9) 水素の供給を停止し、新たにNH3 のみの供給を行
った。例えば、30秒間NH3 を供給し、次いでNH3
止め、次いで水素の供給を例えば3秒間行ってNH3
排気した。 (10) 以下、このように、排気過程を挟んでトリメチル
インジウムとNH3 とを交互に供給する一連の過程を例
えば 200回繰り返すことで、340 ℃の低温においてもI
nN単結晶層8の作製が可能となった。 (11) 単結晶の成長終了後、基板11の温度を室温まで降
下させ、石英製反応管2より構造体を取り出した。
Next, a procedure for producing a compound semiconductor single crystal will be described step by step. (1) The sapphire (0001) plane substrate 11 shown in FIG. 2 was organically washed and placed in the crystal growth portion 4 as a crystal growth substrate. (2) After evacuating the inside of the quartz reaction tube (growth furnace) 2, hydrogen was supplied and the temperature was raised to 1200 ° C., thereby cleaning the surface of the sapphire substrate. (3) The substrate temperature is set to a temperature lower than the growth temperature of the AlN single crystal, for example, 950 ° C., and trimethylaluminum and NH 3 as raw materials are introduced into the quartz reaction tube, and AlN
Layer 10 was deposited. This was used as a buffer layer. (4) After the AlN layer 10 was deposited to a required film thickness, the supply of trimethylaluminum (TMA) was stopped. (5) If necessary, trimethylgallium was introduced into the quartz reaction tube to grow the GaN layer 9 at 1030 ° C, for example. (6) The supply of only trimethylgallium was stopped, and the temperature of the substrate 11 was lowered to 300 ° C to 800 ° C, for example, 340 ° C. (7) The supply of only NH 3 was stopped while continuing the supply of hydrogen.
Then, as shown in FIG. 3, trimethylindium (T
MI) and was started alternate supply of the NH 3. (8) As shown in FIG. 3, for example, after supplying trimethylindium for 2 seconds, this supply was stopped, for example, only hydrogen was supplied for 3 seconds, and trimethylindium was exhausted. (9) The supply of hydrogen was stopped and only NH 3 was newly supplied. For example, NH 3 was supplied for 30 seconds, then NH 3 was stopped, and then hydrogen was supplied for 3 seconds, and NH 3 was exhausted. (10) Hereinafter, by repeating a series of steps of alternately supplying trimethylindium and NH 3 with the evacuation process in between, for example, 200 times, I
It became possible to manufacture the nN single crystal layer 8. (11) After the growth of the single crystal was completed, the temperature of the substrate 11 was lowered to room temperature, and the structure was taken out from the quartz reaction tube 2.

【0013】[0013]

【発明の効果】本発明により、(Ga1-xAl X )1-yIn
y Nの低温成長が可能となるため、InNモル分率yの
大きな混晶の作製が可能となる。また窒素空孔などの点
欠陥の減少も期待される。この成長方法では成長量は交
互供給過程の繰り返し回数によって決定され、成長速度
は1サイクル当たり1分子層程度であるため1分子層単
位の膜厚制御性に優れるため、半導体超格子の作製方法
として有利である。
According to the present invention, (Ga 1-x Al x ) 1-y In
Since yN can be grown at a low temperature, a mixed crystal having a large InN mole fraction y can be produced. It is also expected to reduce point defects such as nitrogen vacancies. In this growth method, the growth amount is determined by the number of repetitions of the alternate supply process, and since the growth rate is about one molecular layer per cycle, the film thickness controllability per one molecular layer is excellent. It is advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において好適に使用できる、化合物半導
体の気相成長装置の概略図である。
FIG. 1 is a schematic view of a vapor phase growth apparatus for compound semiconductor, which can be preferably used in the present invention.

【図2】サファイア基板上の(Ga1-xAl X )1-yIn y
N/GaNヘテロ構造の模式的断面図である。
FIG. 2: (Ga 1-x Al x ) 1-y In y on sapphire substrate
It is a schematic sectional drawing of an N / GaN heterostructure.

【図3】本発明の実施例で使用する原料ガス供給手順を
示す図である。
FIG. 3 is a diagram showing a raw material gas supply procedure used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 石英製原料ガス導入管 2 石英製反応管 3 高周波加熱用コイル 4 結晶成長部 5 グラファイト製サセプタ 6 排気口 7 サセプタ支持棒 8 原料ガスの交互供給によって得られた(Ga1-XAl
X )1-yIn y N単結晶層 9 原料ガスを同時に供給する従来の方法によって得ら
れたGaN単結晶層 10 AlN緩衝層 11 サファイア(0001)面基板
1 Quartz raw material gas introduction tube 2 Quartz reaction tube 3 High frequency heating coil 4 Crystal growth part 5 Graphite susceptor 6 Exhaust port 7 Susceptor support rod 8 Obtained by alternate supply of raw material gas (Ga 1-X Al
X ) 1-y In y N single crystal layer 9 GaN single crystal layer obtained by a conventional method of simultaneously supplying source gases 10 AlN buffer layer 11 Sapphire (0001) plane substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に化合物半導体(Ga1-xAl X )
1-yIn y N単結晶を作製する方法において、 ガリウムの有機金属化合物、ガリウムの塩素化合物、ア
ルミニウムの有機金属化合物、アルミニウムの塩素化合
物、インジウムの有機金属化合物及びインジウムの塩素
化合物からなる群より選ばれた化合物を含む雰囲気を反
応管内に供給してこの雰囲気に対して前記基板を曝し、
この間窒素の水素化合物を含む雰囲気の前記反応管内へ
の供給を止める工程と、 窒素の水素化合物を含む雰囲気を反応管内に供給してこ
の雰囲気に対して前記基板を曝し、この間ガリウムの有
機金属化合物、ガリウムの塩素化合物、アルミニウムの
有機金属化合物、アルミニウムの塩素化合物、インジウ
ムの有機金属化合物及びインジウムの塩素化合物からな
る群より選ばれた化合物を含む雰囲気の前記反応管内へ
の供給を止める工程とを、交互に実施することで、前記
基板上に(Ga1-xAl X )1-yIn y N単結晶を成長させ
ることを特徴とする、化合物半導体単結晶の作製方法。 (0≦x≦1、0≦y≦1)
1. A compound semiconductor (Ga 1-x Al x ) on a substrate
In the method for producing a 1-y In y N single crystal, a gallium organometallic compound, a gallium chlorine compound, an aluminum organometallic compound, an aluminum chlorine compound, an indium organometallic compound and an indium chlorine compound are selected from the group consisting of: An atmosphere containing a selected compound is supplied into the reaction tube to expose the substrate to this atmosphere,
During this time, the step of stopping the supply of the atmosphere containing the hydrogen compound of nitrogen into the reaction tube, and the step of supplying the atmosphere containing the hydrogen compound of nitrogen into the reaction tube and exposing the substrate to this atmosphere, while the organometallic compound of gallium Stopping the supply of an atmosphere containing a compound selected from the group consisting of a gallium chlorine compound, an aluminum organometallic compound, an aluminum chlorine compound, an indium organometallic compound and an indium chlorine compound into the reaction tube. , A (Ga 1-x Al x ) 1-y In y N single crystal is grown on the substrate by alternately carrying out the method. (0 ≦ x ≦ 1, 0 ≦ y ≦ 1)
JP41810390A 1990-12-28 1990-12-28 Method for producing compound semiconductor single crystal Expired - Lifetime JPH089518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41810390A JPH089518B2 (en) 1990-12-28 1990-12-28 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41810390A JPH089518B2 (en) 1990-12-28 1990-12-28 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH04238890A JPH04238890A (en) 1992-08-26
JPH089518B2 true JPH089518B2 (en) 1996-01-31

Family

ID=18526044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41810390A Expired - Lifetime JPH089518B2 (en) 1990-12-28 1990-12-28 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH089518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047147C (en) * 1995-09-29 1999-12-08 中国科学院山西煤炭化学研究所 Method for production of coated silicon carbide fibre and reactor thereof
JP4670206B2 (en) * 2001-08-29 2011-04-13 住友電気工業株式会社 Manufacturing method of nitride semiconductor
KR100513923B1 (en) * 2004-08-13 2005-09-08 재단법인서울대학교산학협력재단 Growth method of nitride semiconductor layer and light emitting device using the growth method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2704181B2 (en) * 1989-02-13 1998-01-26 日本電信電話株式会社 Method for growing compound semiconductor single crystal thin film
JP2628404B2 (en) * 1990-10-25 1997-07-09 日亜化学工業株式会社 Semiconductor crystal film growth method

Also Published As

Publication number Publication date
JPH04238890A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US5433169A (en) Method of depositing a gallium nitride-based III-V group compound semiconductor crystal layer
US5587014A (en) Method for manufacturing group III-V compound semiconductor crystals
US6146916A (en) Method for forming a GaN-based semiconductor light emitting device
KR100271030B1 (en) Method for Producing Group III-V Compound Semiconductor, and Semiconductor Light Emitting Device Using Such Semiconductor and Method for Producing the Same
JP3239622B2 (en) Method of forming semiconductor thin film
JP4991828B2 (en) Method for manufacturing gallium nitride compound semiconductor
JP3879173B2 (en) Compound semiconductor vapor deposition method
JP4424497B2 (en) Method for manufacturing nitride semiconductor crystal
JP3673541B2 (en) Method for producing group 3-5 compound semiconductor crystal
JP4852795B2 (en) Method for producing compound semiconductor
JPH09251957A (en) Manufacturing method for 3-5 group compound semiconductor
JP2003037288A (en) Method of growing semiconductor crystal film
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH08203834A (en) Semiconductor thin film and manufacture thereof
JPH09295890A (en) Apparatus for producing semiconductor and production of semiconductor
JPH089518B2 (en) Method for producing compound semiconductor single crystal
JPH07235505A (en) Crystal growth method of semiconductor layer
JP4670206B2 (en) Manufacturing method of nitride semiconductor
JPH09186403A (en) Semiconductor light emitting element and manufacture thereof
JPH09107124A (en) Method for manufacturing iii-v compound semiconductor
JPH08264455A (en) Semiconductor device and manufacture thereof
JP3984365B2 (en) Compound semiconductor manufacturing method and semiconductor light emitting device
GB2410836A (en) 3-5 group compound semiconductor and method for preparation thereof
JPH111396A (en) Production of nitride compound semiconductor
JP3770199B2 (en) Method for producing group 3-5 compound semiconductor crystal

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350