JPH0892723A - Hardening of surface of sintered parts - Google Patents

Hardening of surface of sintered parts

Info

Publication number
JPH0892723A
JPH0892723A JP23166994A JP23166994A JPH0892723A JP H0892723 A JPH0892723 A JP H0892723A JP 23166994 A JP23166994 A JP 23166994A JP 23166994 A JP23166994 A JP 23166994A JP H0892723 A JPH0892723 A JP H0892723A
Authority
JP
Japan
Prior art keywords
gas
sintered
ammonia
hardening
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23166994A
Other languages
Japanese (ja)
Other versions
JP3429870B2 (en
Inventor
Mamoru Ishihara
衛 石原
Hiromasa Imazato
博正 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Oxygen Industries Ltd
Nissan Motor Co Ltd
Original Assignee
Osaka Oxygen Industries Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Oxygen Industries Ltd, Nissan Motor Co Ltd filed Critical Osaka Oxygen Industries Ltd
Priority to JP23166994A priority Critical patent/JP3429870B2/en
Publication of JPH0892723A publication Critical patent/JPH0892723A/en
Application granted granted Critical
Publication of JP3429870B2 publication Critical patent/JP3429870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce ferrous sintered parts in which only the surface part is hardened. CONSTITUTION: The part to be sintered is sintered at >=1100 deg.C under ordinary conditions. In the case of another atomospheric zone 9a, ammonia is added, the concn. of gaseous ammonia is regulated to 0.5 to 10%, and the sintered parts are subjected to surface hardening at 200 to 650 deg.C atomospheric temp. for 10 to 60 min, by which the ferrous sintered parts whose surface is hardened can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄系の焼結すべき粉末材
をプレス成形後、連続的に加熱焼結する工程において内
部の靱性低下もなく、また、寸法変化も少なく、且つ、
一般焼結処理品より最表面の硬度のみを高め、耐摩耗
性、耐食性の向上をはかる連続焼結処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention does not cause deterioration of internal toughness in the step of continuously heating and sintering an iron-based powder material to be sintered, and has little dimensional change.
The present invention relates to a continuous sintering treatment method in which only the hardness of the outermost surface is increased as compared with general sintered products to improve wear resistance and corrosion resistance.

【0002】[0002]

【従来の技術】従来、自動車の部品等に使用される鉄系
焼結品にあって、表面硬化によって硬度を高める必要が
ある場合、焼結終了後、別の熱処理炉において、浸炭、
焼入、窒化あるいはガス軟窒化等の熱処理を行ってい
る。
2. Description of the Related Art Conventionally, in iron-based sintered products used for automobile parts and the like, when it is necessary to increase hardness by surface hardening, after completion of sintering, carburizing in another heat treatment furnace,
Heat treatment such as quenching, nitriding or gas soft nitriding is performed.

【0003】[0003]

【発明が解決しようとする課題】浸炭の場合、焼結品は
多孔質である為、浸炭剤(カーボン)が内部迄侵入し、
表面のみでなく、焼結品全体が硬化し、靱性の低下を招
く可能性が大きい。また、浸炭、焼入等は高温で処理す
る為、熱処理後の変形が大きくなり、研削による寸法矯
正等の問題が生ずる。
In the case of carburizing, since the sintered product is porous, the carburizing agent (carbon) penetrates to the inside,
It is highly possible that not only the surface but also the entire sintered product hardens, leading to a decrease in toughness. Further, since carburizing, quenching, etc. are performed at a high temperature, deformation after heat treatment becomes large, and problems such as dimensional correction by grinding occur.

【0004】一方の窒化あるいはガス軟窒化等の場合
は、浸炭、焼入等に比較して、熱処理温度は低い為熱処
理後の変形は小さく寸法変化も微少である。しかし浸炭
と同様、焼結品が多孔質であるので、内部迄窒化し、靱
性の低下を招くことがある。従って、此等の内部硬化を
防ぐ方法として、銅系の溶浸剤で、溶浸処理を行い、焼
結品の空孔を閉塞した後、窒化あるいはガス軟室化処理
をするか、または、焼結後スチーム処理を行い、空孔を
酸化被膜(四三酸化鉄)で閉塞した後、窒化処理を行う
等の方法がなされている。
On the other hand, in the case of nitriding or gas nitrocarburizing, the heat treatment temperature is lower than that of carburizing, quenching, etc., so that the deformation after heat treatment is small and the dimensional change is minute. However, similar to carburization, the sintered product is porous, so it may cause nitriding even in the interior, leading to a decrease in toughness. Therefore, as a method for preventing these internal hardening, infiltration treatment is performed with a copper-based infiltration agent to close the pores of the sintered product, followed by nitriding or gas softening treatment, or firing. After the formation, steam treatment is performed to close the pores with an oxide film (ferric tetroxide), and then nitriding treatment is performed.

【0005】この場合、焼結後の表面硬化処理、即ち窒
化、あるいはガス軟窒化等の処理工程に加えて、溶浸処
理、スチーム処理等の工程が必要となり、窒化、あるい
はガス軟窒化等の熱処理装置だけでなく、溶浸処理ある
いはスチーム処置等の前処理装置、そして、当然操作す
る作業員も必要となる。
In this case, in addition to the surface hardening treatment after sintering, that is, nitriding, gas nitrocarburizing, etc., infiltration treatment, steam treatment, etc. are required. Not only the heat treatment apparatus, but also a pretreatment apparatus for infiltration treatment or steam treatment, and of course, a worker who operates it is required.

【0006】本発明は、このような問題を解消すべく案
出されたものであり脱ワックス、焼結、表面硬化を連続
的に且つ、簡便に処理することにより、別途熱処理炉、
スチーム処理等の装置の必要もなく、また操作上におけ
る特別の時間、作業員も必要とせず、従来の鉄系の焼結
部品材で焼結と表面硬化が成される方法を提供すること
を目的とする。
The present invention has been devised in order to solve such a problem, and a continuous heat treatment for dewaxing, sintering, and surface hardening is performed in a simple and convenient manner to obtain a separate heat treatment furnace,
It is an object of the present invention to provide a method for performing sintering and surface hardening with a conventional iron-based sintered component material, which does not require a device such as steam treatment, and does not require special operation time or workers. To aim.

【0007】[0007]

【課題を解決するための手段】本発明は、その目的を達
成するため鉄系の焼結すべき部品材を連続焼結炉の加熱
焼結室において、(i)水素、炭化水素等の還元ガスと
窒素、アルゴン等の不活性ガス、(ii)プロパン、ブ
タン等の変性ガス(RX)又はアンモニアの分解ガス
(AX)等の雰囲気下において1100℃以上で加熱焼
結後、別の雰囲気ゾーンにおいてアンモニアを加えてそ
の雰囲気中のアンモニア濃度を0.5〜10%(好まし
くは2〜5%)に調整し、200〜650℃(好ましく
は300〜550℃)の雰囲気温度で10〜60分間
(好ましくは20〜45分間)その焼結部品を表面硬化
させることを特徴とする表面硬化した鉄系焼結部品の製
造方法である。
In order to achieve the object, the present invention provides (i) reduction of hydrogen, hydrocarbons and the like in a heating and sintering chamber of a continuous sintering furnace for iron-based component materials to be sintered. Gas and an inert gas such as nitrogen or argon, (ii) denaturing gas (RX) such as propane or butane, or decomposition gas (AX) of ammonia or the like, and then heat-sintered at 1100 ° C. or higher, and then another atmosphere zone In the above, ammonia is added to adjust the ammonia concentration in the atmosphere to 0.5 to 10% (preferably 2 to 5%), and the atmosphere temperature is 200 to 650 ° C (preferably 300 to 550 ° C) for 10 to 60 minutes. (Preferably for 20 to 45 minutes) A method for manufacturing a surface-hardened iron-based sintered component, characterized by surface-hardening the sintered component.

【0008】表面硬化処理工程においてアンモニアガス
中に2〜10%の炭酸ガス(CO2)を加えることが好
ましい。一般にアンモニアガスは窒素ガスと水素ガスに
分解するが、炭酸ガス(CO2 )は窒化反応を阻害する
水素と反応して一酸化炭素(CO)と水(H2 O)に変
換する。
In the surface hardening treatment step, it is preferable to add 2 to 10% of carbon dioxide gas (CO 2 ) in ammonia gas. Generally, ammonia gas is decomposed into nitrogen gas and hydrogen gas, but carbon dioxide gas (CO 2 ) reacts with hydrogen that inhibits the nitriding reaction and is converted into carbon monoxide (CO) and water (H 2 O).

【0009】本発明の表面硬化工程においてアンモニア
ガス濃度、処理温度及び処理時間等は本発明者の幅広い
実験の結果得られたものである。これらの範囲を逸脱す
る時、目的とした表面硬化が得られない。例えば、これ
らより過大な条件で処理を行なうと、焼結部品の深部ま
で硬化され、焼結部品がもろくなる。又これらより過小
の条件で表面硬化処理を行なうと硬化層が薄くなり、目
的とする表面硬化処理品が得られない。
In the surface hardening process of the present invention, the ammonia gas concentration, the treatment temperature, the treatment time, etc. are obtained as a result of a wide range of experiments by the present inventors. When the content of these components deviates from these ranges, the desired surface hardening cannot be obtained. For example, if the treatment is carried out under conditions larger than these, the deep part of the sintered part is hardened and the sintered part becomes brittle. Further, if the surface hardening treatment is carried out under conditions smaller than these, the hardened layer becomes thin and the desired surface hardening treatment product cannot be obtained.

【0010】本発明において表面硬化は、連続焼結炉の
冷却ゾーンにおいて、行なわれる。
In the present invention, the surface hardening is performed in the cooling zone of the continuous sintering furnace.

【0011】その冷却ゾーンに耐熱カーテン、水冷構造
のカーテンボックス、並びに表面硬化の最適雰囲気にす
る為のアンモニアガスの供給口等を設けても良い。
The cooling zone may be provided with a heat-resistant curtain, a water-cooled curtain box, and an ammonia gas supply port for providing an optimum atmosphere for surface hardening.

【0012】[0012]

【作用】図面によって本発明をさらに詳しく説明する。
本発明は下記の図面の態様に限定されるものではない。
The present invention will be described in more detail with reference to the drawings.
The present invention is not limited to the embodiments shown in the drawings below.

【0013】図1に示されたメッシュベルト式連続焼結
炉に従って詳細に説明する。プレス成形された鉄系の焼
結すべき部品材12を脱ワックス炉13でステアリン酸
亜鉛、ワックス等潤滑剤を加熱分解除去した後、焼結室
11において、窒素、水素混合ガス、RXガスあるいは
AXガス等還元性ガス雰囲気下で、加熱焼結を行う。
The mesh belt type continuous sintering furnace shown in FIG. 1 will be described in detail. The press-formed iron-based component material 12 to be sintered is heated and decomposed by removing the lubricant such as zinc stearate and wax in the dewaxing furnace 13, and then in the sintering chamber 11, nitrogen, hydrogen mixed gas, RX gas or Heat sintering is performed in a reducing gas atmosphere such as AX gas.

【0014】この場合の該焼結室は温度1,100〜
1,150℃であることが好ましい。窒素−水素混合ガ
スであれば、水素4〜80%、RXガスであれば、水素
は約30%の雰囲気の状態で焼結部品材12が加熱焼結
され、冷却ゾーン9に搬送される。該冷却ゾーン内にお
いて前方に耐熱カーテン4を設置し、焼結室11からの
ガス流入に抵抗をもたせる。特に焼結室11での焼結部
品材(酸化鉄)との還元で生じた水分の冷却ゾーン9へ
の流入を抑える。また、冷却ゾーン9の進行方向にカー
テンボックス1を設置して、雰囲気ガスの前後からの流
入、前後に流出しにくいようにガスの流れに抵抗を持た
した硬化雰囲気ゾーン9aをつくり、冷却ゾーンの外部
にアンモニアガスの供給口を設けてアンモニアガスを少
量供給する。硬化雰囲気ゾーン9aにある焼結部品14
は表面硬化、即ち焼結部品材の最表面での窒化を生じ
る。この場合の窒化作用はアンモニア(NH3 )が鉄
(Fe)に接触して分解した原子状の〔N〕がFeと反
応してε相(Fe3 N)、γ相(Fe4 N)等の窒化層
を形成する。
In this case, the sintering chamber has a temperature of 1,100 to
It is preferably 1,150 ° C. In the case of a nitrogen-hydrogen mixed gas, hydrogen is 4 to 80%, and in the case of RX gas, hydrogen is heated and sintered in an atmosphere of about 30%, and the sintered component material 12 is transported to the cooling zone 9. A heat-resistant curtain 4 is installed in front of the cooling zone so as to have resistance to gas inflow from the sintering chamber 11. In particular, the inflow of water into the cooling zone 9 caused by the reduction with the sintered component material (iron oxide) in the sintering chamber 11 is suppressed. Further, the curtain box 1 is installed in the traveling direction of the cooling zone 9 to form a hardening atmosphere zone 9a having resistance to the gas flow so that it is difficult for the atmospheric gas to flow in and out of the front and back. An ammonia gas supply port is provided outside to supply a small amount of ammonia gas. Sintered part 14 in hardening atmosphere zone 9a
Causes surface hardening, that is, nitriding at the outermost surface of the sintered component material. The nitriding action in this case is that the atomic [N] decomposed by contacting ammonia (NH 3 ) with iron (Fe) reacts with Fe to cause ε phase (Fe 3 N), γ phase (Fe 4 N), etc. Forming a nitride layer.

【0015】[0015]

【式1】 一般に鋼等の窒化あるいはガス軟窒化の最適条件は50
0〜580℃の温度で、1時間以上の処理時間が必要と
されているが、この温度では、窒化スピードも速く、焼
結部品14の空孔に〔N〕原子の侵入する可能性もあ
る。その為、該硬化ゾーン9aの雰囲気温度を550〜
300℃として空孔へ〔N〕原子が急激に侵入するのを
抑える。
[Formula 1] Generally, the optimum condition for nitriding steel or gas nitrocarburizing is 50
A processing time of 1 hour or more is required at a temperature of 0 to 580 ° C., but at this temperature, the nitriding speed is fast and [N] atoms may enter the pores of the sintered part 14. . Therefore, the ambient temperature of the curing zone 9a is set to 550 to
The temperature is set to 300 ° C. to suppress the rapid penetration of [N] atoms into the holes.

【0016】硬化ゾーン9aの雰囲気温度は550〜3
00℃と低くても、焼結部品14は加熱焼結(1,10
0℃)から徐冷状態で、未だ500℃以上の温度がある
為アンモニアガスと接触して500℃で窒化を開始し、
硬化ゾーン9a出口で2〜4μm程度の薄膜窒化層が形
成される。
The ambient temperature of the curing zone 9a is 550 to 3
Even if the temperature is as low as 00 ° C, the sintered part 14 is heated and sintered (1,10
(0 ° C) is gradually cooled, and since the temperature is still 500 ° C or higher, ammonia gas is contacted to start nitriding at 500 ° C.
A thin film nitride layer of about 2 to 4 μm is formed at the exit of the curing zone 9a.

【0017】上記のように雰囲気温度を下げて、極力ア
ンモニアガスの分解を抑えてアンモニアガスの効率良い
消費を行う為にカーテンボックス1は水冷式とし、カー
テンボックス1の先端に耐熱カーテン3あるいは金属の
仕切板を設けて、該カーテンボックス先端に窒素ガス噴
射ノズル2その上部に窒素ガス供給口を設ける。窒素ガ
ス供給管6を通じて、窒素ガスを該カーテン1の付近に
噴射して、アンモニアガスを含む硬化ゾーン9aからの
ガスの流出、並びに冷却ゾーン後部からのガスの流入を
抑える。
As described above, the curtain box 1 is water-cooled in order to lower the atmosphere temperature and suppress the decomposition of the ammonia gas as much as possible to efficiently consume the ammonia gas. The curtain box 1 has a heat-resistant curtain 3 or metal at the tip thereof. The partition plate is provided, and the nitrogen gas injection nozzle 2 is provided at the end of the curtain box, and the nitrogen gas supply port is provided above the nitrogen gas injection nozzle 2. Nitrogen gas is injected near the curtain 1 through the nitrogen gas supply pipe 6 to suppress the outflow of gas from the curing zone 9a containing ammonia gas and the inflow of gas from the rear part of the cooling zone.

【0018】尚、還元ガスがAX等のよう水素成分が多
い場合、硬化ゾーン9aに水素ガスが、多量に流入して
窒化作用を阻害する。また硬化ゾーン内9aで、アンモ
ニアの分解率が高い場合、雰囲気に水素成分が多くなり
同様の現象を起こすことがあり、窒化作用促進の目的で
炭酸ガス(CO2 )の2〜10%をアンモニアガスと混
合して硬化ゾーンに供給することも出来る。
When the reducing gas has a large hydrogen component such as AX, a large amount of the hydrogen gas flows into the curing zone 9a to hinder the nitriding action. Further, when the decomposition rate of ammonia is high in the curing zone 9a, a large amount of hydrogen component may occur in the atmosphere, and the same phenomenon may occur, and 2 to 10% of carbon dioxide gas (CO 2 ) is used for the purpose of promoting the nitriding action. It can also be mixed with gas and fed to the curing zone.

【0019】[0019]

【式2】 [Formula 2]

【0020】[0020]

【実施例】次に図1に基づきプレス成形焼結部品材の連
続焼結・硬化の実施について説明する。本炉において焼
結室には窒素−水素混合ガス、硬化ゾーンにはアンモニ
アガスとカーテンボックスの窒素ガスノズルより窒素ガ
スを供給し、炭酸ガス(CO2 )は使用していない。処
理品は鉄系プレス成形焼結品材(Fe−Cu−C)で、
脱ワックス処理後の処理条件として焼結室11へのガス
は水素−窒素混合ガス10m3 /H(H2 6%、N2
4%)、温度1,140℃、硬化ゾーン9aへのガスは
窒素(水冷カーテンボックス1)6m3 /H、アンモニ
アガス0.2〜0.6m3 /H、(H2 :4%、NH
3 :2〜5%、残:N2 )で雰囲気温度は300〜50
0℃を相定して処理実施。
EXAMPLE Next, the continuous sintering and hardening of the press-formed sintered part material will be described with reference to FIG. In this furnace, a nitrogen-hydrogen mixed gas was supplied to the sintering chamber, ammonia gas was supplied to the curing zone, and nitrogen gas was supplied from a nitrogen gas nozzle of the curtain box, and carbon dioxide gas (CO 2 ) was not used. The processed product is an iron-based press-molded sintered product material (Fe-Cu-C).
As a processing condition after the dewaxing processing, the gas to the sintering chamber 11 was a hydrogen-nitrogen mixed gas of 10 m 3 / H (H 2 6%, N 2 9
4%), temperature 1,140 ° C., gas to the curing zone 9a is nitrogen (water-cooled curtain box 1) 6 m 3 / H, ammonia gas 0.2 to 0.6 m 3 / H, (H 2 : 4%, NH
3 : 2 to 5%, balance: N 2 ) and ambient temperature is 300 to 50
The treatment is carried out at a constant temperature of 0 ° C.

【0021】尚、炉後部はカーテンボックス1にて窒素
ガス1m3 /Hで外気侵入を防止、炉内排ガスも燃焼せ
ず、自然排気となっている。
In the rear part of the furnace, the curtain box 1 prevents external air from entering with 1 m 3 / H of nitrogen gas, and the exhaust gas in the furnace is not burned and is naturally exhausted.

【0022】この実施結果はまず以下の表1The results of this implementation are first shown in Table 1 below.

【表1】 にあるように硬化処理をしたものが、約20ポイント
(20HRB)硬度が高くなり、窒化層が2〜4μm形
成されている。
[Table 1] In the case where the hardening treatment is performed as described in (1), the hardness is increased by about 20 points (20HRB), and the nitride layer is formed in 2 to 4 μm.

【0023】次に、図2においてISO 4507『マ
イクロビッカース硬さ試験方法による有効硬化層深さの
測定及び検査』に基づいて測定した断面硬度分布(硬さ
推移曲線)からも示されているように硬化処理品は最表
面のみ硬度が高く内部は焼結処理のみで硬化処理をして
いないものとほぼ同レベルの硬度であり、靱性を保持し
ていることが確認される。
Next, FIG. 2 also shows the sectional hardness distribution (hardness transition curve) measured based on ISO 4507 “Measurement and inspection of effective hardened layer depth by micro Vickers hardness test method”. Moreover, it is confirmed that the hardened product has high hardness only on the outermost surface and has almost the same hardness as the unhardened product only by the sintering process, and retains the toughness.

【0024】図3は硬化ゾーンにおける雰囲気と焼結部
の硬化過程における温度変化を示したものである。雰囲
気温度約450〜200℃に対して焼結部品(表面)温
度640〜380℃、雰囲気−焼結品の温度差180〜
200℃で変動している。
FIG. 3 shows changes in the atmosphere in the curing zone and temperature changes in the curing process of the sintered portion. Sintered part (surface) temperature of 640 to 380 ° C. for atmospheric temperature of about 450 to 200 ° C., atmosphere-sintered product temperature difference of 180 to
It fluctuates at 200 ° C.

【0025】硬化ゾーンでの保持時間は約18〜36分
で、アンモニアガスの供給も全体供給ガス量の2〜5%
であったが、硬度その他大きな差は出ていない。今回は
硬化ゾーンの前方のカーテンには窒素ガス噴射はしてい
なかったが、窒素ガスを噴射して硬化ゾーン9a内の雰
囲気を極力一定に保つようにすれば、硬化ゾーン9a内
アンモニアガスも一定となり、均一な表面硬化がはかれ
るはずである。
The holding time in the curing zone is about 18 to 36 minutes, and the supply of ammonia gas is 2 to 5% of the total supply gas amount.
However, there was no significant difference in hardness or the like. Nitrogen gas was not injected to the curtain in front of the curing zone this time, but if nitrogen gas is injected to keep the atmosphere in the curing zone 9a as constant as possible, the ammonia gas in the curing zone 9a is also constant. Therefore, uniform surface hardening should be achieved.

【0026】[0026]

【発明の効果】図2の結果から硬化処理をしない焼結部
品に対し、硬化処理品は最表面だけ硬度が高くなって耐
摩耗性が増し、一方内部は硬化処理前とほぼ同レベルの
硬度で靱性を保持出来、最表面の低温での硬化だけであ
るので寸法変化も生じない。また、焼結時発生しやすい
表面の微脱炭による表面硬度の低下も、この硬化処理で
充分カバー出来る。今後、焼結部品材として低炭素材料
を使用することによるコスト節減も可能である。
From the results shown in FIG. 2, the hardness of the hardened product is higher than that of the non-hardened sintered part only at the outermost surface, and the wear resistance is increased, while the hardness of the inside is almost the same level as that before the hardening process. Since the toughness can be maintained and only the outermost surface is hardened at a low temperature, no dimensional change occurs. Further, the hardening treatment can sufficiently cover the decrease in the surface hardness due to the slight decarburization of the surface which is likely to occur during sintering. In the future, it is possible to reduce costs by using a low carbon material as a sintered component material.

【0027】また、スチーム処理装置、熱処理装置等の
特別設備の必要もなく、一般焼結と同一作業で連続的に
処理が可能であり、焼結硬化設備も焼結後の冷却ゾーン
内に硬化ゾーンを組み込むだけである。また従来の連続
炉においても簡単に改造が出来る。
Further, there is no need for special equipment such as steam treatment equipment and heat treatment equipment, continuous treatment can be carried out in the same operation as general sintering, and sinter hardening equipment hardens in the cooling zone after sintering. It only incorporates zones. Moreover, the conventional continuous furnace can be easily modified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する好ましい態様の連続焼
結炉の概略図。
FIG. 1 is a schematic view of a preferred embodiment of a continuous sintering furnace for carrying out the method of the present invention.

【図2】焼結部品の断面硬度分布を示すグラフ。FIG. 2 is a graph showing a cross-sectional hardness distribution of a sintered part.

【図3】硬化ゾーンの温度変化を示すグラフである。FIG. 3 is a graph showing a temperature change in a curing zone.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今里 博正 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromasa Imazata 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄系の焼結すべき部品材を連続焼結炉の
加熱焼結室において、(i)水素、炭化水素等の還元ガ
スと窒素、アルゴン等の不活性ガス、(ii)プロパ
ン、ブタン等の変性ガス(RX)又は(iii)アンモ
ニアの分解ガス(AX)等の雰囲気下で1100℃以上
で加熱焼結後、別の雰囲気ゾーンにおいてアンモニアガ
スを加えてその雰囲気中のアンモニアガス濃度を0.5
〜10%に調整し、200〜650℃の雰囲気温度で1
0〜60分間その焼結部品を表面硬化させることを特徴
とする表面硬化した鉄系焼結部品の製造方法。
1. An iron-based component material to be sintered, in a heating and sintering chamber of a continuous sintering furnace, comprising (i) a reducing gas such as hydrogen and hydrocarbon and an inert gas such as nitrogen and argon; (ii) After heating and sintering at 1100 ° C. or higher in an atmosphere such as a modified gas (RX) such as propane or butane or (iii) a decomposition gas (AX) of ammonia, ammonia gas is added in another atmosphere zone to add ammonia gas in the atmosphere. Gas concentration 0.5
Adjusted to -10%, and 1 at ambient temperature of 200-650 ° C.
A method for producing a surface-hardened iron-based sintered component, which comprises surface-hardening the sintered component for 0 to 60 minutes.
【請求項2】 表面硬化工程において導入されるアンモ
ニアガスに炭酸ガス(CO2 )2〜10%を混合されて
いる請求項1記載の方法。
2. The method according to claim 1, wherein the ammonia gas introduced in the surface hardening step is mixed with 2 to 10% of carbon dioxide gas (CO 2 ).
JP23166994A 1994-09-27 1994-09-27 Surface hardening method for sintered parts Expired - Fee Related JP3429870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23166994A JP3429870B2 (en) 1994-09-27 1994-09-27 Surface hardening method for sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23166994A JP3429870B2 (en) 1994-09-27 1994-09-27 Surface hardening method for sintered parts

Publications (2)

Publication Number Publication Date
JPH0892723A true JPH0892723A (en) 1996-04-09
JP3429870B2 JP3429870B2 (en) 2003-07-28

Family

ID=16927130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23166994A Expired - Fee Related JP3429870B2 (en) 1994-09-27 1994-09-27 Surface hardening method for sintered parts

Country Status (1)

Country Link
JP (1) JP3429870B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026627A (en) * 2009-07-21 2011-02-10 Oriental Engineering Co Ltd Apparatus and method for surface hardening treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026627A (en) * 2009-07-21 2011-02-10 Oriental Engineering Co Ltd Apparatus and method for surface hardening treatment

Also Published As

Publication number Publication date
JP3429870B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
JP4861703B2 (en) Method for activating metal member surface
Hosmani et al. An introduction to surface alloying of metals
JP5572251B1 (en) Surface hardening treatment method and surface hardening treatment apparatus for steel members
EP1712658B1 (en) Method for surface treatment of metal material
CN100494498C (en) Method for surface treatment of metal material
US20120018052A1 (en) Novel Stainless Steel Carburization Process
JP2007238969A (en) Nitriding method
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
US4776901A (en) Nitrocarburizing and nitriding process for hardening ferrous surfaces
JP2021042398A (en) Nitrided steel member, and method and apparatus for manufacturing the same
JP3429870B2 (en) Surface hardening method for sintered parts
JP6587886B2 (en) Manufacturing method of nitrided steel member
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
CN103774085B (en) A kind of high-nitrogen austenitic layer in the preparation of low-carbon alloy steel surface and preparation method
JP3193320B2 (en) Heat treatment method for machine parts
US5441579A (en) Method of recycling scrap metal
EP3168314A1 (en) Method for heat treating metallic work pieces
JPS6372821A (en) Treatment of metal
JP2005002457A (en) Compound surface reforming method and compound surface reformed article
Balamurugan Evaluation of heat treatment characteristics for case hardening steels in automobiles
Grosch et al. Heat treatment with gaseous atmospheres
JP5837282B2 (en) Surface modification method
JPH10245668A (en) Method for nitriding ferrous material and ferrous material product obtained thereby
Ciofu et al. Changes of Structure and Physical-Mechanical Properties in Alloy Steels Thermochemically Treated by Plasma Nitriding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090516

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090516

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees