JPH08203834A - Semiconductor thin film and manufacture thereof - Google Patents

Semiconductor thin film and manufacture thereof

Info

Publication number
JPH08203834A
JPH08203834A JP909295A JP909295A JPH08203834A JP H08203834 A JPH08203834 A JP H08203834A JP 909295 A JP909295 A JP 909295A JP 909295 A JP909295 A JP 909295A JP H08203834 A JPH08203834 A JP H08203834A
Authority
JP
Japan
Prior art keywords
thin film
algan
forming
single crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP909295A
Other languages
Japanese (ja)
Inventor
Masaya Mannou
正也 萬濃
Seiji Onaka
清司 大仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP909295A priority Critical patent/JPH08203834A/en
Publication of JPH08203834A publication Critical patent/JPH08203834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To provide a method for forming a high-quality AlGaInN thin film which has only a small amount of dislocation and point defects and which is suitable for manufacturing a blue semiconductor laser element which can be used for a blue light emitting diode, etc. CONSTITUTION: This is a method for forming an AlGaInN thin film on the surface of a heated SiC substrate through a buffer layer by supplying material including group III elements and material including nitrogen. First of all, a single-crystal AlN film 12 is formed on an SiC substrate which is heated to 800 deg.C. Then, a non-single-crystal AlN layer of 20nm in thickness 13 is formed at a substrate temperature of 600 deg.C. Nextly, a single-crystal AlGaN layer 14 is formed at a substrate temperature of 900 deg.C or above. Then, a lattice matching AlGaInN layer 15 is formed on the AlGaN layer 14. By this method, the appearance of a dislocation and point defects is prevented and thereby a high-quality AlGaInN thin film can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、緑・青色発光ダイオー
ドや光ディスク等情報処理装置用光源に用いることので
きる青色もしくは更に短波長の半導体レーザ素子の製造
方法に関するもので、特に窒化物系材料の薄膜形成に係
わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a blue or shorter wavelength semiconductor laser device which can be used as a light source for an information processing device such as a green / blue light emitting diode or an optical disk. It is related to thin film formation.

【0002】[0002]

【従来の技術】1988年に670nm帯AlGaIn
P系赤色半導体レーザが商品化されて以来、レーザプリ
ンター、光ディスク等の情報処理装置用光源として短波
長半導体レーザの開発が活発に行われている。当初67
0〜690nmが開発の中心であったが、バーコードリ
ーダの視認性の改善、光ディスクの高密度化等の要求に
ともなって、波長領域はHe−Neガスレーザと同レベ
ルの630nm帯へと移行しつつある。さらに将来、記
憶容量の増大に伴って、赤色よりさらに短波長の青・緑
色から紫外域にわたる半導体レーザの実現が切望されて
おり、p型導電型制御が可能となったことを契機にII
-VI族系半導体レーザの研究が急速に進展してきてい
る。一方、窒化ガリウム(GaN)は、約3.4eVの広
エネルギーギャップを持つ直接遷移型の化合物半導体で
青色から紫外領域にわたる発光素子として有望な材料で
あるがGaNバルク基板結晶が容易に作製できず、ま
た、ほかに適当な基板結晶がないことから半導体レーザ
としての開発はあまり進展していなかった。
2. Description of the Related Art In 1988, 670 nm band AlGaIn
Since the commercialization of the P-based red semiconductor laser, short wavelength semiconductor lasers have been actively developed as a light source for information processing devices such as laser printers and optical discs. Initially 67
Although 0 to 690 nm was the focus of development, the wavelength range shifted to the 630 nm band, which is the same level as the He-Ne gas laser, due to demands for improved visibility of barcode readers and higher density of optical discs. It's starting. Furthermore, in the future, with the increase in storage capacity, there is a strong demand for the realization of semiconductor lasers that have wavelengths shorter than red, such as blue / green to the ultraviolet region, and the p-type conductivity type control became possible.
-Research on group VI semiconductor lasers has been rapidly progressing. On the other hand, gallium nitride (GaN) is a direct transition type compound semiconductor having a wide energy gap of about 3.4 eV and is a promising material as a light emitting device in the blue to ultraviolet region, but a GaN bulk substrate crystal cannot be easily manufactured. Moreover, since there is no other suitable substrate crystal, the development as a semiconductor laser has not made much progress.

【0003】GaN薄膜の作製方法としては、αーAl
23(サファイア)基板上にMOVPE法(有機金属気
相成長法)により気相成長する方法が一般的に用いられ
ている。これは、例えばトリメチルガリウムとアンモニ
アを1050℃程度に加熱した基板、例えば、サファイ
ア基板の表面上で分解、反応させ、GaN薄膜を成長し
ようとするものである。最近サファイアの(0001)
C面を用い、低温で堆積したGaNやAlN緩衝層を介
して比較的良質のGaN薄膜を形成できることが実証さ
れ、青色発光ダイオードとして商品化されまでに至っ
た。
As a method for producing a GaN thin film, α-Al is used.
A method of vapor phase growth on a 2 O 3 (sapphire) substrate by MOVPE (metalorganic vapor phase epitaxy) is generally used. This is for growing a GaN thin film by decomposing and reacting trimethylgallium and ammonia on the surface of a substrate, for example, a sapphire substrate heated to about 1050 ° C. Recently Sapphire (0001)
It has been demonstrated that a relatively good quality GaN thin film can be formed using a C-plane and a GaN or AlN buffer layer deposited at low temperature, and has been commercialized as a blue light emitting diode.

【0004】[0004]

【発明が解決しようとする課題】上述の従来技術によれ
ば、サファイアC面とGaNとの間には13.8%とい
う極めて大きな格子不整合や大きな熱膨張係数の差があ
るため、成長した窒化膜にはピットやクラックが入りや
すく、均一で平坦性のよい窒化膜の成長が困難であっ
た。
According to the above-mentioned conventional technique, there is an extremely large lattice mismatch of 13.8% between the sapphire C-plane and GaN, and a large difference in thermal expansion coefficient, so that growth has occurred. Pits and cracks were easily formed in the nitride film, and it was difficult to grow a uniform and flat nitride film.

【0005】低温で堆積した緩衝層を介した場合におい
ては、格子不整合の緩和は効率的におこり平坦で鏡面性
の窒化膜の成長が可能であるが、依然として108cm
-2以上のミスフィット転位が存在し高品質な薄膜の形成
が困難であった。さらに従来技術によれば、サファイア
が基板として用いられていたため加工が困難でデバイス
の作製が容易でないという問題があった。
When the buffer layer deposited at a low temperature is used, the lattice mismatch is effectively relaxed and a flat and mirror-like nitride film can be grown, but it is still 10 8 cm.
-There were more than 2 misfit dislocations and it was difficult to form high quality thin films. Further, according to the conventional technique, since sapphire is used as the substrate, there is a problem that processing is difficult and device fabrication is not easy.

【0006】本発明は、転位が少なく平坦性のよいAl
GaInN薄膜の形成方法を提供することを目的とす
る。同時に、加工の容易な基板上への高品質なAlGa
InN薄膜の形成方法を提供することを目的とする。
According to the present invention, Al having few dislocations and good flatness is provided.
It is an object to provide a method for forming a GaInN thin film. At the same time, high quality AlGa on the substrate that is easy to process
An object is to provide a method for forming an InN thin film.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載のAlGaInN薄膜の形成方法は、
加熱された基板表面上にIII族構成元素を含む原料およ
び窒素を含む原料を供給して緩衝層を介してAlGaI
nN薄膜を形成する方法において、前記基板上に第一の
AlGaN単結晶薄膜を形成した後にAlGaNからな
る緩衝層を形成する工程と、次いで第二のAlGaN単
結晶薄膜を形成した後にAlGaInN単結晶薄膜を形
成する工程を少なくとも含むことを特徴とする。ここ
で、前記第一及び第二のAlGaN単結晶薄膜は800
℃以上の基板温度で形成し、前記AlGaNからなる緩
衝層は800℃以下の基板温度とすることが望ましい。
In order to achieve the above object, a method for forming an AlGaInN thin film according to claim 1 is
A raw material containing a group III constituent element and a raw material containing nitrogen are supplied onto the surface of the heated substrate, and AlGaI is passed through the buffer layer.
In the method of forming an nN thin film, a step of forming a first AlGaN single crystal thin film on the substrate and then forming a buffer layer made of AlGaN, and then forming a second AlGaN single crystal thin film and then an AlGaInN single crystal thin film. It is characterized by including at least the process of forming. Here, the first and second AlGaN single crystal thin films are 800
It is desirable that the buffer layer is formed at a substrate temperature of not less than 0 ° C. and the buffer layer made of AlGaN has a substrate temperature of not more than 800 ° C.

【0008】請求項2記載のAlGaInN薄膜の形成
方法は、加熱された基板表面上にIII族構成元素を含む
原料および窒素を含む原料を供給して緩衝層を介してA
lGaInN薄膜を形成する方法において、前記基板上
に第一のAlGaN単結晶薄膜を形成した後にAlGa
Nからなる緩衝層を形成する工程と、次いで第二のAl
GaN単結晶薄膜を形成した後にAlGaInN単結晶
薄膜を形成する工程と、前記第二のAlGaN単結晶薄
膜中もしくは前記第二のAlGaN単結晶薄膜上に複数
の組成の異なるAlGaInN層からなる歪超格子構造
を形成する工程とを少なくとも含むことをを特徴とす
る。ここで、前記第一及び第二のAlGaN単結晶薄膜
は800℃以上の基板温度で形成し、前記AlGaNか
らなる緩衝層は800℃以下の基板温度とすることが望
ましい。
According to a second aspect of the present invention, there is provided a method of forming an AlGaInN thin film, in which a raw material containing a group III constituent element and a raw material containing nitrogen are supplied onto a heated substrate surface, and A is supplied via a buffer layer.
In the method of forming a 1GaInN thin film, after forming a first AlGaN single crystal thin film on the substrate, AlGaInN thin film is formed.
Forming a buffer layer of N, and then a second Al
A step of forming an AlGaInN single crystal thin film after forming a GaN single crystal thin film, and a strained superlattice composed of a plurality of AlGaInN layers having different compositions in or on the second AlGaN single crystal thin film And at least a step of forming a structure. Here, it is preferable that the first and second AlGaN single crystal thin films are formed at a substrate temperature of 800 ° C. or higher, and the buffer layer made of AlGaN is set to a substrate temperature of 800 ° C. or lower.

【0009】以上の請求項において、基板を配置した加
熱体の回転速度は300回転/分以上とすること、基板
はSiCやZnOであることが望ましい。
In the above claims, it is desirable that the rotating speed of the heating element on which the substrate is arranged is 300 rpm or more, and the substrate is SiC or ZnO.

【0010】[0010]

【作用】請求項1のAlGaInN薄膜の作製方法によ
れば、以下のような作用がある。
According to the method of manufacturing the AlGaInN thin film of the first aspect, there are the following effects.

【0011】AlGaInNとの格子不整合差や熱膨張
係数差がサファイア基板と比べ極めて小さいSiC、Z
nO基板を用いることによって、臨界膜厚以下であれば
単結晶AlN薄膜を平坦かつ均一に堆積できる。このA
lN薄膜上に低温で堆積する非単結晶AlNは同一元素
からなる単結晶上に堆積するので、その表面は平坦かつ
均一とすることが可能となる。
SiC, Z having a lattice mismatch with AlGaInN and a difference in thermal expansion coefficient which are extremely smaller than those of the sapphire substrate.
By using the nO substrate, a single crystal AlN thin film can be flatly and uniformly deposited if the thickness is below the critical film thickness. This A
Since the non-single-crystal AlN deposited on the 1N thin film at low temperature is deposited on the single crystal composed of the same element, its surface can be made flat and uniform.

【0012】さらには、単結晶層を介して非単結晶緩衝
層を低温で堆積しているので、基板からの不純物拡散は
著しく低減できる。従って、従来のサファイア基板上に
非単結晶緩衝層のみを介して堆積したAlGaInN層
に比べ、緩衝層界面から発生した欠陥の伝搬は著しく低
減され、上面に堆積したAlGaInN薄膜へのミスフ
ィット転位の伝搬を大幅に低減でき高品質なAlGaI
nN薄膜の形成が可能である。
Furthermore, since the non-single crystal buffer layer is deposited at a low temperature through the single crystal layer, the diffusion of impurities from the substrate can be significantly reduced. Therefore, as compared with the AlGaInN layer deposited on the conventional sapphire substrate via only the non-single-crystal buffer layer, the propagation of defects generated from the interface of the buffer layer is significantly reduced, and misfit dislocations to the AlGaInN thin film deposited on the upper surface are reduced. High quality AlGaI that can greatly reduce propagation
It is possible to form an nN thin film.

【0013】更に、請求項2記載のAlGaInN薄膜
の作製方法によれば、以下のような付加的な作用があ
る。
Further, according to the method of manufacturing an AlGaInN thin film according to the second aspect, there are the following additional effects.

【0014】AlGaInN薄膜の形成に先立ち歪Al
GaInN超格子を配置するので、ミスフィット転位は
歪AlGaInN超格子によって面内方向への運動成分
が大きくなるため、上面への伝搬を効率的に抑制でき高
品質なAlGaInN薄膜の形成が可能となる。
Prior to the formation of the AlGaInN thin film, strained Al
Since the GaInN superlattice is arranged, the misfit dislocation has a large motion component in the in-plane direction due to the strained AlGaInN superlattice, so that the propagation to the upper surface can be efficiently suppressed, and a high-quality AlGaInN thin film can be formed. .

【0015】また、本発明によれば、SiCなどの加工
の容易な基板上にも高品質なAlGaInN薄膜の形成
が可能である。
Further, according to the present invention, it is possible to form a high-quality AlGaInN thin film on a substrate such as SiC which is easily processed.

【0016】さらには、基板を高速回転させたので、比
較的低温で成長可能であり 、成長温度が高いことによ
るガス対流の抑制、Inの解離の抑制が可能となる。よ
って従来よりも低温で高品質なAlGaInN薄膜もし
くはAlGaInN多層膜の形成が可能となる。
Further, since the substrate is rotated at a high speed, it is possible to grow at a relatively low temperature, and it is possible to suppress gas convection and dissociation of In due to the high growth temperature. Therefore, it is possible to form a high quality AlGaInN thin film or AlGaInN multilayer film at a lower temperature than in the past.

【0017】[0017]

【実施例】以下、実施例で本発明を説明する。なお、以
下同一部分については同一符号を記す。
EXAMPLES The present invention will be described below with reference to examples. Note that, hereinafter, the same portions will be denoted by the same reference numerals.

【0018】AlGaInN薄膜の製造には、図1に概
略的に示すMOVPE装置を用いた。ここで、石英製反
応管1の内部には石英製ガス導入管2が取り付けられて
いる。石英製ガス導入管からはIII族構成元素を含む原
料および窒素を含む原料を同時に供給できる構造となっ
ている。石英製反応管1の外周には高周波加熱用コイル
3が設置され、また、内部にはSiCコートされたグラ
ファイト製サセプター4が設置されている。グラファイ
ト製サセプター4はモーターによって1000回転/分
程度に回転可能なサセプター支持棒5により支持されて
いる。グラファイト製サセプター4上面には、石英製ト
レー6上に搭載された基板7が設置できる構成となって
いる。また、石英製反応管1の底部には真空ポンプに接
続された排気口8が設けられていて、石英製反応管1内
の圧力調整及びガスの排気ができる。
The MOVPE apparatus schematically shown in FIG. 1 was used to manufacture the AlGaInN thin film. Here, a quartz gas introduction tube 2 is attached inside the quartz reaction tube 1. From the quartz gas introduction pipe, the raw material containing the group III constituent element and the raw material containing nitrogen can be simultaneously supplied. A high-frequency heating coil 3 is installed on the outer circumference of the quartz reaction tube 1, and a SiC-coated graphite susceptor 4 is installed inside. The graphite susceptor 4 is supported by a susceptor support rod 5 which is rotatable by a motor at about 1000 revolutions / minute. On the upper surface of the graphite susceptor 4, the substrate 7 mounted on the quartz tray 6 can be installed. An exhaust port 8 connected to a vacuum pump is provided at the bottom of the quartz reaction tube 1 so that the pressure inside the quartz reaction tube 1 can be adjusted and the gas can be exhausted.

【0019】(実施例1)図2に本発明の第一の実施例
のAlxGayInzN薄膜(x+y+z=1、0≦≦x
≦1、0≦y≦1、0≦z≦1、以下、AlGaInN
と称す。)の形成方法により作製したAlGaInN薄
膜の断面構造図を示す。図1のMOVPE装置を用いた
AlGaInN薄膜の形成方法について、順を追って説
明する。
(Embodiment 1) FIG. 2 shows an AlxGayInzN thin film (x + y + z = 1, 0 ≦≦ x of the first embodiment of the present invention.
≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, hereinafter, AlGaInN
Called. FIG. 3 is a cross-sectional structural view of an AlGaInN thin film manufactured by the method described in (1). A method of forming an AlGaInN thin film using the MOVPE apparatus of FIG. 1 will be described step by step.

【0020】6H-SiC基板11を脱脂洗浄した後、
石英製トレー6上に結晶成長基板として配置し、石英製
反応管1内に導入した。石英製反応管1内に水素ガスを
導入し、石英製反応管1内圧力を1/10気圧に設定し
た後、グラファイト製サセプター4を1000回転/分
で回転させた。次いで、水素ガス中でグラファイト製サ
セプター4を1100℃まで昇温し、6H-SiC基板1
1表面の清浄化を行った。
After degreasing and cleaning the 6H-SiC substrate 11,
It was placed as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. Hydrogen gas was introduced into the quartz reaction tube 1 to set the internal pressure of the quartz reaction tube 1 to 1/10 atmospheric pressure, and then the graphite susceptor 4 was rotated at 1000 rpm. Then, the temperature of the graphite susceptor 4 is raised to 110 ° C. in hydrogen gas, and the 6H-SiC substrate 1 is heated.
1 The surface was cleaned.

【0021】その後、基板温度を900℃まで降温し、
石英製ガス導入管2から6H-SiC基板11面上にV
族原料としてアンモニアガスを導入した後、10秒後に
III族原料としてトリメチルアルミニウムを供給して膜
厚10nmの単結晶AlN層12を堆積した。このAl
N層12は10nm程度であるので、欠陥が入ることの
ない高品質の膜となっている。またこの層は、これから
堆積させる層とSiC基板とのなじみをよくするはたら
きもある。SiC基板はAlGaInN層と格子定数は
近いが、Alを含んでいないなどの構成元素のちがいが
あるからである。
Thereafter, the substrate temperature is lowered to 900 ° C.,
From the quartz gas inlet tube 2 to V on the 6H-SiC substrate 11 surface
10 seconds after introducing ammonia gas as a group raw material
Trimethyl aluminum was supplied as a Group III material to deposit a single crystal AlN layer 12 having a film thickness of 10 nm. This Al
Since the N layer 12 has a thickness of about 10 nm, it is a high quality film with no defects. This layer also serves to improve the compatibility between the layer to be deposited and the SiC substrate. This is because the SiC substrate has a lattice constant close to that of the AlGaInN layer, but there is a difference in constituent elements such as not containing Al.

【0022】その後、トリメチルアルミニウムの供給を
一旦停止し、基板温度を600℃まで降温した後、石英
製ガス導入管2からIII族原料としてトリメチルアルミ
ニウムを再度供給して膜厚20nmの非単結晶AlN層
13を堆積した。これを緩衝層として用いた。AlN層
12は臨界膜厚以内であって、膜厚もうすいため、欠陥
がはいることはないが、このAlN13は非単結晶とな
っている。ここで非単結晶とは、完全な単結晶ではない
ことを意味し、多結晶や非晶質も含まれる。
Thereafter, the supply of trimethylaluminum is once stopped, the substrate temperature is lowered to 600 ° C., and then trimethylaluminum as a group III raw material is supplied again from the quartz gas introduction tube 2 to supply non-single-crystal AlN having a film thickness of 20 nm. Layer 13 was deposited. This was used as a buffer layer. Since the AlN layer 12 is within the critical film thickness and the film thickness is already thin, no defects are present, but the AlN 13 is a non-single crystal. Here, the term "non-single crystal" means not a perfect single crystal, and includes polycrystal and amorphous.

【0023】次いで、基板温度を1000℃に昇温した
後、III族原料としてトリメチルアルミニウムとトリメ
チルガリウムを供給して膜厚3μmのAlGaN層14
を堆積した。組成は、Al0.1Ga0.9Nである。3μm
の成長によってAlGaN層14表面は平坦となった。
Next, after raising the substrate temperature to 1000 ° C., trimethylaluminum and trimethylgallium are supplied as a group III raw material to form an AlGaN layer 14 having a film thickness of 3 μm.
Was deposited. The composition is Al0.1Ga0.9N. 3 μm
The surface of the AlGaN layer 14 became flat due to the growth of.

【0024】更に、基板温度を900℃に降温した後、
トリメチルガリウム、トリメチルアルミニウムとトリメ
チルインジウムを同時に供給して膜厚3μmのAlGa
InN層15を堆積した。組成はAl0.8Ga0.05In
0.15Nである。
Further, after lowering the substrate temperature to 900 ° C.,
Trimethylgallium, trimethylaluminum and trimethylindium are supplied simultaneously to form an AlGa film having a thickness of 3 μm.
InN layer 15 was deposited. The composition is Al0.8Ga0.05In
It is 0.15N.

【0025】最後にトリメチルガリウム、トリメチルア
ルミニウムとトリメチルインジウムの供給を停止した
後、基板温度を降温して300℃以下の温度になったと
ころでアンモニアの供給を停止した。基板の温度を室温
まで降下させた後、石英製反応管1内より基板を取り出
した。
Finally, after the supply of trimethylgallium, trimethylaluminum and trimethylindium was stopped, the temperature of the substrate was lowered and the supply of ammonia was stopped when the temperature reached 300 ° C. or lower. After the temperature of the substrate was lowered to room temperature, the substrate was taken out from the quartz reaction tube 1.

【0026】本実施例においては、基板上に6μm以上
の厚膜を堆積したにもかかわらず、クラックの発生もな
く表面平坦であり、ホール効果によるとキャリア濃度は
10 15cm-3と極めて欠陥の少ない四元混晶層が得られ
た。
In this embodiment, 6 μm or more is formed on the substrate.
Despite depositing a thick film of
The surface is flat and the carrier concentration is
10 Fifteencm-3And a quaternary mixed crystal layer with extremely few defects was obtained.
Was.

【0027】また、グラファイト製サセプター4を10
回転/分で回転させた場合は、結晶表面は凸凹で四元混
晶層のIn組成が0.06であったのに対し、本実施例
の場合、In組成は0.15となり、1000回転/分
の高速回転によりInの取り込まれ率が増大することを
確認した。
Further, the graphite susceptor 4 is replaced by 10
In the case of rotating at a speed of rotation / minute, the crystal surface was uneven and the In composition of the quaternary mixed crystal layer was 0.06, whereas in the present example, the In composition was 0.15 and 1000 rotations were performed. It was confirmed that the In incorporation rate increased with the high-speed rotation of / min.

【0028】本実施例によれば、従来のサファイア基板
上に非単結晶層のみを介して堆積したAlGaInN層
に比べ、緩衝層界面から発生した欠陥の伝搬は著しく低
減された。
According to this embodiment, the propagation of defects generated from the interface of the buffer layer was significantly reduced as compared with the conventional AlGaInN layer deposited on the sapphire substrate via only the non-single crystal layer.

【0029】このように基板上に非常に品質のよいAl
GaInN層を堆積できる理由は、AlGaInN層1
5に格子定数の近いSiC基板11を用いた上に、この
基板11上に、非単結晶AlN層13と同じ構成元素で
あるうすい単結晶AlN層12を堆積したので、非単結
晶AlN層13は厚みや結晶構造のばらつきが少ない層
を堆積できるからである。この単結晶AlN層12と非
単結晶層13とを介してAlGaInN層を成長させれ
ば、かならずしもSiC基板を用いなくてもよい。た
だ、SiC基板はサファイア基板に比べて格段に取扱が
容易である。
As described above, Al of very high quality is formed on the substrate.
The reason why the GaInN layer can be deposited is that the AlGaInN layer 1
5, a thin single crystal AlN layer 12 having the same constituent elements as the non-single crystal AlN layer 13 was deposited on the SiC substrate 11 having a lattice constant close to that of the non-single crystal AlN layer 13. Is because it is possible to deposit a layer with little variation in thickness and crystal structure. If the AlGaInN layer is grown through the single crystal AlN layer 12 and the non-single crystal layer 13, it is not always necessary to use the SiC substrate. However, the SiC substrate is much easier to handle than the sapphire substrate.

【0030】またここではSiC基板上に組成がAlN
からなる単結晶AlN層12および非単結晶AlN層1
3を用いているが、この組成にGaが含まれていてもよ
く、いわゆるAlxGa1-xN層(0≦x≦1)であって
もよい。
Further, here, the composition is AlN on the SiC substrate.
Single-crystal AlN layer 12 and non-single-crystal AlN layer 1
However, Ga may be contained in this composition, and a so-called AlxGa1-xN layer (0≤x≤1) may be used.

【0031】なお、本実施例では、品質のよいAlGa
InN層15の成長のために、非単結晶AlN層13の
上に、Al0.1Ga0.9N層14を用いているが、この層
がない場合であってもかまわない。
In this embodiment, high quality AlGa is used.
In order to grow the InN layer 15, the Al0.1Ga0.9N layer 14 is used on the non-single-crystal AlN layer 13, but this layer may be omitted.

【0032】(実施例2)図3に本発明の第二の実施例
のAlGaInN薄膜の形成方法により作製したAlG
aInN薄膜の断面構造図を示す。実施例1との違い
は、AlGaInN層15とAlGaN層14との間に
AlGaN/GaInN歪超格子18を用いていること
である。図1のMOVPE装置を用いたAlGaInN
薄膜の製造方法について、順を追って説明する。
(Embodiment 2) FIG. 3 shows an AlG produced by the method of forming an AlGaInN thin film according to the second embodiment of the present invention.
The cross-section figure of an aInN thin film is shown. The difference from Example 1 is that an AlGaN / GaInN strained superlattice 18 is used between the AlGaInN layer 15 and the AlGaN layer 14. AlGaInN using the MOVPE device of FIG.
A method of manufacturing a thin film will be described step by step.

【0033】6H-SiC基板11を脱脂洗浄した後、
石英製トレー6上に結晶成長基板として配置し、石英製
反応管1内に導入した。石英製反応管1内に水素ガスを
導入し、石英製反応管1内圧力を1/10気圧に設定し
た後、グラファイト製サセプター4を1000回転/分
で回転させた。次いで、水素ガス中でグラファイト製サ
セプター4を1100℃まで昇温し、6H-SiC基板1
1表面の清浄化を行った。
After degreasing and cleaning the 6H-SiC substrate 11,
It was placed as a crystal growth substrate on a quartz tray 6 and introduced into the quartz reaction tube 1. Hydrogen gas was introduced into the quartz reaction tube 1 to set the internal pressure of the quartz reaction tube 1 to 1/10 atmospheric pressure, and then the graphite susceptor 4 was rotated at 1000 rpm. Then, the temperature of the graphite susceptor 4 is raised to 110 ° C. in hydrogen gas, and the 6H-SiC substrate 1 is heated.
1 The surface was cleaned.

【0034】その後、基板温度を900℃まで降温し、
石英製ガス導入管2から6H-SiC基板11面上にV
族原料としてアンモニアガスを導入した後、10秒後に
III族原料としてトリメチルアルミニウムを供給して膜
厚10nmの単結晶AlN層12を堆積した。
Thereafter, the substrate temperature is lowered to 900 ° C.,
From the quartz gas inlet tube 2 to V on the 6H-SiC substrate 11 surface
10 seconds after introducing ammonia gas as a group raw material
Trimethyl aluminum was supplied as a Group III material to deposit a single crystal AlN layer 12 having a film thickness of 10 nm.

【0035】その後、トリメチルアルミニウムの供給を
一旦停止し、基板温度を600℃まで降温した後、石英
製ガス導入管2からIII族原料としてトリメチルアルミ
ニウムを再度供給して膜厚20nmの非単結晶AlN層
13を堆積した。これを緩衝層として用いた。
Then, the supply of trimethylaluminum is temporarily stopped, the substrate temperature is lowered to 600 ° C., and trimethylaluminum as a group III raw material is supplied again from the quartz gas introduction tube 2 to supply a non-single-crystal AlN film having a thickness of 20 nm. Layer 13 was deposited. This was used as a buffer layer.

【0036】次いで、基板温度を1000℃に昇温した
後、III族原料としてトリメチルアルミニウムとトリメ
チルガリウムを供給して膜厚3μmのAlGaN層14
を堆積した。組成はAl0.1Ga0.9Nである。3μmの
成長によってAlGaN層14表面は平坦となった。
Next, after raising the substrate temperature to 1000 ° C., trimethylaluminum and trimethylgallium are supplied as a group III raw material to form an AlGaN layer 14 having a film thickness of 3 μm.
Was deposited. The composition is Al0.1Ga0.9N. The growth of 3 μm flattens the surface of the AlGaN layer 14.

【0037】その後、基板温度を900℃に降温した
後、トリメチルガリウム、トリメチルアルミニウムとト
リメチルインジウムを供給して膜厚2nmのAlGaN
層16と膜厚2nmのGaInN層17を連続して40
周期堆積し、AlGaN/AlInN歪超格子18を形
成した。組成はAl0.9Ga0.1N、Al0.7In0.3Nで
ある。
Then, after the substrate temperature is lowered to 900 ° C., trimethylgallium, trimethylaluminum and trimethylindium are supplied to supply AlGaN having a film thickness of 2 nm.
The layer 16 and the GaInN layer 17 having a film thickness of 2 nm are consecutively 40
Cyclic deposition was performed to form an AlGaN / AlInN strained superlattice 18. The composition is Al0.9Ga0.1N, Al0.7In0.3N.

【0038】更に、トリメチルガリウム、トリメチルア
ルミニウムとトリメチルインジウムを同時に供給して膜
厚3μmのAlGaInN層15を堆積した。組成はA
l0.8Ga0.05In0.15Nである。
Further, trimethylgallium, trimethylaluminum and trimethylindium were simultaneously supplied to deposit an AlGaInN layer 15 having a film thickness of 3 μm. The composition is A
l0.8Ga0.05In0.15N.

【0039】最後にトリメチルガリウム、トリメチルア
ルミニウムとトリメチルインジウムの供給を停止した
後、基板温度を降温し300℃以下の温度になったとこ
ろでアンモニアの供給を停止した。基板の温度を室温ま
で降下させた後、石英製反応管1内より基板を取り出し
た。
Finally, after the supply of trimethylgallium, trimethylaluminum and trimethylindium was stopped, the substrate temperature was lowered and when the temperature reached 300 ° C. or lower, the supply of ammonia was stopped. After the temperature of the substrate was lowered to room temperature, the substrate was taken out from the quartz reaction tube 1.

【0040】本実施例においては、基板上に6μm以上
の厚膜を堆積したにもかかわらず、クラックの発生もな
く表面平坦であり、ホール効果によるとキャリア濃度は
10 15cm-3と極めて欠陥の少ない四元混晶層が得られ
た。
In this embodiment, 6 μm or more on the substrate
Despite depositing a thick film of
The surface is flat and the carrier concentration is
10 Fifteencm-3And a quaternary mixed crystal layer with extremely few defects was obtained.
Was.

【0041】また、グラファイト製サセプター4を10
回転/分で回転させた場合は、結晶表面は凸凹で四元混
晶層のIn組成が0.06であったのに対し、本実施例
の場合、In組成は0.15となり、1000回転/分
の高速回転によりInの取り込まれ率が増大することを
確認した。
Further, the graphite susceptor 4 is replaced by 10
In the case of rotating at a speed of rotation / minute, the crystal surface was uneven and the In composition of the quaternary mixed crystal layer was 0.06, whereas in the present example, the In composition was 0.15 and 1000 rotations were performed. It was confirmed that the In incorporation rate increased with the high-speed rotation of / min.

【0042】本実施例によれば、従来のサファイア基板
上に非単結晶層のみを介して堆積したAlGaInN層
に比べ、緩衝層界面から発生した欠陥の伝搬は著しく低
減されただけでなく、歪超格子18を配置したので、ミ
スフィット転位がAlGaN層14から上面へ伝搬する
のを効率的に抑制でき、AlGaInN層15の欠陥密
度を実施例1の場合に比べてさらに2桁程度が低減され
た。
According to the present embodiment, the propagation of defects generated from the interface of the buffer layer is significantly reduced and the strain is not only significantly reduced as compared with the conventional AlGaInN layer deposited on the sapphire substrate via only the non-single crystal layer. Since the superlattice 18 is arranged, propagation of misfit dislocations from the AlGaN layer 14 to the upper surface can be efficiently suppressed, and the defect density of the AlGaInN layer 15 is further reduced by about two digits as compared with the case of the first embodiment. It was

【0043】この形成方法は、サファイア基板を用いた
場合には全く効果は認められず、SiC基板の場合に極
めて有効であった。
This forming method had no effect when a sapphire substrate was used, and was extremely effective when using a SiC substrate.

【0044】なお、本発明は上述した実施例に限定され
るものではない。また、用いる基板は上述の基板には限
定されない。ただ、SiC基板やZnO基板は、AlG
aInN層との格子定数の差がサファイア基板よりも格
段に小さく、また取扱いも容易である。結晶成長に用い
た原料や薄膜組成も上述の限りではない。AlGaIn
N多層膜の組成や構成も限定されるものでない。
The present invention is not limited to the above embodiment. The substrate used is not limited to the above-mentioned substrate. However, SiC and ZnO substrates are AlG
The difference in lattice constant from the aInN layer is significantly smaller than that of the sapphire substrate, and the handling is easy. The raw materials and the thin film composition used for crystal growth are not limited to the above. AlGaIn
The composition and structure of the N multilayer film are not limited.

【0045】さらには、本発明を用いた発光素子として
の多層薄膜形成にも適用できるのは言うまでもない。
Further, it goes without saying that the present invention can be applied to the formation of a multilayer thin film as a light emitting device using the present invention.

【0046】[0046]

【発明の効果】このように本発明によれば、単結晶Al
N薄膜上に非単結晶AlNを形成し格子歪みを緩和した
後にAlGaN単結晶薄膜を形成すると欠陥の発生が抑
制され、上面に堆積したAlGaInN薄膜への転位の
伝搬を大幅に低減できる構成とするため、高品質なAl
GaInN薄膜を形成できる。
As described above, according to the present invention, single crystal Al
When non-single crystal AlN is formed on the N thin film to relax the lattice strain and then the AlGaN single crystal thin film is formed, the generation of defects is suppressed, and the propagation of dislocations to the AlGaInN thin film deposited on the upper surface can be significantly reduced. Therefore, high quality Al
A GaInN thin film can be formed.

【0047】また、AlGaInN薄膜の形成に先立ち
歪AlGaInN超格子を配置するので、基板や緩衝層
界面から発生した転位は面内方向への運動成分が大きく
なるため、上面への伝搬を効率的に抑制でき高品質なA
lGaInN薄膜を形成できる。
Further, since the strained AlGaInN superlattice is arranged prior to the formation of the AlGaInN thin film, the dislocation generated from the interface of the substrate and the buffer layer has a large motion component in the in-plane direction, so that the propagation to the upper surface is efficiently performed. High quality A that can be suppressed
An lGaInN thin film can be formed.

【0048】したがって、発光効率の高い青色発光ダイ
オードや情報処理装置用光源などに用いることのできる
青色半導体レーザ素子製造に極めて有用である。
Therefore, it is extremely useful for manufacturing a blue semiconductor laser device which can be used for a blue light emitting diode having a high luminous efficiency, a light source for an information processing device and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の形成方法を説明するMOVP
E装置の概略図
FIG. 1 is a MOVP illustrating a forming method according to an embodiment of the present invention.
Schematic of E device

【図2】本発明の第一の実施例のAlGaInN薄膜の
形成方法によるAlGaInN薄膜の断面構造図
FIG. 2 is a sectional structural view of an AlGaInN thin film formed by the method of forming an AlGaInN thin film according to the first embodiment of the present invention.

【図3】本発明の第二の実施例のAlGaInN層膜の
形成方法によるAlGaInN層膜の断面構造図
FIG. 3 is a sectional structural view of an AlGaInN layer film formed by the method of forming an AlGaInN layer film according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 石英製反応管 2 石英製ガス導入管 3 高周波加熱用コイル 4 グラファイト製サセプター 5 サセプター支持棒 6 石英製トレー 7 基板 8 排気口 11 6H-SiC基板 12 単結晶AlN層 13 非単結晶AlN層 14 AlGaN層 15 AlGaInN層 16 AlGaN層 17 GaInN層 18 AlGaN/AlInN歪超格子 1 Quartz reaction tube 2 Quartz gas introduction tube 3 High frequency heating coil 4 Graphite susceptor 5 Susceptor support rod 6 Quartz tray 7 Substrate 8 Exhaust port 11 6H-SiC substrate 12 Single crystal AlN layer 13 Non-single crystal AlN layer 14 AlGaN layer 15 AlGaInN layer 16 AlGaN layer 17 GaInN layer 18 AlGaN / AlInN strained superlattice

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】加熱された基板表面上にIII族構成元素を
含む原料および窒素を含む原料を供給して緩衝層を介し
てAlGaInN薄膜を形成する方法であって、 前記基板上に第一のAlGaN単結晶薄膜を形成した後
に、AlGaNからなる緩衝層を形成する工程と、 次いで第二のAlGaN単結晶薄膜を形成した後に、A
lGaInN単結晶薄膜を形成する工程と、を含むこと
を特徴とするAlGaInN半導体薄膜の製造方法。
1. A method for forming an AlGaInN thin film through a buffer layer by supplying a raw material containing a group III constituent element and a raw material containing nitrogen onto a heated substrate surface, the method comprising: A step of forming a buffer layer made of AlGaN after forming the AlGaN single crystal thin film, and then forming a second AlGaN single crystal thin film, and
and a step of forming a 1GaInN single crystal thin film, the method comprising the steps of:
【請求項2】加熱された基板表面上にIII族構成元素を
含む原料および窒素を含む原料を供給して緩衝層を介し
てAlGaInN薄膜を形成する方法であって、 前記基板上に第一のAlGaN単結晶薄膜を形成した後
に、AlGaNからなる緩衝層を形成する工程と、 次いで第二のAlGaN単結晶薄膜を形成した後に、前
記第二のAlGaN単結晶薄膜中もしくは前記第二のA
lGaN単結晶薄膜上に、複数の組成の異なるAlGa
InN層からなる歪超格子構造を形成する工程と、を含
むことを特徴とするAlGaInN半導体薄膜の製造方
法。
2. A method for forming an AlGaInN thin film through a buffer layer by supplying a raw material containing a group III constituent element and a raw material containing nitrogen onto a heated substrate surface, the method comprising: A step of forming a buffer layer made of AlGaN after forming the AlGaN single crystal thin film, and then forming a second AlGaN single crystal thin film, and then in the second AlGaN single crystal thin film or in the second A
A plurality of AlGa having different compositions are formed on the lGaN single crystal thin film.
And a step of forming a strained superlattice structure made of an InN layer, the manufacturing method of an AlGaInN semiconductor thin film.
【請求項3】第一、及び第二のAlGaN単結晶薄膜
は、800℃以上の基板温度で形成し、AlGaNから
なる緩衝層は800℃以下の基板温度で形成することを
特徴とする請求項第1または2に記載のAlGaInN
半導体薄膜の製造方法。
3. The first and second AlGaN single crystal thin films are formed at a substrate temperature of 800 ° C. or higher, and the AlGaN buffer layer is formed at a substrate temperature of 800 ° C. or lower. The first or second AlGaInN
Method for manufacturing semiconductor thin film.
【請求項4】形成する方法が有機金属を用いた気相成長
法であって、基板を配置した加熱体の回転速度を300
回転/分以上とすることを特徴とする請求項1または2
に記載のAlGaInN半導体薄膜の製造方法。
4. The method for forming is a vapor phase growth method using an organic metal, wherein the rotation speed of the heating body on which the substrate is arranged is 300.
Rotation / minute or more, The 1 or 2 characterized by the above-mentioned.
The method for manufacturing an AlGaInN semiconductor thin film according to item 4.
【請求項5】基板がSiCまたはZnOであることを特
徴とする請求項1または2に記載のAlGaInN半導
体薄膜の製造方法。
5. The method for manufacturing an AlGaInN semiconductor thin film according to claim 1, wherein the substrate is SiC or ZnO.
【請求項6】単結晶AlGaN層と、 前記単結晶AlGaN層上に形成したAlGaNからな
る緩衝層と、 前記AlGaNからなる緩衝層上に形成したAlGaI
nN層と、を備えたことを特徴とする半導体薄膜構造。
6. A single crystal AlGaN layer, a buffer layer made of AlGaN formed on the single crystal AlGaN layer, and an AlGaI formed on the buffer layer made of AlGaN.
A semiconductor thin film structure comprising: an nN layer.
【請求項7】SiC基板またはZnO基板上に、請求項
6に記載の半導体薄膜構造を堆積したことを特徴とする
半導体発光素子。
7. A semiconductor light emitting device, comprising the semiconductor thin film structure according to claim 6 deposited on a SiC substrate or a ZnO substrate.
JP909295A 1995-01-24 1995-01-24 Semiconductor thin film and manufacture thereof Pending JPH08203834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP909295A JPH08203834A (en) 1995-01-24 1995-01-24 Semiconductor thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP909295A JPH08203834A (en) 1995-01-24 1995-01-24 Semiconductor thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08203834A true JPH08203834A (en) 1996-08-09

Family

ID=11710981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP909295A Pending JPH08203834A (en) 1995-01-24 1995-01-24 Semiconductor thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08203834A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420283B1 (en) 1997-10-28 2002-07-16 Sharp Kabushiki Kaisha methods for producing compound semiconductor substrates and light emitting elements
JP2004006556A (en) * 2001-06-08 2004-01-08 Toyoda Gosei Co Ltd Manufacturing method of group iii nitride compound semiconductor element
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP2004200384A (en) * 2002-12-18 2004-07-15 Ngk Insulators Ltd Substrate for epitaxial growth
US6872967B2 (en) 2000-03-24 2005-03-29 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and manufacturing method thereof
US6984840B2 (en) * 1998-05-18 2006-01-10 Fujitsu Limited Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
US7554132B2 (en) 2005-09-27 2009-06-30 Toyoda Gosei, Co., Ltd. Electronic device containing group-III element based nitride semiconductors
US20110095335A1 (en) * 2008-07-03 2011-04-28 Panasonic Corporation Nitride semiconductor device
US8134168B2 (en) 2003-10-14 2012-03-13 Showa Denko K.K. Group-III nitride semiconductor device
JP2016029741A (en) * 2015-11-05 2016-03-03 住友化学株式会社 Method for manufacturing nitride semiconductor epitaxial wafer for transistors
CN109244203A (en) * 2018-09-12 2019-01-18 华灿光电(苏州)有限公司 A kind of epitaxial wafer of light emitting diode and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541794B2 (en) 1997-01-09 2013-09-24 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting devices
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7615804B2 (en) 1997-01-09 2009-11-10 Nichia Chemical Industries, Ltd. Superlattice nitride semiconductor LD device
US6849864B2 (en) 1997-01-09 2005-02-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7211822B2 (en) 1997-01-09 2007-05-01 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6420283B1 (en) 1997-10-28 2002-07-16 Sharp Kabushiki Kaisha methods for producing compound semiconductor substrates and light emitting elements
US6984840B2 (en) * 1998-05-18 2006-01-10 Fujitsu Limited Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
US6872967B2 (en) 2000-03-24 2005-03-29 Sanyo Electric Co., Ltd. Nitride-based semiconductor device and manufacturing method thereof
JP2004006556A (en) * 2001-06-08 2004-01-08 Toyoda Gosei Co Ltd Manufacturing method of group iii nitride compound semiconductor element
JP2004200384A (en) * 2002-12-18 2004-07-15 Ngk Insulators Ltd Substrate for epitaxial growth
US8134168B2 (en) 2003-10-14 2012-03-13 Showa Denko K.K. Group-III nitride semiconductor device
US7554132B2 (en) 2005-09-27 2009-06-30 Toyoda Gosei, Co., Ltd. Electronic device containing group-III element based nitride semiconductors
US20110095335A1 (en) * 2008-07-03 2011-04-28 Panasonic Corporation Nitride semiconductor device
JP2016029741A (en) * 2015-11-05 2016-03-03 住友化学株式会社 Method for manufacturing nitride semiconductor epitaxial wafer for transistors
CN109244203A (en) * 2018-09-12 2019-01-18 华灿光电(苏州)有限公司 A kind of epitaxial wafer of light emitting diode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3239622B2 (en) Method of forming semiconductor thin film
JP3721674B2 (en) Method for producing nitride III-V compound semiconductor substrate
TWI573291B (en) A method for manufacturing a nitride semiconductor device, a nitride semiconductor light emitting device, and a light emitting device
US7981713B2 (en) Group III-V nitride-based semiconductor substrate, group III-V nitride-based device and method of fabricating the same
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
JP2003327497A (en) GaN SINGLE CRYSTAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE, NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD OF PRODUCING THE SAME
GB2436398A (en) Bulk semiconductor substrates
JP2006253628A (en) Compound semiconductor apparatus and manufacturing method thereof
US20070215901A1 (en) Group III-V nitride-based semiconductor substrate and method of fabricating the same
JPH08203834A (en) Semiconductor thin film and manufacture thereof
JP4592198B2 (en) III-V compound semiconductor manufacturing apparatus and III-V compound semiconductor manufacturing method
JP2010073750A (en) Method for growing zinc-oxide-based semiconductor, and method for manufacturing semiconductor light emitting element
JPH07235692A (en) Compound semiconductor device and forming method thereof
JPH08213326A (en) Manufacture of iii-v compound semiconductor crystal
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JP4600146B2 (en) Manufacturing method of nitride semiconductor substrate
JP2005001928A (en) Self-supporting substrate and method for producing the same
JP3654307B2 (en) Manufacturing method of semiconductor device
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
KR20230035353A (en) Semiconductor substrate with a nitrided interfacial layer
JP2704223B2 (en) Semiconductor element
JP2004099405A (en) Nitride semiconductor multilayer material and method of growing the same
JP3242571B2 (en) Vapor growth method
JP2001253794A (en) Method for producing semiconductor bulk single crystal
WO2024004576A1 (en) Group iii nitride substrate and manufacturing method thereof