JPH088330A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH088330A
JPH088330A JP17625594A JP17625594A JPH088330A JP H088330 A JPH088330 A JP H088330A JP 17625594 A JP17625594 A JP 17625594A JP 17625594 A JP17625594 A JP 17625594A JP H088330 A JPH088330 A JP H088330A
Authority
JP
Japan
Prior art keywords
ceramic
intermediate layer
electrostatic chuck
metal
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17625594A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tatsumi
良昭 辰己
Seiichiro Miyata
征一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYATA GIKEN KK
SOUZOU KAGAKU KK
SOZO KAGAKU KK
Original Assignee
MIYATA GIKEN KK
SOUZOU KAGAKU KK
SOZO KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYATA GIKEN KK, SOUZOU KAGAKU KK, SOZO KAGAKU KK filed Critical MIYATA GIKEN KK
Priority to JP17625594A priority Critical patent/JPH088330A/en
Publication of JPH088330A publication Critical patent/JPH088330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To obtain an electrostatic chuck excellent in thermal conductivity and exfoliation resistance at the joint of dielectric ceramic and basic metal. CONSTITUTION:A metallic intermediate layer is inserted between a basic metal and a dielectric ceramic plate and then they are metallurgically jointed integrally using a brazing filler metal to produce an electrostatic chuck. The intermediate layer is composed of a material having coefficient of linear expansion in the range of 0.4-1.7 times that of the dielectric ceramic wherein the ceramic is metallized with an alloy containing one or more than one kind of element selected from (Sn, In) and an active metal as essential components. A plurality of through hole are made through the intermediate layer and the holes are filled with a soft brazing filler metal which is fused integrally with the metallizing alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基材金属と誘電体セラ
ミックが冶金的に接合一体化された構造の静電チャック
に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck having a structure in which a base metal and a dielectric ceramic are metallurgically bonded and integrated.

【0002】[0002]

【従来の技術】静電チャックは半導体シリコンウエハー
の吸着固定に多く利用されている。構造的には熱伝導に
優れた金属基材(代表的にはアルミニウム)の上に誘電
体セラミックの円盤が貼着され、特別な場合を除き、基
盤材料の裏面は水冷されている。必要とされる特性は、
温度に影響されない吸着性と共に吸着力の応答性、消去
性つまり、電圧の印加に対して速やかに吸着力が発生
し、電圧を切った時速やかに消えることが必要とされ
る。これらの誘電特性は温度に非常に敏感であるので、
誘電体の部分の温度変化は好ましくない。常に一定温度
に冷却されていることが必要である。現状の静電チャッ
クでは、基材金属と誘電体セラミックは接着剤で貼着さ
れているために、接着部で熱伝達が阻害され、十分な冷
却効果は得られていない。また、使用中に接着部が剥離
する欠点もある。
2. Description of the Related Art Electrostatic chucks are widely used for attracting and fixing semiconductor silicon wafers. A dielectric ceramic disk is adhered on a metal substrate (typically aluminum) which is structurally excellent in heat conduction, and the back surface of the base material is water-cooled unless otherwise specified. The required properties are
In addition to the adsorbability that is not affected by temperature, it is necessary that the responsivity and erasability of the adsorbing force, that is, the adsorbing force is promptly generated when a voltage is applied and that the adsorbing force disappears promptly when the voltage is cut off. These dielectric properties are very sensitive to temperature, so
The temperature change of the dielectric part is not preferable. It is necessary to be constantly cooled to a constant temperature. In the current electrostatic chuck, since the base metal and the dielectric ceramic are adhered with an adhesive, the heat transfer is hindered at the adhesion part, and a sufficient cooling effect is not obtained. In addition, there is a drawback that the adhesive portion peels off during use.

【0003】[0003]

【発明が解決する課題】本発明は、かかる状況に鑑みて
なされたもので、その目的とするところは、熱伝達性と
耐久性に優れた誘電体セラミックと基材金属の新しい接
合構造を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a new joining structure of a dielectric ceramic and a base metal having excellent heat transfer properties and durability. It is something to do.

【0004】[0004]

【課題を解決するための手段】本発明者は上記問題に関
して鋭意研究を行い次の知見を得た。すなわち、上記熱
伝達の問題を解決する為には誘電体セラミックと基材金
属を冶金的に接合することで解決できるが、通常使用さ
れている静電チャックは150mmφ,200mmφの
様にかなり大きなものであり、誘電体セラミックと基材
金属を冶金的に接合した際、熱応力によって割れること
が判明した。例え軟ろうを用いて接合しても熱応力によ
って割れることがあることが判明した。そこで本発明者
はこの問題を解決するためには、膨脹係数が大きく違っ
ても熱応力で割れず、しかも熱伝導を阻害しないような
新しい接合構造を作り出す必要があることに思い至っ
た。本発明はこの様な経緯から生まれたもので、次の構
成からなる。 1. 金属基材とセラミック誘電体が軟ろうを用いて冶
金的に接合一体化された構造の静電チャックであって、
該セラミックは(Sn,In)の中から選ばれた一種あ
るいは二種の元素と活性金属を必須成分とする合金でメ
タライズされてなると共に該合金が基材金属との接合に
使用する軟ろうと融合一体化されてなることを特徴とす
る静電チャック。 2. 金属基材とセラミック誘電体の板の間に金属の中
間層を挿入し、軟ろうを用いて冶金的に接合一体化した
構造の静電チャックであって、該中間層の材質は、線膨
脹係数が該誘電体セラミックの線膨脹係数の0.4〜
1.7倍の範囲にある材料であって、かつ該セラミック
の接合面は(Sn,In)の中から選ばれた一種あるい
は二種の元素と活性金属を必須成分とする合金で接合さ
れてなることを特徴とする静電チャック。 3. 上記中間層の材料がSn,Inと合金を形成しな
い材料からなることを特徴とする上記2項に記載の静電
チャック。 4. 上記中間層がMoである上記3項に記載の静電チ
ャック。 5. 金属基材とセラミック誘電体の板の間に金属の中
間層を挿入し、軟ろうを用いて冶金的に接合一体化した
構造の静電チャックであって、該中間層の材質は、線膨
脹係数が該誘電体セラミックの線膨張係数の0.4〜
1.7倍の範囲にある材料であって、かつ該セラミック
は(Sn,In)の中から選ばれた一種あるいは二種の
元素と活性金属を必須成分とする合金でメタライズされ
てなると共に該中間層に複数の貫通孔が穿孔され、該孔
に軟ろうが充填され、該メタライズ合金と融合一体化さ
れてなることを特徴とする静電チャック。
Means for Solving the Problems The present inventor has conducted extensive studies on the above problems and obtained the following findings. That is, in order to solve the above heat transfer problem, it can be solved by metallurgically joining the dielectric ceramic and the base metal, but the electrostatic chuck that is usually used has a considerably large size such as 150 mmφ and 200 mmφ. Therefore, it was found that when the dielectric ceramic and the base metal were metallurgically bonded, they were cracked by thermal stress. It has been found that even if joined using soft solder, it may crack due to thermal stress. Therefore, in order to solve this problem, the present inventor has realized that it is necessary to create a new joint structure that does not crack due to thermal stress even if the expansion coefficients are largely different, and that does not impede heat conduction. The present invention was born from such a background and has the following configuration. 1. An electrostatic chuck having a structure in which a metal substrate and a ceramic dielectric are metallurgically bonded and integrated using a soft solder,
The ceramic is metallized with an alloy having one or two elements selected from (Sn, In) and an active metal as essential components, and the alloy is fused with a soft solder used for joining with a base metal. An electrostatic chuck characterized by being integrated. 2. An electrostatic chuck having a structure in which a metal intermediate layer is inserted between a metal substrate and a ceramic dielectric plate, and is metallurgically bonded and integrated by using a soft solder, and the material of the intermediate layer has a linear expansion coefficient of The linear expansion coefficient of the dielectric ceramic is 0.4 to
The material is in the range of 1.7 times, and the bonding surface of the ceramic is bonded with an alloy containing one or two elements selected from (Sn, In) and an active metal as essential components. An electrostatic chuck characterized by: 3. 3. The electrostatic chuck according to the above item 2, wherein the material of the intermediate layer is a material that does not form an alloy with Sn and In. 4. The electrostatic chuck according to the above item 3, wherein the intermediate layer is Mo. 5. An electrostatic chuck having a structure in which a metal intermediate layer is inserted between a metal substrate and a ceramic dielectric plate, and is metallurgically bonded and integrated by using a soft solder, and the material of the intermediate layer has a linear expansion coefficient of The coefficient of linear expansion of the dielectric ceramic is 0.4 to
The material is in the range of 1.7 times, and the ceramic is metallized with an alloy having one or two elements selected from (Sn, In) and an active metal as essential components. An electrostatic chuck characterized in that a plurality of through holes are formed in the intermediate layer, the holes are filled with soft solder, and the holes are integrated with the metallized alloy.

【0005】[0005]

【作用】セラミックと金属は本来熱膨張係数はかなり違
うために接合すると当然熱応力が発生する。熱応力を緩
和する為にはろう材に軟ろう(半田)を使用して応力を
緩和することが非常に有効な手段であるが、通常セラミ
ックの接合では、先ずセラミックの接合面をCu,A
g,Niと活性金属の合金、Mo−Mn法、銀ペースト
焼付け、等でメタライズし、メタライズ面にNi、Cu
等をメッキした後、ろう付けしている。このさい、N
i、Cu等のメッキ金属、あるいはメタライズ金属が半
田中に溶け込み半田層の融点が上昇する。また、Ni、
Cu等メッキ金属、あるいはメタライズ金属の溶け込み
によって半田層が硬化する。接合部はこの融点上昇、半
田層の硬化の影響で熱応力が大きくなる。静電チャック
のように大きな物の接合では、この熱応力の増大は非常
に深刻でセラミックの割れを引き起こす。本発明で、セ
ラミックの接合界面部の融着合金に(Sn,In)の中
から選ばれた一種あるいは二種の元素と活性金属を必須
成分とする合金を使用するのは、Ni、Cu等のメッキ
金属、あるいは高融点のメタライズ金属の半田中への溶
け込みをなくす為である。また、接合界面部に直接融着
する層を軟らかい合金にすることによってこの部分の熱
応力が大きく軽減され、セラミックが破壊されることは
ない。合金の成分組成は、Sn,InあるいはSn−I
nをベースとし、これにTiZr,Nb,Y等の活性金
属を1〜10%の範囲で含み、これらの総量が90%以
上からなり、融点を大きく変えない範囲で、 Ag,A
u,Cu,Ni,AL,Znやその他の元素を概ね10
%以下の範囲で添加できる。熱応力の緩和手段として接
合部に中間的な熱膨張係数を有する剛性の高い材料を挿
入するのは有効であるが、本発明の目的の為にはこの材
料の線膨脹係数はセラミック誘電体の線膨脹係数の0.
4〜1.7倍の範囲にある材料が好ましい。誘電体材料
がアルミナ、炭化ケイ素、窒化アルミの場合で、ニッケ
ル、鉄、からモリブデン、タングステンの範囲の材料で
ある。これらの材料の中で特に好ましいのは上記したセ
ラミックに融着する部分の合金の基本成分であるSn,
Inと合金を形成しない材料が好ましい。この時融着合
金から中間層の金属へ活性金属成分のみが拡散し、中間
層金属から融着金属層への成分の溶け込みは起こらな
い。この結果、融着合金層の融点上昇および溶け込みに
よる硬化が防止できる。接合部の剪断テストでは、セラ
ミックでの破壊は起こらない。融着金属層の部分が塑性
変形して破断される。中間層の形態として、表面に複数
の貫通孔を穿孔すると熱応力が小さくなる効果がある。
特に中心部を穿孔すると最も効果があり、この貫通孔に
軟ろうを充填して金属基材からセラミックの接合部に直
接連通する部分を形成すると熱応力がさらに軽減される
効果がある。中間層を挟む場合、接合面は中間層の裏表
二面となり、溶着不良が発生する確率が高くなる上に、
超音波やX線による非破壊検査もセラミックの接合面し
か検査できない。金属基材と中間層の接合部の検査はで
きない。適当な間隔で中間層に穿孔孔を設け、この孔の
部分も軟ろうで充填されるように接合すると溶着不良を
完全になくすことができる。
[Function] Since ceramics and metals have essentially different coefficients of thermal expansion, thermal stress naturally occurs when they are joined. To alleviate the thermal stress, it is very effective to use soft solder (solder) as the brazing material to alleviate the stress. In ordinary ceramic joining, first, the joining surface of the ceramic is Cu, A
g, Ni and active metal alloy, metallized by Mo-Mn method, silver paste baking, etc., and Ni, Cu on the metallized surface
Etc. are plated and then brazed. At this time, N
The plating metal such as i or Cu, or the metallized metal is dissolved in the solder to raise the melting point of the solder layer. Also, Ni,
The solder layer is hardened by the dissolution of the plated metal such as Cu or the metallized metal. Due to the increase in the melting point and the hardening of the solder layer, the joint portion has a large thermal stress. In the case of joining a large object such as an electrostatic chuck, this increase in thermal stress is very serious and causes ceramic cracking. In the present invention, Ni, Cu, etc. are used for the fusion alloy at the bonding interface of the ceramics, which is an alloy containing one or two elements selected from (Sn, In) and an active metal as essential components. This is to prevent the plated metal or the high-melting metallized metal from melting into the solder. Further, by using a soft alloy for the layer directly fused to the joint interface portion, the thermal stress in this portion is greatly reduced, and the ceramic is not destroyed. The alloy composition is Sn, In or Sn-I.
n, the active metal such as TiZr, Nb, Y, etc. is contained in the range of 1 to 10%, and the total amount of these is 90% or more.
u, Cu, Ni, AL, Zn and other elements are approximately 10
It can be added in the range of not more than%. Although it is effective to insert a highly rigid material having an intermediate coefficient of thermal expansion into the joint as a means for mitigating thermal stress, for the purpose of the present invention, the linear expansion coefficient of this material is the same as that of the ceramic dielectric. The linear expansion coefficient of 0.
Materials in the range of 4-1.7 times are preferred. When the dielectric material is alumina, silicon carbide or aluminum nitride, the material ranges from nickel, iron to molybdenum and tungsten. Particularly preferable among these materials are Sn, which is the basic component of the alloy of the portion which is fused to the above-mentioned ceramic,
A material that does not form an alloy with In is preferable. At this time, only the active metal component diffuses from the fusion alloy to the metal of the intermediate layer, and the component does not melt into the fusion metal layer from the metal of the intermediate layer. As a result, it is possible to prevent the melting point of the fusion-bonded alloy layer from rising and hardening due to melting. The joint shear test does not result in fracture in the ceramic. A portion of the fused metal layer is plastically deformed and fractured. As a form of the intermediate layer, when a plurality of through holes are formed on the surface, the thermal stress is reduced.
In particular, it is most effective to form a hole in the central portion, and filling the through hole with soft solder to form a portion that directly communicates with the joint portion of the ceramic from the metal base material has the effect of further reducing thermal stress. When sandwiching the intermediate layer, the joining surfaces are two sides of the intermediate layer, which increases the probability of defective welding, and
Non-destructive inspection using ultrasonic waves or X-rays can only inspect the ceramic joint surface. It is not possible to inspect the joint between the metal substrate and the intermediate layer. By providing perforated holes in the intermediate layer at appropriate intervals and joining so that the holes are also filled with soft solder, welding defects can be completely eliminated.

【0006】[0006]

【実施例】【Example】

実施例1 誘電体:アルミナ系の誘電体セラミック(φ150×2
t)を使用。電極は双極方式で、セラミック焼成前に、
グリーンシートにタングステンペーストでプラス、マイ
ナス二つのパターンを印刷して形成し、この印刷面にさ
らに同じグリーンシートを重ねて同時焼成したものを使
った。 基材 :水冷用の溝を内蔵したアルミニウム基材を使用
した。 <セラミックのメタライズ>Sn−5%Ag−5%Ti
合金のペーストを接合面に塗布し、これを10−5To
rrの真空中、870℃で10分加熱して融着させた。
約100ミクロンの銀色の軟らかいメタライズ膜が形成
された。 <基材との接合>基材のアルミニウムの接合面をSn−
Zn半田で濡らして200ミクロンメッキした後、セラ
ミックと重ね合わせ、これを270℃に加熱して接合し
た。 <結果>セラミック部分に割れは認められず、接合面の
95%が接合されていた。 使用状況 従来の接着剤を使用した場合に比較してセラミック接合
面の表面温度は約30℃低下することが確認できた。 実施例2 誘電体:実施例と同じアルミナ系の誘電体セラミック
(φ150×2t)を使用。 基材 :水冷用の溝を内蔵したアルミニウム基材を使用
した。 中間層:セラミックと同じ径(φ150)で、厚さ0.
5mmのMoの板。片面(基材との接合面)には予めN
iをメッキし、セラミック側はそのままのものを使用。 <セラミックと中間層の接合>セラミックの接合面にI
n−3%Ag−5%Ti合金のペーストを接合面に塗布
し、これを10−5 Torrの真空中、850℃で1
0分加熱して融着させた。約50ミクロンの銀色の軟ら
かいメタライズ膜が形成された。 <基材の前処理>基材のアルミニウムの接合面をSn−
Zn半田で濡らして200ミクロンメッキ。後、セラミ
ックと重ね合わせ、これを200℃に加熱して接合し
た。 <結果>セラミック部分に割れは認められず、接合面の
98%接合されていた。 使用状況 接合面の温度は95℃で従来の接着剤を使用した場合に
比較してセラミック接合面の表面温度は約25℃低下す
ることが確認できた。 実施例3 誘電体:SiC系の誘電体セラミック(φ200×1.
3t)を使用。電極は単極方式で、焼成したセラミック
に、Sn−5%Ag−5%Ti合金のペーストを接合面
に塗布し、これを10−5 Torrの真空中、870
℃で10分加熱して融着させた。 基材 :水冷用の溝を内蔵したアルミニウム基材を使用
した。 中間層:セラミックと同じ径(φ200)で、厚さ0.
2mmのMoの板。両面に予めNiをメッキし、直径5
mmの貫通孔を穿孔(孔の中もNiメッキ)した板。貫
通孔の面積率10% <中間層の前処理>中間層の両面をIn−5%Ag合金
で濡らし、片肉50ミクロン肉盛した。 <接合>セラミック、中間層、基材を重ね合わせ200
℃に加熱して接合した。 <結果>セラミック部分に割れは認められず、接合面は
100%接合されていた。 使用状況 接合面の温度は90℃で従来の接着剤を使用した場合に
比較してセラミック接合面の表面温度は約30℃低下す
ることが確認できた。なお、中間層の効果を確認するた
めに、セラミックを従来の高融点金属(Ag−28%C
u−5%Ti合金)で20ミクロンメタライズした後、
Niを10ミクロンメッキし、この上をSn−5%Ag
半田で濡らして50ミクロン肉盛したものと上記処理と
同じ処理をした中間層、および基材金属を重ね合わせ、
同じく200℃で接合した。接合部は100%接合され
ており、セラミックに割れも見られ無かった。
Example 1 Dielectric: Alumina-based dielectric ceramic (φ150 × 2
Use t). The electrodes are bipolar, before firing the ceramic,
A green sheet was formed by printing positive and negative two patterns with a tungsten paste, and the same green sheet was further stacked on the printed surface and simultaneously fired. Base material: An aluminum base material having a groove for water cooling was used. <Ceramic metallization> Sn-5% Ag-5% Ti
Apply alloy paste on the joint surface and apply 10-5 To
In a vacuum of rr, heating was performed at 870 ° C. for 10 minutes to cause fusion.
A soft silver metallized film of about 100 microns was formed. <Joining with base material> Sn-
After wetting with Zn solder and plating to 200 μm, it was superposed on a ceramic and heated to 270 ° C. for bonding. <Results> No cracks were observed in the ceramic portion, and 95% of the joint surfaces were joined. It has been confirmed that the surface temperature of the ceramic joint surface is lowered by about 30 ° C. as compared with the case where the conventional adhesive is used. Example 2 Dielectric: The same alumina-based dielectric ceramic (φ150 × 2t) as in Example was used. Base material: An aluminum base material having a groove for water cooling was used. Middle layer: the same diameter as the ceramic (φ150), thickness 0.
5 mm Mo plate. N on one surface (bonding surface with the base material) beforehand
i is plated and the ceramic side is used as it is. <Joining of ceramic and intermediate layer>
A paste of n-3% Ag-5% Ti alloy is applied to the joint surface, and the paste is applied at 850 ° C. for 1 in a vacuum of 10 −5 Torr.
It was heated for 0 minutes to be fused. A soft silvery metallized film of about 50 microns was formed. <Pretreatment of base material> Sn-
Wet with Zn solder and 200 micron plating. Then, it was overlapped with a ceramic, and this was heated to 200 ° C. to be joined. <Results> No cracks were observed in the ceramic portion, and 98% of the joint surface was joined. It was confirmed that the temperature of the joint surface was 95 ° C., and the surface temperature of the ceramic joint surface was about 25 ° C. lower than that when the conventional adhesive was used. Example 3 Dielectric: SiC-based dielectric ceramic (φ200 × 1.
3t) is used. The electrode is a monopolar type, and a paste of Sn-5% Ag-5% Ti alloy is applied to the joint surface on the fired ceramic, and this is applied in a vacuum of 10-5 Torr for 870.
It was heated at 10 ° C. for 10 minutes to be fused. Base material: An aluminum base material having a groove for water cooling was used. Intermediate layer: the same diameter (φ200) as the ceramic, and a thickness of 0.
A 2 mm Mo plate. Ni is pre-plated on both sides and the diameter is 5
A plate in which mm through holes are drilled (the inside of the holes is also plated with Ni). Through-hole area ratio 10% <Pretreatment of intermediate layer> Both surfaces of the intermediate layer were wetted with an In-5% Ag alloy, and one-sided 50 μm thick buildup was performed. <Joining> Overlaying ceramic, intermediate layer and substrate 200
It heated and joined at ℃. <Results> No cracks were observed in the ceramic portion, and the joint surfaces were 100% joined. It was confirmed that the temperature of the joint surface was 90 ° C. and the surface temperature of the ceramic joint surface was about 30 ° C. lower than that when the conventional adhesive was used. In addition, in order to confirm the effect of the intermediate layer, a ceramic is used as a conventional refractory metal (Ag-28% C).
(U-5% Ti alloy) after 20 micron metallization,
Ni is plated to 10 micron, and Sn-5% Ag
Overlaying a 50-micron layer wetted with solder, an intermediate layer that has been subjected to the same treatment as above, and a base metal,
Also joined at 200 ° C. The joint was 100% joined, and no cracks were seen in the ceramic.

【0007】[0007]

【発明の効果】【The invention's effect】

1.接合部の熱伝達性に優れている。 2.セラミック接合部の熱応力が小さく、割れが発生し
ない。 3.接合部の溶着不良が防止できる。
1. Excellent heat transfer at the joint. 2. The thermal stress of the ceramic joint is small and cracks do not occur. 3. It is possible to prevent defective welding of the joint portion.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属基材とセラミック誘電体が軟ろうを
用いて冶金的に接合一体化された構造の静電チャックで
あって、該セラミックは(Sn,In)の中から選ばれ
た一種あるいは二種の元素と活性金属を必須成分とする
合金でメタライズされてなると共に該合金が基材金属と
の接合に使用する軟ろうと融合一体化されてなることを
特徴とする静電チャック。
1. An electrostatic chuck having a structure in which a metal base material and a ceramic dielectric are metallurgically bonded and integrated by using a soft solder, wherein the ceramic is one selected from (Sn, In). Alternatively, an electrostatic chuck characterized by being metallized with an alloy containing two kinds of elements and an active metal as essential components, and the alloy being fused and integrated with a soft solder used for joining with a base metal.
【請求項2】 金属基材とセラミック誘電体の板の間に
金属の中間層を挿入し、軟ろうを用いて冶金的に接合一
体化した構造の静電チャックであって、該中間層の材質
は、線膨脹係数が該誘電体セラミックの線膨脹係数の
0.4〜1.7倍の範囲にある材料であって、かつ該セ
ラミックの接合面は(Sn,In)の中から選ばれた一
種あるいは二種の元素と活性金属を必須成分とする合金
で接合されてなることを特徴とする静電チャック。
2. An electrostatic chuck having a structure in which a metal intermediate layer is inserted between a metal base material and a ceramic dielectric plate, and is metallurgically bonded and integrated by using a soft solder, wherein the material of the intermediate layer is , A material having a linear expansion coefficient in the range of 0.4 to 1.7 times the linear expansion coefficient of the dielectric ceramic, and the bonding surface of the ceramic is one selected from (Sn, In) Alternatively, an electrostatic chuck characterized by being bonded by an alloy containing two kinds of elements and an active metal as essential components.
【請求項3】 上記中間層の材料がSn,Inと合金を
形成しない材料からなることを特徴とする請求項1に記
載の静電チャック。
3. The electrostatic chuck according to claim 1, wherein the material of the intermediate layer is a material that does not form an alloy with Sn and In.
【請求項4】 上記中間層がMoである請求項3に記載
の静電チャック。
4. The electrostatic chuck according to claim 3, wherein the intermediate layer is Mo.
【請求項5】 金属基材とセラミック誘電体の板の間に
金属の中間層を挿入し、軟ろうを用いて冶金的に接合一
体化した構造の静電チャックであって、該中間層の材質
は、線膨脹係数が核誘電体セラミックの線膨脹係数の
0.4〜1.7倍の範囲にある材料であって、かつ該セ
ラミックは(Sn,In)の中から選ばれた一種あるい
は二種の元素と活性金属を必須成分とする合金でメタラ
イズされてなると共に該中間層に複数の貫通孔が穿孔さ
れ、該孔に軟ろうが充填され、該メタライズ合金と融合
一体化されてなることを特徴とする静電チャック。
5. An electrostatic chuck having a structure in which a metal intermediate layer is inserted between a metal base material and a ceramic dielectric plate and metallurgically bonded and integrated by using a soft solder, wherein the material of the intermediate layer is A material having a linear expansion coefficient in the range of 0.4 to 1.7 times the linear expansion coefficient of the nuclear dielectric ceramic, and the ceramic is one or two kinds selected from (Sn, In). And a plurality of through holes are bored in the intermediate layer, the holes are filled with soft solder, and are fused and integrated with the metallized alloy. Characteristic electrostatic chuck.
JP17625594A 1994-06-23 1994-06-23 Electrostatic chuck Pending JPH088330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17625594A JPH088330A (en) 1994-06-23 1994-06-23 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17625594A JPH088330A (en) 1994-06-23 1994-06-23 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH088330A true JPH088330A (en) 1996-01-12

Family

ID=16010373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17625594A Pending JPH088330A (en) 1994-06-23 1994-06-23 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH088330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411116B (en) * 1999-10-05 2003-09-25 Siemens Ag Oesterreich Cooling can for liquid cooling of electrical components
US7067200B2 (en) * 2002-07-23 2006-06-27 Ngk Insulators, Ltd. Joined bodies and a method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT411116B (en) * 1999-10-05 2003-09-25 Siemens Ag Oesterreich Cooling can for liquid cooling of electrical components
US7067200B2 (en) * 2002-07-23 2006-06-27 Ngk Insulators, Ltd. Joined bodies and a method of producing the same

Similar Documents

Publication Publication Date Title
US8254422B2 (en) Microheat exchanger for laser diode cooling
KR101867625B1 (en) Member for semiconductor manufacturing device
US6531226B1 (en) Brazeable metallizations for diamond components
US6830780B2 (en) Methods for preparing brazeable metallizations for diamond components
JPH03216909A (en) Reinforced directly coupled copper structure
US6590760B1 (en) Joint structure of ceramics and metal and intermediate insertion member used in this joint structure
JP2004303818A (en) Heat spreader module and method for manufacturing the same
JPH08255973A (en) Ceramic circuit board
JP3095490B2 (en) Ceramic-metal joint
JPH09283656A (en) Ceramic circuit board
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH08316299A (en) Electrostatic chuck
JPS62287649A (en) Semiconductor device
JPH088330A (en) Electrostatic chuck
JPH0870036A (en) Electrostatic chuck
JP2797011B2 (en) Joint of ceramics and metal and method for producing the same
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JPH08102570A (en) Ceramic circuit board
JP3302714B2 (en) Ceramic-metal joint
JPS62296959A (en) Envelope for rectifying element
JP2001048670A (en) Ceramics-metal joined body
JPH038346A (en) Brazing material
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP2508545B2 (en) Substrate for semiconductor device
JP3712532B2 (en) Assembly of semiconductor element and electrode