JPH0892983A - Construction method of permanent structure underground exterior wall and earth retaining wall head in inverted construction method - Google Patents

Construction method of permanent structure underground exterior wall and earth retaining wall head in inverted construction method

Info

Publication number
JPH0892983A
JPH0892983A JP6233113A JP23311394A JPH0892983A JP H0892983 A JPH0892983 A JP H0892983A JP 6233113 A JP6233113 A JP 6233113A JP 23311394 A JP23311394 A JP 23311394A JP H0892983 A JPH0892983 A JP H0892983A
Authority
JP
Japan
Prior art keywords
retaining wall
wall
floor slab
head
earth retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6233113A
Other languages
Japanese (ja)
Other versions
JP2885090B2 (en
Inventor
Akiyoshi Nojiri
明美 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6233113A priority Critical patent/JP2885090B2/en
Publication of JPH0892983A publication Critical patent/JPH0892983A/en
Application granted granted Critical
Publication of JP2885090B2 publication Critical patent/JP2885090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PURPOSE: To reduce amount of deformation of an earth retaining wall by forming the first floor slab ends and an earth retaining wall head together as a unit so that flexural rigidity of the first floor slab ends is the approximately same as that of the earth retaining wall head. CONSTITUTION: When the first floor slab ends 2 of reinforced concrete construction are connected to the head of a continuous underground wall 1 of cast-in-place reinforced concrete, the same amount of reinforcement as that of the continuous underground wall 1 is arranged, and after placing reinforcing bars in a beam 3, concrete is placed to construct the first floor slab ends 2. When the first floor slab ends of steel framed concrete construction are connected to a column strip wall 6 constructed by a soil cement method, concrete is placed to construct the first floor slab ends after the reinforcing bars of the beam 3 and steel frames 5 of the first floor slab ends are installed to the tops of H-shape steels 4 of core materials of the colum strip wall 6. By the construction of the earth retaining wall head, bending moment distribution occurring in the earth retaining wall is decreased over the entire length, and amount of deformation of the earth retaining wall is decreased because of having good balance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、逆打ち工法において本
設構造物の地下外壁と兼用する山留め壁の頭部の構築法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a head of a mountain retaining wall which is also used as an underground outer wall of a main structure in a reverse construction method.

【0002】[0002]

【従来の技術】逆打ち工法は本設の床スラブで山留め壁
を支持しながら、上から下へ構造物を構築していく工法
であり、通常は山留め壁に沿って本設構造物の地下外壁
を他の構造部材とともに順次構築しながら工事が進めら
れるが、近年、山留め壁に本設構造物の地下外壁を兼ね
させて、新たな地下外壁の構築を省略する工法も採用さ
れつつある。しかし、この場合の山留め架構についての
検討はさぼど進んでいるとはいえない。
2. Description of the Related Art The upside-down construction method is a method of constructing a structure from top to bottom while supporting a mountain retaining wall with a permanently installed floor slab. Construction work is being carried out while constructing the outer wall along with other structural members one by one, but in recent years, a construction method has also been adopted in which the mountain retaining wall also serves as the underground outer wall of the main structure, and construction of a new underground outer wall is omitted. However, it cannot be said that the examination of the mountain retaining frame in this case has made much progress.

【0003】[0003]

【発明が解決しようとする課題】従来の逆打ち工法にお
いて最初の床スラブとして構築される1階スラブは山留
め壁の支保材機能の他に後続する地上階構築のための作
業スラブとしての機能も要求されるので通常は20〜3
0cm程度の相当に厚い鉄筋コンクリート造りが採用され
ている。一方、本設構造物地下外壁兼用山留め壁は通常
80〜150cm程度の厚さの連続地中壁であり、この山
留め壁の頭部に1階スラブ端部が臥梁を介して一体化さ
れている。このように1階スラブと山留め壁とは剛に接
合されているとはいえ、両者の曲げ剛性には大きな差が
ある。
The first-floor slab constructed as the first floor slab in the conventional reverse construction method has a function as a support slab for the retaining wall and a function as a work slab for the subsequent construction of the ground floor. Usually 20 to 3 as required
Reinforced concrete construction of about 0 cm is used. On the other hand, the earth retaining wall which is also used as the underground outer wall of the main structure is usually a continuous underground wall with a thickness of about 80 to 150 cm, and the end of the first floor slab is integrated with the head of this earth retaining wall via a girder. There is. Thus, although the first floor slab and the mountain retaining wall are rigidly joined, there is a large difference in bending rigidity between the two.

【0004】1階スラブと山留め壁とが剛接された山留
め壁を採用した根切り工事の実測では、山留め壁に図3
に示すような曲げモーメントおよび変形が発生する。即
ち、第2次根切り時には山留め壁頭部と最終床付け位置
付近に負側(山側)の曲げモーメントが生じ、その大き
さは正側(掘削側)最大曲げモーメントと同等か半分程
度である。第3次以降の根切り時には根切りの進行とと
も曲げモーメントの絶対値、変形量ともに増大する。た
だ、1階スラブ端部に発生した固定端曲げモーメントは
1階スラブの端部保有曲げモーメントを超えてしまうの
で、山留め壁頭部では1階スラブ端部保有曲げモーメン
ト以上の曲げモーメントを負担することができなくな
り、1階スラブ端部上側に引張りによるクラックが発生
することが多い。この山留め壁頭部で負担できなくなっ
た分は山留め壁中央部の正側曲げモーメントの増大とそ
れに伴う最終床付け位置付近の負側の曲げモーメントの
増大とによって負担されることとなる。当然のことなが
ら、この傾向は第4次、第5次と根切りが進行するにし
たがって著しくなり、山留め壁の変形量は大きくなり、
周辺地盤の沈下やクラックの発生を惹起することが懸念
される。
According to the actual measurement of the root cutting work using the mountain retaining wall in which the first floor slab and the mountain retaining wall are rigidly contacted, the mountain retaining wall is shown in FIG.
Bending moment and deformation occur as shown in. That is, at the time of the second root cutting, a bending moment on the negative side (mountain side) is generated in the vicinity of the mountain retaining wall head and the final floor attachment position, and the magnitude thereof is equal to or about half the maximum bending moment on the positive side (excavation side). . During root cutting after the third order, the absolute value of the bending moment and the amount of deformation increase with the progress of root cutting. However, since the fixed end bending moment generated at the end of the first floor slab exceeds the end portion holding bending moment of the first floor slab, the mountain retaining wall head bears a bending moment greater than the first floor slab end holding bending moment. In many cases, a crack is generated on the upper side of the end portion of the first floor slab due to tension. The portion that cannot be borne by the head of the retaining wall will be borne by the increase of the positive bending moment in the central portion of the retaining wall and the accompanying increase of the bending moment on the negative side near the final floor mounting position. As a matter of course, this tendency becomes remarkable as the root cutting progresses in the 4th and 5th orders, and the deformation amount of the retaining wall increases.
There is concern that it may cause subsidence of the surrounding ground and the occurrence of cracks.

【0005】[0005]

【課題を解決するための手段】本発明は、山留め壁頭部
への1階スラブの構築に際して、1階スラブ端部の曲げ
剛性が山留め壁頭部の曲げ剛性と略等しくなるように1
階スラブ端部を山留め壁頭部に剛結することによって従
来法の問題点を一挙に解決するものである。
According to the present invention, in constructing a first floor slab on a mountain retaining wall head, the bending stiffness of the end of the first floor slab is substantially equal to the bending stiffness of the mountain retaining wall head.
The problems of the conventional method are solved all at once by rigidly connecting the end of the story slab to the head of the retaining wall.

【0006】即ち、本発明は、山留め壁の造成、構真柱
の設置、第1次根切りの後に行う1階スラブの構築に際
して、臥梁を介して1階スラブ端部を山留め壁頭部に一
体化することを特徴とする逆打ち工法における本設構造
物地下外壁兼用山留め壁頭部の構築法である。
That is, according to the present invention, at the time of constructing a mountain retaining wall, installing a true column, and constructing a first floor slab after the primary root cutting, the end of the first floor slab is connected to the head of the mountain retaining wall via a girder. It is a construction method of the head part of the earth retaining wall which is also used as the underground outer wall of the main structure in the upside down construction method, which is characterized by being integrated with the above.

【0007】逆打ち工法において本設構造物地下外壁兼
用山留め壁に最初の床スラブとして剛接される1階スラ
ブは厚く構築されるとはいえ両者の曲げ剛性には大きな
差があり、根切り時に山留め壁頭部に発生する負側の曲
げモーメントは、剛接されている1階スラブ端部の保有
曲げモーメントによって支配され、山留め壁頭部の保有
曲げモーメントがいくら大きくてもその能力を発揮しな
い儘で終わっていることを実測の結果見出し、1階スラ
ブ端部の保有曲げモーメントを大きくして山留め壁頭部
の保有曲げモーメントに近づけることにより、大きな山
留め壁頭部の保有曲げモーメントを十分に発揮させるこ
とにより本発明に到達した。
In the reverse construction method, the first-floor slab that is rigidly connected as the first floor slab to the earth retaining wall that also serves as the outer wall of the main structure under construction is thickly constructed, but there is a large difference in bending rigidity between the two, and the root cutting The negative bending moment that sometimes occurs in the head of the retaining wall is governed by the bending moment of the end of the first-floor slab that is rigidly connected, and exerts its ability even if the bending moment of the retaining wall head is large. We found that the end of the slab did not end, and by increasing the bending moment of the first slab end to make it close to the bending moment of the head of the retaining wall, the bending moment of the retaining head of the large retaining wall was sufficient. The present invention has been reached by exhibiting the above.

【0008】本発明によれば、図2に示すように山留め
壁頭部、即ち、1階スラブ取付け位置に発生する負側の
曲げモーメントは根切りの進行とともに増大し、最終根
切り時にも全体曲げモーメントを分担して負担してい
る。この山留め壁頭部の負側曲げモーメントの大きさは
山留め壁中央部の正側最大曲げモーメントと同等か半分
程度であるので、山留め壁頭部で全体曲げモーメントを
分担して負担している分だけ山留め壁中央部の正側最大
曲げモーメントが減少することとなり、山留め壁中央部
の正側最大曲げモーメントの減少は最終床付け位置付近
の負側の曲げモーメントを減少させることとなる。この
結果、山留め壁に発生する全体曲げモーメント(根切り
時に土圧や水圧で発生するもの+床スラブコンクリート
の収縮により発生するもの)は山留め壁の全長にわたっ
て緩やかにバランス良く分布し、その絶対量は小さくな
って、山留め壁の変形量も小さくなる。
According to the present invention, as shown in FIG. 2, the bending moment on the negative side generated at the mountain retaining wall head, that is, at the mounting position of the first floor slab increases with the progress of root cutting, and even at the time of final root cutting, the whole bending moment increases. The bending moment is shared and shared. The magnitude of the negative bending moment of the mountain retaining wall head is equal to or about half the maximum positive bending moment of the central portion of the mountain retaining wall, so the mountain retaining wall head shares and bears the entire bending moment. Therefore, the maximum bending moment on the positive side in the central portion of the mountain retaining wall is reduced, and the decrease in the maximum bending moment on the positive side in the central portion of the retaining wall reduces the bending moment on the negative side near the final floor mounting position. As a result, the total bending moment (generated by earth pressure or water pressure at the time of root cutting + generated by contraction of the floor slab concrete) generated in the retaining wall is distributed in a gentle balance over the entire length of the retaining wall, and its absolute amount Becomes smaller and the amount of deformation of the retaining wall becomes smaller.

【0009】本発明で構築する1階スラブ端部の保有曲
げモーメントを山留め壁頭部の保有曲げモーメントと略
同等にするには、例えば山留め壁が場所打ち鉄筋コンク
リートによる連続地中壁である場合には1階スラブ端部
の1〜1/3程度の長さの部分を連続地中壁と略同等の
厚さ、略同等の鉄筋量の鉄筋コンクリート造りとすれば
よく、山留め壁がソイルセメント工法による柱列壁であ
る場合には1階スラブ端部の1〜1/3程度の長さの部
分の鉄骨として柱列壁に挿入したH形鋼と略同等の性能
のH形鋼を使用した鉄骨コンクリート造りとすればよ
い。1階スラブの残余の中央部は1階スラブとしての要
求性能に応じて構築される。
In order to make the bending moment of the end of the first floor slab constructed by the present invention substantially equal to the bending moment of the head of the retaining wall, for example, when the retaining wall is a continuous underground wall made of cast-in-place reinforced concrete. Can be made by reinforced concrete construction with a thickness of approximately 1/3 of the end of the first floor slab and approximately the same thickness as the continuous underground wall, and the amount of rebar is approximately the same. In the case of a column wall, a steel frame using an H-section steel having approximately the same performance as the H-section steel inserted into the column wall as the steel frame of the length of about 1/3 of the end of the first slab. It should be made of concrete. The remaining central portion of the first floor slab is constructed according to the required performance as the first floor slab.

【0010】本発明で構築する1階スラブ端部の保有曲
げモーメントを山留め壁頭部の保有曲げモーメントと厳
密に一致させることは必要ではない。前述したように山
留め壁頭部では剛接された両部材の中の保有曲げモーメ
ントの小さい部材の保有曲げモーメントまでを負担する
ものであり、それ以上の曲げモーメントまでは負担しえ
ないからである。保有曲げモーメントの大きい山留め壁
頭部に、本設構造物の規模に応じて必要な程度に保有曲
げモーメントを大きくした1階スラブ端部を剛接するの
が常識的である。
It is not necessary that the retained bending moment of the first slab end constructed by the present invention be exactly the same as the retained bending moment of the retaining wall head. This is because, as described above, the mountain retaining wall head can bear up to the bending moment of the member having a small bending moment among the two members rigidly contacted with each other, and can not bear the bending moment beyond that. . It is common sense to rigidly contact the head of the mountain retaining wall, which has a large retained bending moment, with the end of the first floor slab that has a large retained bending moment to the extent necessary depending on the scale of the main structure.

【0011】[0011]

【実施例】以下図面を参照しながら本発明を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0012】図1は本発明の山留め壁頭部を構築する際
の接合部の例を示し、(a)は場所打ち鉄筋コンクリー
トによる連続地中壁と鉄筋コンクリート造りの1階スラ
ブ端部との接合部の縦断面図であり、(b)はソイルセ
メント工法による柱列壁と鉄骨コンクリート造りの1階
スラブ端部との接合部の斜視図であり、(c)は(b)
の場合の縦断面図である。
FIG. 1 shows an example of a joint portion when constructing a mountain retaining wall head of the present invention, and (a) is a joint portion between a continuous underground wall made of cast-in-place reinforced concrete and an end portion of a reinforced concrete-made first floor slab. FIG. 3B is a perspective view of the joint between the column wall made by the soil cement method and the end of the first floor slab made of steel concrete, and FIG.
It is a longitudinal cross-sectional view in the case of.

【0013】場所打ち鉄筋コンクリートによる連続地中
壁1の頭部に鉄筋コンクリート造りの1階スラブ端部2
を接合する場合には(a)に示されるように連続地中壁
1の鉄筋量と同量の鉄筋を配筋し、臥梁3の配筋をした
後、コンクリートを打設して1階スラブ端部2を構築す
る。なお、7はコンクリート打継ぎ面である。
First floor slab end 2 made of reinforced concrete on the head of continuous underground wall 1 made of cast-in-place reinforced concrete
In the case of joining, as shown in (a), the reinforcing bars of the same amount as the reinforcing bars of the continuous underground wall 1 are laid out, the glutes 3 are laid out, and then concrete is placed and the first floor is placed. Build the slab end 2. In addition, 7 is a concrete joint surface.

【0014】ソイルセメント工法による柱列壁6に鉄骨
コンクリート造りの1階スラブ端部を接合する場合には
(b)に示されるように柱列壁6の芯材であるH形鋼4
の頂部に臥梁3の配筋および1階スラブ端部鉄骨5の設
置を行った後、(c)に示されるようにコンクリートを
打設して1階スラブ端部を構築する。なお、(b)にお
いては柱列壁6の図示は省略してある。また、7はコン
クリート打継ぎ面である。
When the end of the first floor slab made of steel concrete is joined to the column wall 6 by the soil cement method, as shown in (b), the H-shaped steel 4 which is the core material of the column wall 6 is used.
After the reinforcement of the girder 3 and the first-stage slab end steel frame 5 are installed on the top of the, the first-stage slab end is constructed by placing concrete as shown in (c). In addition, illustration of the column wall 6 is abbreviate | omitted in (b). Further, 7 is a concrete jointing surface.

【0015】図2は本発明で構築した山留め壁頭部を有
する山留め壁の根切り時の曲げモーメントならびに変形
の分布を示すグラフであり、図3は通常の厚さの1階ス
ラブを構築した際の山留め壁の根切り時の曲げモーメン
トならびに変形の分布を示すグラフである。
FIG. 2 is a graph showing the distribution of bending moment and deformation at the time of root cutting of the earth retaining wall having the earth retaining wall head constructed according to the present invention, and FIG. 3 is a first-order slab having a normal thickness. It is a graph which shows distribution of bending moment and deformation at the time of root cutting of the mountain retaining wall at the time.

【0016】図2の場合、山留め壁頭部の負側の曲げモ
ーメントは根切りの進行ととも増大し、常に全体曲げモ
ーメントの一部を負担していることが分かる。一方、図
3の場合は第3次根切り以降は山留め壁頭部の負側の曲
げモーメントは増大せず第3次根切り以降は曲げモーメ
ントを負担し得なくなっていることが分かる。図2と図
3を比較すると、図2の方が曲げモーメント、変形の分
布ともに曲線が緩やかで、絶対量が小さくなっているこ
とが明瞭である。
In the case of FIG. 2, it can be seen that the bending moment on the negative side of the mountain retaining wall head increases with the progress of root cutting, and always bears a part of the entire bending moment. On the other hand, in the case of FIG. 3, it can be seen that after the third root cutting, the bending moment on the negative side of the mountain retaining wall head does not increase, and after the third root cutting, the bending moment cannot be borne. Comparing FIG. 2 and FIG. 3, it is clear that the curve of FIG. 2 is gentler in both bending moment and deformation distribution, and the absolute amount is smaller.

【0017】[0017]

【発明の効果】本発明による山留め壁頭部の構築によ
り、山留め壁に発生する曲げモーメント分布が全長にわ
たり小さく、かつバランスよくなるので、山留め壁の変
形量も小さくなり、次のような効果が奏せられる。
The construction of the head of the retaining wall according to the present invention makes the bending moment distribution generated in the retaining wall small over the entire length and well balanced, so that the amount of deformation of the retaining wall also becomes small and the following effects are achieved. Sent.

【0018】(1)山留め壁への局所的な補強が不必要
となり、1階スラブ端部の曲げ剛性を大きくする必要は
あるとしても、全体としての材料費、工事費は低減す
る。
(1) Even if local reinforcement to the mountain retaining wall is unnecessary and it is necessary to increase the bending rigidity of the end portion of the first floor slab, the total material cost and construction cost are reduced.

【0019】(2)周辺地盤の沈下や山留め壁および1
階スラブへのクラックの発生が大幅に低減する。
(2) Subsidence of surrounding ground and mountain retaining wall and 1
The occurrence of cracks on the floor slab is greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の山留め壁頭部を構築する際の接合部の
例を示し、(a)は場所打ち鉄筋コンクリートによる連
続地中壁と鉄筋コンクリート造りの1階スラブ端部との
接合部の縦断面図であり、(b)はソイルセメント工法
による柱列壁と鉄骨コンクリート造りの1階スラブ端部
との接合部の斜視図であり、(c)は(b)の場合の縦
断面図である。
FIG. 1 shows an example of a joint portion when constructing a mountain retaining wall head of the present invention, (a) is a longitudinal section of a joint portion between a continuous underground wall made of cast-in-place reinforced concrete and an end portion of a reinforced concrete 1st floor slab. It is a front view, (b) is a perspective view of the joint part of the pillar row wall by the soil cement construction method, and the end of the first floor slab made of steel-framed concrete, (c) is a vertical cross-sectional view in the case of (b) is there.

【図2】本発明で構築した山留め壁頭部を有する山留め
壁の根切り時の曲げモーメントならびに変形の分布を示
すグラフである。
FIG. 2 is a graph showing the distribution of bending moment and deformation at the time of root cutting of the earth retaining wall having the earth retaining wall head constructed according to the present invention.

【図3】通常の厚さの1階スラブを構築した際の山留め
壁の根切り時の曲げモーメントならびに変形の分布を示
すグラフである。
FIG. 3 is a graph showing the distribution of bending moment and deformation at the time of root cutting of the earth retaining wall when a first-order slab having a normal thickness is constructed.

【符号の説明】[Explanation of symbols]

1・・連続地中壁、2・・鉄筋コンクリート造りの1階
スラブ端部、3・・臥梁、4・・柱列壁芯材H形鋼、5
・・1階スラブ端部鉄骨、6・・柱列壁、7・・コンク
リート打継ぎ面。
1 ... Continuous underground wall, 2 ... First floor slab end made of reinforced concrete, 3 ... Wo beam, 4 ... Column wall core H-section steel, 5
・ ・ 1st floor slab end steel frame, 6 ・ ・ Column wall, 7 ・ ・ Concrete joint surface.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 山留め壁の造成、構真柱の設置、第1次
根切りの後に行う1階スラブの構築に際して、1階スラ
ブ端部の曲げ剛性が山留め壁頭部の曲げ剛性と略等しく
なるように臥梁を介して1階スラブ端部を山留め壁頭部
に一体化することを特徴とする逆打ち工法における本設
構造物地下外壁兼用山留め壁頭部の構築法。
1. The bending rigidity of the end of the first floor slab is approximately equal to the bending rigidity of the head of the mountain retaining wall when the first retaining slab is constructed after the construction of the retaining wall, the installation of the true columns, and the first root cutting. A method for constructing the head of the earth retaining wall that also serves as the underground outer wall of the main structure in the upside-down construction method, characterized in that the end of the slab on the first floor is integrated with the head of the mountain retaining wall via a girder.
【請求項2】 山留め壁が場所打ち鉄筋コンクリートに
よる連続地中壁であり、1階スラブが鉄筋コンクリート
造りである請求項1記載の逆打ち工法における本設構造
物地下外壁兼用山留め壁頭部の構築法。
2. The method of constructing a head part of an earth retaining wall also used as a basement outer wall of a main structure in a reverse construction method according to claim 1, wherein the mountain retaining wall is a continuous underground wall made of cast-in-place reinforced concrete, and the first floor slab is made of reinforced concrete. .
【請求項3】 山留め壁がH形鋼を芯材としたソイルセ
メント工法による柱列壁であり、1階スラブが鉄骨コン
クリート造りである請求項1記載の逆打ち工法における
本設構造物地下外壁兼用山留め壁頭部の構築法。
3. The underground wall of the permanent structure for reverse construction according to claim 1, wherein the mountain retaining wall is a pillar row wall made by a soil cement method using H-shaped steel as a core material, and the first floor slab is made of steel-framed concrete. A method of constructing a combined mountain retaining wall head.
JP6233113A 1994-09-28 1994-09-28 Construction method of the head of the retaining wall which also serves as the underground external wall of the permanent structure in the reverse-casting method Expired - Lifetime JP2885090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6233113A JP2885090B2 (en) 1994-09-28 1994-09-28 Construction method of the head of the retaining wall which also serves as the underground external wall of the permanent structure in the reverse-casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6233113A JP2885090B2 (en) 1994-09-28 1994-09-28 Construction method of the head of the retaining wall which also serves as the underground external wall of the permanent structure in the reverse-casting method

Publications (2)

Publication Number Publication Date
JPH0892983A true JPH0892983A (en) 1996-04-09
JP2885090B2 JP2885090B2 (en) 1999-04-19

Family

ID=16949977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6233113A Expired - Lifetime JP2885090B2 (en) 1994-09-28 1994-09-28 Construction method of the head of the retaining wall which also serves as the underground external wall of the permanent structure in the reverse-casting method

Country Status (1)

Country Link
JP (1) JP2885090B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097416A (en) * 2010-10-29 2012-05-24 Shimizu Corp Construction method of underground structure
CN102493487A (en) * 2011-12-13 2012-06-13 上海市第一建筑有限公司 Method for constructing foundation slab embedded with concrete supports
CN102900099A (en) * 2011-07-26 2013-01-30 上海市第二建筑有限公司 Drop-slab construction process for underground concrete structures
CN104196055A (en) * 2014-08-08 2014-12-10 山东万鑫建设有限公司 Construction method for frameworks on lower portion of basement exterior wall

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097416A (en) * 2010-10-29 2012-05-24 Shimizu Corp Construction method of underground structure
CN102900099A (en) * 2011-07-26 2013-01-30 上海市第二建筑有限公司 Drop-slab construction process for underground concrete structures
CN102493487A (en) * 2011-12-13 2012-06-13 上海市第一建筑有限公司 Method for constructing foundation slab embedded with concrete supports
CN104196055A (en) * 2014-08-08 2014-12-10 山东万鑫建设有限公司 Construction method for frameworks on lower portion of basement exterior wall

Also Published As

Publication number Publication date
JP2885090B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US2618146A (en) Reinforced concrete column, bracket, and beam joint
JPH0892983A (en) Construction method of permanent structure underground exterior wall and earth retaining wall head in inverted construction method
Robison The Basilica Ulpia, early Christian churches and the Roman double truss
JPH05179647A (en) Supporting structure for earth retaining wall
JP2934668B2 (en) Beam structure
JP2622013B2 (en) Reinforced concrete shear wall structure
JPH0754364A (en) Construction method of basement floor
JPH0892959A (en) Head-section structure of earth retaining wall
JP2001193290A (en) Seismic isolation method for existing building
JP2757209B2 (en) Cut-and-joint underground construction method using synthetic steel beams
KR0150304B1 (en) A method of simultaneously constructing frameworks for floors and basements of a building
JPH0657769A (en) Underground concrete structure and working method thereof
JPH0598653A (en) Steel pipe concrete pillar in underground inverter construction method
JPS6316731Y2 (en)
JPH0931985A (en) Simplified construction of underground
JP2916585B2 (en) Construction method of building
JP2894217B2 (en) Building structural frame
JPH04131428A (en) Construction of underground structure
JP2677159B2 (en) Structure using covered steel tube concrete columns
JPS63312439A (en) Underground construction method
JP2592376B2 (en) Beam support
JPS6220571Y2 (en)
JPS6134468Y2 (en)
McDowall et al. V.—Westminster Abbey: The Timber Roofs of the Collegiate Church of St. Peter at Westminster
JP2501709B2 (en) Foundation structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112