JPH0874162A - Laminated nonwoven structural material - Google Patents

Laminated nonwoven structural material

Info

Publication number
JPH0874162A
JPH0874162A JP6232245A JP23224594A JPH0874162A JP H0874162 A JPH0874162 A JP H0874162A JP 6232245 A JP6232245 A JP 6232245A JP 23224594 A JP23224594 A JP 23224594A JP H0874162 A JPH0874162 A JP H0874162A
Authority
JP
Japan
Prior art keywords
laminated
fibers
woven
woven fabric
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6232245A
Other languages
Japanese (ja)
Inventor
Shiyuuji Fukushima
周之 福島
So Yamaguchi
創 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP6232245A priority Critical patent/JPH0874162A/en
Publication of JPH0874162A publication Critical patent/JPH0874162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To obtain a soft laminated nonwoven structural material having a high tensile strength, high delamination resistance and water absorptivity together with hydrophobicity by laminating and unifying a polyester spunbonded nonwoven fabric with a natural fiber nonwoven fabric. CONSTITUTION: This laminated nonwoven structural material is obtained by laminating a spunbonded nonwoven fabric consisting of polyethylene terephthalate with a nonwoven fabric made by three dimensional mechanical interlacing of cotton fibers and then carrying out fusion treatment of the resultant laminate under a pressure by using an ultrasonic fusion device equipped with a pattern roll. This nonwoven structural material is unified as a whole by fixing the cotton fibers 2 at least located in the boundary surface of both the nonwoven fabric layers in a state thereof embedded in a fused part 1 of the polyester filaments where the ratio of A% of the area of dotted fused zone and density B dots/cm<2> of the dotted fused zone to the whole surface area of the structural material satisfy the relationships of 4<=A<=50 and 7<=B<=80, respectively, in the dotted fused zone 1 of polyester filaments with cotton fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ポリエステル系重合体
からなる長繊維不織布層と天然繊維不織布層とが積層さ
れてなる積層不織構造体であって,引張り強力と層間の
剥離強力が高く,柔軟性が優れ,可染性を有し,また吸
水性と疎水性を併せて具備し,さらに耐摩耗性が高く,
医療・衛生材用,衣料用あるいは生活関連材用の素材と
して好適な積層不織構造体に関するものである。
FIELD OF THE INVENTION The present invention relates to a laminated non-woven structure in which a long-fiber non-woven fabric layer made of a polyester polymer and a natural-fiber non-woven fabric layer are laminated, and has high tensile strength and peeling strength between layers. , Has excellent flexibility, has dyeability, has both water absorption and hydrophobicity, and has high abrasion resistance,
The present invention relates to a laminated non-woven structure suitable as a material for medical / sanitary materials, clothing, or life-related materials.

【0002】[0002]

【従来の技術】従来から,熱可塑性合成繊維不織布層と
天然繊維不織布層とが積層されてなる積層不織構造体が
知られている。例えば,特公昭54−24506号公報
には,熱可塑性合成繊維不織布からなる通気性熱溶着層
と天然繊維等からなる通気性非熱溶着層とが積層され,
非熱溶着層上に熱溶着性物質が点在的に配置され,かつ
熱溶着性物質と熱溶着層との溶融部が非熱溶着層の両面
から浸透して前記非熱溶着層を接着挟持した構造を有す
る積層不織構造体が提案されている。しかしながら,こ
の積層不織構造体は,天然繊維が積層されているため吸
水性が優れ,かつ熱溶着層が熱溶着処理により非熱溶着
層すなわち天然繊維層に浸透しているため引張り強力と
剥離強力等の機械的性能は優れるものの,柔軟性等の風
合いが低下するという問題を有している。しかも,この
積層不織構造体は,これを製造するに際して通気性熱溶
着層と通気性非熱溶着層とを積層する工程と,非熱溶着
層上に含浸用熱溶着性シート層を積層し,超音波融着処
理により熱溶着性物質と熱溶着層との溶融部を非熱溶着
層の両面から浸透させて前記非熱溶着層を接着挟持した
構造を発現させる工程と,前記含浸用熱溶着性シートを
その溶融部を残して剥離する工程とを必要とするなど製
造技術の観点からすれば煩雑で,経済性にも劣るもので
あった。
2. Description of the Related Art Conventionally, a laminated non-woven structure is known in which a thermoplastic synthetic fiber nonwoven fabric layer and a natural fiber nonwoven fabric layer are laminated. For example, in Japanese Examined Patent Publication No. 54-24506, a breathable heat-welding layer made of a thermoplastic synthetic fiber nonwoven fabric and a breathable non-heat-welding layer made of natural fibers are laminated.
The heat-welding substance is scatteredly arranged on the non-heat-welding layer, and the fusion zone of the heat-welding substance and the heat-welding layer penetrates from both sides of the non-heat-welding layer to bond and sandwich the non-heat-welding layer. Laminated nonwoven structures having this structure have been proposed. However, this laminated non-woven structure has excellent water absorbency due to the laminated natural fibers, and because the heat-welding layer penetrates into the non-heat-welding layer, that is, the natural fiber layer by the heat-welding treatment, it has good tensile strength and peeling. Although it has excellent mechanical properties such as strength, it has a problem that the texture such as flexibility deteriorates. In addition, this laminated non-woven structure has a step of laminating a breathable heat-welding layer and a breathable non-heat-welding layer, and a heat-sealing sheet layer for impregnation on the non-heat-welding layer. , A step of infiltrating the fused portion of the heat-welding substance and the heat-welding layer from both sides of the non-heat-welding layer by ultrasonic welding to develop a structure in which the non-heat-welding layer is adhesively sandwiched, From the viewpoint of manufacturing technology, such as requiring a step of peeling the weldable sheet leaving the melted portion, it is complicated and economically inferior.

【0003】[0003]

【発明が解決しようとする課題】本発明は,ポリエステ
ル系重合体からなる長繊維不織布層と天然繊維不織布層
とが積層されてなる積層不織構造体であって,引張り強
力と層間の剥離強力が高く,柔軟性が優れ,可染性を有
し,吸水性と疎水性を併せて具備し,さらに耐摩耗性が
高く,医療・衛生材用,衣料用あるいは生活関連材用の
素材として好適な積層不織構造体を提供しようとするも
のである。
DISCLOSURE OF THE INVENTION The present invention is a laminated non-woven structure comprising a long fiber non-woven fabric layer made of a polyester polymer and a natural fiber non-woven fabric layer. Highly flexible, excellent in flexibility, dyeable, and has both water absorbency and hydrophobicity, and high abrasion resistance, making it suitable as a material for medical / hygiene materials, clothing, or life-related materials. Another object of the present invention is to provide a laminated non-woven structure.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記課題
を達成すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,以下の構成をその要旨とするものであ
る。 1)ポリエステル系重合体からなる長繊維で構成される
不織布層と天然繊維同士が機械的に交絡してなる不織布
層とが積層され,かつ前記長繊維と天然繊維とが融着さ
れてなる点状融着区域を有する積層不織構造体であっ
て,前記点状融着区域において前記両不織布層の少なく
とも境界面に位置する天然繊維が,不織構造体全表面積
に対する全点状融着区域の面積の比A(%)及び点状融
着区域密度B(点/cm2 )がそれぞれ下記式(1)及
び(2)を満足する前記長繊維の融解部に埋設された状
態で固定されることにより全体として一体化されてなる
ことを特徴とする積層不織構造体。 4≦A(%)≦50 ・・・・・・・・・・・・・・・・・・・・・・(1) 7≦B(点/cm2 )≦80 ・・・・・・・・・・・・・・・・・・(2)
The inventors of the present invention have arrived at the present invention as a result of extensive studies to achieve the above object. That is, the present invention has the following configurations as its gist. 1) A point in which a non-woven fabric layer composed of long fibers made of a polyester polymer and a non-woven fabric layer in which natural fibers are mechanically entangled with each other are laminated, and the long fibers and the natural fibers are fused. In the laminated non-woven structure having a heat-bonded zone, the natural fibers located at least at the boundary surface between the two non-woven fabric layers in the point-welded area are all point-welded areas for the entire surface area of the non-woven structure. The area ratio A (%) and the point fusion area density B (points / cm 2 ) of the above are fixed in a state of being embedded in the fusion part of the long fiber satisfying the following expressions (1) and (2), respectively. A laminated non-woven structure characterized by being integrated as a whole by doing so. 4 ≦ A (%) ≦ 50 (1) 7 ≦ B (points / cm 2 ) ≦ 80・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)

【0005】次に,本発明を詳細に説明する。まず,本
発明における長繊維から構成される不織布層に関してで
あるが,この不織布層は,繊維形成性を有するポリエス
テル系重合体の長繊維からなるものである。このポリエ
ステル系重合体としては,テレフタル酸,イソフタル
酸,ナフタリン−2・6−ジカルボン酸等の芳香族ジカ
ルボン酸あるいはアジピン酸,セバチン酸等の脂肪族ジ
カルボン酸又はこれらのエステル類を酸成分とし,かつ
エチレングリコール,ジエチレングリコール,1・4−
ブタジオール,ネオペンチルグリコール,シクロヘキサ
ン−1・4−ジメタノール等のジオール化合物をエステ
ル成分とするホモポリエステルあるいは共重合体が挙げ
られる。これらのポリエステル系重合体には,パラオキ
シ安息香酸,5−ソジウムスルホイソフタル酸,ポリア
ルキレングリコール,ペンタエリスススリトール,ビス
フエノールA等が添加あるいは共重合されていてもよ
い。なお,本発明において,前記繊維形成性を有する熱
可塑性重合体には,必要に応じて,例えば艶消し剤,顔
料,防炎剤,消臭剤,光安定剤,紫外線吸収剤,熱安定
剤,酸化防止剤等の各種添加剤を本発明の効果を損なわ
ない範囲内で添加することができる。
Next, the present invention will be described in detail. First, regarding the non-woven fabric layer composed of long fibers in the present invention, the non-woven fabric layer is composed of long fibers of a polyester-based polymer having a fiber-forming property. As the polyester polymer, an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, or an aliphatic dicarboxylic acid such as adipic acid or sebacic acid or an ester thereof is used as an acid component, And ethylene glycol, diethylene glycol, 1.4
Examples thereof include homopolyesters or copolymers having an ester component of a diol compound such as butadiol, neopentyl glycol and cyclohexane-1-4-dimethanol. Paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythsthritol, bisphenol A and the like may be added or copolymerized to these polyester polymers. In the present invention, the fiber-forming thermoplastic polymer may include, for example, a matting agent, a pigment, a flameproofing agent, a deodorant, a light stabilizer, an ultraviolet absorber, a heat stabilizer, if necessary. Various additives such as an antioxidant can be added within a range that does not impair the effects of the present invention.

【0006】本発明における長繊維不織布層は,前記重
合体からなる長繊維で構成されるスパンボンド不織布で
ある。この長繊維は,前記重合体単独からなるものの他
に前記重合体の中から選択された2種以上の相異なる重
合体が各々溶融紡糸性を損なわない範囲内がブレンドさ
れたブレンド物からなるものであってもよい。また,こ
の長繊維の形態は,前記重合体の中から選択された2種
以上の相異なる重合体が芯鞘型あるいは並列型に配され
たものであってもよい。
The long-fiber non-woven fabric layer in the present invention is a spun-bonded non-woven fabric composed of long fibers made of the above polymer. The long fibers are composed of a blend of the above-mentioned polymers alone and a blend of two or more different polymers selected from the above-mentioned polymers within the range not impairing the melt spinnability. May be Further, the form of the long fibers may be one in which two or more different polymers selected from the above polymers are arranged in a core-sheath type or a parallel type.

【0007】スパンボンド不織布は,前述した重合体を
単独で,あるいは前記重合体の中から選択された2種以
上の相異なる重合体がブレンドされたブレンド物を,あ
るいは前記重合体の中から選択された2種以上の相異な
る重合体が芯鞘型あるいは並列型に配するようにして溶
融紡出し,すなわち紡糸口金から溶融紡出した後に冷却
風を用いて紡出フイラメント糸条を冷却し,エアーサツ
カ等の引取り手段を用い引取り速度を4000〜600
0m/分として牽引・細化した後,コロナ放電式あるい
は摩擦帯電式開繊器を用いて開繊し,例えばスクリーン
からなるコンベア等の移動する捕集面上に捕集・堆積さ
せることによって前記長繊維から構成される不織ウエブ
を得,得られた不織ウエブに部分的熱圧接処理を施すこ
とにより得ることができる。スパンボンド法で溶融紡出
するに際しては,その引取り速度を4000〜6000
m/分とするのがよい。引取り速度が4000m/分未
満であると紡出長繊維の分子配向度が十分に増大しない
ため得られるウエブの機械的特性や寸法安定性が向上せ
ず,一方,引取り速度が6000m/分を超えると溶融
紡糸時の製糸性が低下し,いずれも好ましくない。不織
ウエブに部分的熱圧接処理を施すに際しては,加熱され
かつ表面に突起状彫刻模様が刻印されたロールすなわち
エンボスロールと加熱されかつ表面が平滑な金属ロール
とを用いるとよい。これらのロール間に不織ウエブを通
すことにより,前記彫刻模様部に該当する部分のウエブ
構成繊維同士を部分的に熱圧接することができる。
The spunbonded nonwoven fabric is selected from the above-mentioned polymers alone, or a blend of two or more different polymers selected from the above-mentioned polymers, or selected from the above-mentioned polymers. The two or more different polymers thus prepared are melt-spun in such a manner that they are arranged in a core-sheath type or a parallel type, that is, melt-spun from a spinneret, and then the spun filament yarn is cooled using cooling air. The take-up speed is 4000-600 using the take-up means such as air blower.
After pulling and thinning at 0 m / min, the corona discharge type or friction charging type opening device is used to open the fibers, and the fibers are collected and accumulated on a moving collecting surface such as a conveyor made of a screen. It can be obtained by obtaining a non-woven web composed of long fibers and subjecting the obtained non-woven web to a partial hot-pressing treatment. When melt-spun by the spunbond method, the take-up speed is 4000-6000.
It is good to set it to m / min. If the take-up speed is less than 4000 m / min, the degree of molecular orientation of the spun filament does not increase sufficiently, so the mechanical properties and dimensional stability of the obtained web are not improved, while the take-up speed is 6000 m / min. If it exceeds, the spinnability at the time of melt spinning is deteriorated, which is not preferable. When the non-woven web is subjected to the partial hot-pressing treatment, it is preferable to use a roll which is heated and has a projection-shaped engraved pattern on its surface, that is, an embossing roll and a metal roll which is heated and has a smooth surface. By passing the non-woven web between these rolls, the web constituent fibers in the portion corresponding to the engraved pattern portion can be partially thermocompressed.

【0008】本発明における長繊維不織布層は,前記長
繊維から構成されるものであるが,この長繊維の単繊維
繊度は1〜8デニールとするのが好ましい。単繊維繊度
が1デニール未満であると,長繊維不織布層と天然繊維
不織布層とを積層一体化してなる積層不織構造体の引張
り強力等の機械的特性が向上せず,また長繊維を得るに
際して溶融紡糸時の製糸性が低下し,一方,単繊維繊度
が8デニールを超えると,得られる不織布の風合いが硬
くなって柔軟性に富む積層不織構造体を得ることができ
ず,いずれも好ましくない。したがって,本発明では,
この長繊維の単繊維繊度を1〜8デニールとし,好まし
くは2〜5デニールとする。
The long fiber nonwoven fabric layer in the present invention is composed of the above long fibers, and it is preferable that the single fiber fineness of the long fibers is 1 to 8 denier. When the monofilament fineness is less than 1 denier, mechanical properties such as tensile strength of a laminated non-woven structure obtained by laminating a long fiber non-woven fabric layer and a natural fiber non-woven fabric layer are not improved, and long fibers are obtained. At that time, the spinnability during melt spinning is deteriorated, while when the single fiber fineness exceeds 8 denier, the texture of the resulting non-woven fabric becomes hard and a flexible non-woven structure cannot be obtained. Not preferable. Therefore, in the present invention,
The single fiber fineness of the long fibers is 1 to 8 denier, preferably 2 to 5 denier.

【0009】本発明における長繊維不織布層は,その目
付けが10〜70g/m2 のものであるのが好ましい。
目付けが10g/m2 未満であると,長繊維不織布層と
天然繊維不織布層とを積層一体化してなる積層不織構造
体の接着強力が低くなり,一方,目付けが70g/m2
を超えると,得られる積層不織構造体を例えば柔軟性が
要求されるような分野に適用することが困難となった
り,あるいは積層不織構造体を衣服用素材として用いた
とき天然繊維不織布より硬い長繊維不織布層が皮膚を刺
激したり,あるいはこの不織布に天然繊維不織布を積層
した後,超音波融着装置を用い融着処理を施して一体化
するに際し,加工速度を遅くしたりあるいは多大の超音
波エネルギを供給するなどの必要が生じ,いずれも好ま
しくない。したがって,本発明では,この長繊維不織布
層の目付けを10〜70g/m2 とし,好ましくは15
〜50g/m2 とする。
The long fiber nonwoven fabric layer in the present invention preferably has a basis weight of 10 to 70 g / m 2 .
If the basis weight is less than 10 g / m 2 , the adhesive strength of the laminated non-woven structure obtained by laminating and integrating the long fiber non-woven fabric layer and the natural fiber non-woven fabric layer is low, while the basis weight is 70 g / m 2
If it exceeds, it will be difficult to apply the resulting laminated non-woven structure to, for example, a field in which flexibility is required, or if the laminated non-woven structure is used as a material for clothing, A hard long-fiber non-woven fabric layer may irritate the skin, or a natural fiber non-woven fabric may be laminated on this non-woven fabric and then subjected to a fusion process using an ultrasonic fusing device to reduce the processing speed or greatly It is necessary to supply the ultrasonic energy, etc., which is not preferable. Therefore, in the present invention, the basis weight of the long fiber nonwoven fabric layer is set to 10 to 70 g / m 2, and preferably 15
˜50 g / m 2 .

【0010】次に,本発明における天然繊維同士が機械
的に交絡してなる不織布層に関してであるが,この不織
布層を構成する天然繊維とは,木綿繊維や麻繊維等のセ
ルロース系繊維の他に,ラミー等の動物繊維,絹短繊
維,天然パルプ,レーヨンに代表される各種再生短繊維
をも包含するものである。本発明では,この不織布層の
出発原料として,晒し加工の施されていないコーマ糸,
晒し加工された晒し綿,あるいは織物・編物から得られ
る各種反毛を用いることもできる。出発原料として反毛
を用いる場合,効果的に用い得る反毛機としては,ラツ
グマシン,ノツトブレーカ,ガーネツトマシン,廻切機
が挙げられる。用いる反毛機の種類と組み合わせは,反
毛される織物・編物等の布帛形状や構成する糸の太さあ
るいは撚りの強さにもよるが,同一の反毛機を複数台直
列に連結したり,2種以上の反毛機を組み合わせて使用
したりするとより効果的である。この反毛機による解繊
率(%)は30〜95%の範囲であるのが好ましい。こ
の解繊率が30%未満であると,カードウエブ中に未解
繊繊維が存在するため不織布表面にザラツキが生じるの
みでなく,例えば高圧液体柱状流処理により天然繊維同
士を三次元的機械的交絡を施すに際して未解繊繊維部分
を高圧液体柱状流が十分貫通せず,一方,解繊率が95
%を超えると,前記長繊維不織布と積層・一体化して得
られる積層不織構造体において十分な表面摩擦強度が得
られず,いずれも好ましくない。なお,ここでいう解繊
率(%)とは,下記式(3)により求められるものであ
る。 解繊率(%)=(被反毛重量−糸状物重量)×100/被反毛重量・・(3)
Next, regarding the non-woven fabric layer according to the present invention in which the natural fibers are mechanically entangled with each other, the natural fibers constituting the non-woven fabric layer include cellulosic fibers such as cotton fibers and hemp fibers. It also includes animal fibers such as ramie, silk staple fibers, natural pulp, and various recycled staple fibers represented by rayon. In the present invention, as a starting material for this non-woven fabric layer, combed yarn that has not been subjected to bleaching processing,
Bleached cotton that has been bleached or various fluff obtained from woven or knitted fabric can also be used. When using fluff as the starting material, the fluff machine that can be effectively used includes a ratchet machine, a notch breaker, a garnet machine, and a cutting machine. The type and combination of anti-fluffing machines used depend on the shape of the woven or knitted fabric to be fluffed and the thickness or twisting strength of the constituent threads, but multiple identical anti-fluffing machines are connected in series. It is more effective to use two or more types of anti-hairbrushing machine in combination. The defibration rate (%) by the fluffing machine is preferably in the range of 30 to 95%. When the defibration rate is less than 30%, unwoven fibers are present in the card web, so that not only the surface of the non-woven fabric is rough but also natural fibers are three-dimensionally mechanically processed by the high pressure liquid columnar flow treatment. When the entanglement is performed, the high-pressure liquid columnar flow does not sufficiently penetrate the undisentangled fiber portion, while the disentanglement rate is 95
If it exceeds 0.1%, sufficient surface friction strength cannot be obtained in the laminated non-woven structure obtained by laminating and integrating with the long-fiber nonwoven fabric, which is not preferable. The defibration rate (%) here is obtained by the following formula (3). Disentanglement rate (%) = (weight of woven fabric-weight of filamentous material) x 100 / weight of woven fabric ... (3)

【0011】本発明における天然繊維不織布層は,前記
天然繊維からなり,かつ繊維同士が機械的に交絡してな
るものである。すなわち,天然繊維同士が,高圧液体柱
状流処理あるいはニードルパンチング処理により機械的
に交絡したものであり,特に前者の場合,繊維同士が三
次元的に交絡して不織布の嵩高性が向上すると共に柔軟
性も向上するため,例えば前記長繊維不織布と積層・一
体化して得られる積層不織構造体を衛生材用あるいは生
活関連材用の素材として用いる上で好ましい。この不織
布層は,前記天然繊維素材の中から選択された単一素材
あるいは複数種の素材が混合されてなるものを出発原料
とし,カード機を用いて所定目付けのカードウエブを作
成し,次いで得られたウエブに高圧液体柱状流処理ある
いはニードルパンチング処理により繊維間に機械的交絡
を施すことにより容易に得ることができる。このカード
ウエブは,構成繊維の配列度合によって種々選択するこ
とができ,例えばカード機の進行方向に配列したパラレ
ルウエブ,パラレルウエブがクロスレイドされたウエ
ブ,ランダムに配列したランダムウエブあるいは両者の
中程度に配列したセミランダムウエブ等が挙げられる。
また,衣料用素材としての展開を図りたい場合には,不
織布強力の縦/横比が概ね1/1となるカードウエブを
使用するのが好ましい。
The natural fiber non-woven fabric layer in the present invention is made of the above-mentioned natural fibers, and the fibers are mechanically entangled with each other. That is, the natural fibers are mechanically entangled by the high-pressure liquid columnar flow treatment or the needle punching treatment. Especially in the former case, the fibers are entangled three-dimensionally and the bulkiness of the non-woven fabric is improved and the flexibility is high. Since the property is also improved, for example, a laminated non-woven structure obtained by laminating and integrating with the long fiber non-woven fabric is preferable as a material for sanitary materials or life-related materials. This non-woven fabric layer is made of a single material or a mixture of a plurality of materials selected from the above natural fiber materials as a starting material. It can be easily obtained by subjecting the obtained web to mechanical entanglement between fibers by high pressure liquid columnar flow treatment or needle punching treatment. The card web can be variously selected according to the degree of arrangement of the constituent fibers. For example, a parallel web arranged in the traveling direction of the card machine, a web in which parallel webs are crosslaid, a random web arranged in random, or a medium degree of both. Examples thereof include a semi-random web and the like.
Further, when it is desired to develop it as a material for clothing, it is preferable to use a card web in which the aspect ratio of the strength of the nonwoven fabric is about 1/1.

【0012】高圧液体柱状流処理の場合,例えば孔径が
0.05〜1.5mm特に0.1〜0.4mmの噴射孔
を孔間隔を0.05〜5mmで1列あるいは複数列に多
数配列した装置を用い,噴射圧力が5〜150kg/c
2 Gの高圧液体を前記噴射孔から噴射し,多孔性支持
部材上に載置したカードウエブに衝突させることにより
繊維間に三次元的交絡を付与する方法を採用する。噴射
孔の配列は,このカードウエブの進行方向と直交する方
向に列状に配列する。高圧液体としては,常温の水ある
いは温水を用いることができる。噴射孔とウエブとの間
の距離は,1〜15cmとするのがよい。この距離が1
cm未満であるとこの処理により得られる不織布の地合
いが乱れ,一方,この距離が15cmを超えると液体流
が積層物に衝突したときの衝撃力が低下して三次元的な
交絡が十分に施されず,いずれも好ましくない。この高
圧液体柱状流による処理は,少なくとも2段階に別けて
施すとよい。すなわち,第1段階の処理として圧力が5
〜40kg/cm2 Gの高圧液体流を噴出し前記ウエブ
に衝突させ,ウエブの構成繊維同士を予備的に交絡させ
る。この第1段階の処理において,液体流の圧力が5k
g/cm2 G未満であるとウエブの構成繊維同士を予備
的に交絡させることができず,一方,液体流の圧力が4
0kg/cm2 Gを超えるとウエブに高圧液体流を噴出
し衝突させたときウエブの構成繊維が液体流の作用によ
って乱れ,ウエブに地合いの乱れや目付け斑が生じるた
め,いずれも好ましくない。引き続き,第2段階の処理
として圧力が50〜150kg/cm2 Gの高圧液体流
を噴出し前記ウエブに衝突させ,ウエブの構成繊維同士
を三次元的に交絡させて全体として緻密に一体化させ
る。この第2段階の処理において,液体流の圧力が50
kg/cm2 G未満であると,上述したような繊維間の
三次元的交絡を十分に形成することができず,一方,液
体流の圧力が150kg/cm2 Gを超えると,得られ
る不織布の嵩高性と柔軟性が向上せず,いずれも好まし
くない。なお,ウエブの目付けによっては,第2段階の
処理に引き続き第3段階の処理として,第2段階の処理
側と逆の側から第2段階の処理と同様の条件にて再度処
理を施すことにより,表裏共に緻密に繊維同士が交絡し
た不織布を得ることができる。高圧液体柱状流処理を施
すに際して用いる前記ウエブを担持する多孔性支持部材
としては,例えば20〜100メツシユの金網製あるい
は合成樹脂製等のメツシユスクリーンや有孔板など,高
圧液体流がウエブを貫通し得るものであれば特に限定さ
れない。また,多孔性支持部材のメツシユ構成は20本
/25mm〜200本/25mmの範囲であるのが好ま
しく,20本/25mm未満であると,高圧液体柱状流
がウエブに衝突した際に繊維が柱状流と共にメツシユス
クリーンを通過して繊維の脱落が発生し,一方,200
本/25mmを超えると,高圧液体柱状流がウエブとメ
ツシユスクリーンとを通過するに要するエネルギー量が
多大になって生産コストが上昇し,いずれも好ましくな
い。高圧液体流処理を施した後,処理後の前記ウエブか
ら過剰水分を除去する。この過剰水分を除去するに際し
ては,公知の方法を採用することができる。例えばマン
グルロール等の絞り装置を用いて過剰水分をある程度機
械的に除去し,引き続きサクシヨンバンド方式の熱風循
環式乾燥機等の乾燥装置を用いて残余の水分を除去して
不織布を得ることができる。
In the case of the high-pressure liquid columnar flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in one row or a plurality of rows with a hole interval of 0.05 to 5 mm. The injection pressure is 5 to 150 kg / c
A method of injecting a high-pressure liquid of m 2 G from the injection hole and colliding with a card web placed on the porous support member to give a three-dimensional entanglement between the fibers is adopted. The ejection holes are arranged in rows in a direction orthogonal to the traveling direction of the card web. As the high-pressure liquid, room temperature water or warm water can be used. The distance between the injection hole and the web is preferably 1 to 15 cm. This distance is 1
When the distance is less than 15 cm, the texture of the nonwoven fabric obtained by this treatment is disturbed, while when the distance exceeds 15 cm, the impact force when the liquid flow collides with the laminate is reduced and the three-dimensional entanglement is sufficiently performed. No, neither is preferable. This high pressure liquid columnar flow treatment may be performed in at least two stages. That is, the pressure is 5
A high-pressure liquid flow of -40 kg / cm 2 G is jetted to collide with the web to pre-entangle the constituent fibers of the web. In this first stage treatment, the pressure of the liquid flow is 5k
If it is less than g / cm 2 G, the constituent fibers of the web cannot be pre-entangled with each other, while the pressure of the liquid flow is 4
When the pressure exceeds 0 kg / cm 2 G, when the high-pressure liquid flow is jetted and collided with the web, the constituent fibers of the web are disturbed by the action of the liquid flow, and the web is disturbed in texture and is unsatisfactory. Subsequently, in the second step, a high-pressure liquid flow having a pressure of 50 to 150 kg / cm 2 G is jetted to collide with the web, and the fibers constituting the web are three-dimensionally entangled with each other so as to be densely integrated as a whole. . In this second stage treatment, the pressure of the liquid stream is 50
If it is less than kg / cm 2 G, the above-mentioned three-dimensional entanglement between fibers cannot be sufficiently formed, while if the pressure of the liquid flow exceeds 150 kg / cm 2 G, the resulting nonwoven fabric is obtained. The bulkiness and flexibility are not improved, and both are not preferable. Depending on the basis weight of the web, as a third stage process following the second stage process, the second side process is performed again from the side opposite to the second stage process side under the same conditions as the second stage process. It is possible to obtain a non-woven fabric in which fibers are closely entangled with each other on the front and back. As the porous supporting member for carrying the web used for performing the high-pressure liquid columnar flow treatment, for example, a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 20 to 100 mesh is used as the high-pressure liquid stream. It is not particularly limited as long as it can penetrate. The mesh structure of the porous support member is preferably in the range of 20 fibers / 25 mm to 200 fibers / 25 mm. When it is less than 20 fibers / 25 mm, the fibers become columnar when the high pressure liquid columnar flow collides with the web. As the flow passes through the mesh screen, fibers drop out, while
When the number exceeds 25 mm / column, the amount of energy required for the high-pressure liquid columnar flow to pass through the web and the mesh screen increases and the production cost increases, which is not preferable. After performing the high pressure liquid flow treatment, excess moisture is removed from the treated web. A known method can be adopted for removing the excess water. For example, a nonwoven fabric can be obtained by mechanically removing excess moisture to some extent using a squeezing device such as a mangle roll, and then using a drying device such as a hot band circulation dryer of the saxion band system to remove residual moisture. it can.

【0013】本発明における天然繊維不織布層は,その
目付けが30〜200g/m2 のものであるのが好まし
い。目付けが30g/m2 未満であると,天然繊維の単
位面積当たりの存在量が小さ過ぎて本発明が目的とする
吸水性が十分に具備されず,一方,目付けが200g/
2 を超えると,前記長繊維不織布との積層後に超音波
融着装置を用いて点状融着区域を形成することにより一
体化して得られる積層不織構造体において,その剥離強
力が十分に向上せず,いずれも好ましくない。したがっ
て,本発明では,この天然繊維不織布の目付けを30〜
200g/m2とし,好ましくは50〜150g/m2
とする。
The natural fiber nonwoven fabric layer in the present invention preferably has a basis weight of 30 to 200 g / m 2 . When the basis weight is less than 30 g / m 2 , the abundance of natural fiber per unit area is too small to sufficiently provide the water absorption targeted by the present invention, while the basis weight is 200 g / m 2.
If it exceeds m 2 , the peel strength of the laminated non-woven structure obtained by laminating with the long-fiber non-woven fabric and forming point-like fused areas by using an ultrasonic fusing device is sufficient. It does not improve and neither is preferable. Therefore, in the present invention, the basis weight of this natural fiber nonwoven fabric is 30 to
200 g / m 2 , preferably 50-150 g / m 2
And

【0014】次に,本発明の積層不織構造体に関して説
明する。本発明の積層不織構造体は,前記長繊維不織布
層と天然繊維不織布層とが積層され,前記長繊維と天然
繊維とが融着されてなる点状融着区域を有し,かつ前記
点状融着区域において前記両不織布層の少なくとも境界
面に位置する天然繊維が前記長繊維の融解部に埋設され
た状態で固定されることにより全体として一体化されて
なるものである。この点状融着区域とは,周波数が約2
0KHzの通常ホーンと呼称される超音波発振器と,円
周上に点状又は帯状に凸状突起部を具備するパターンロ
ールとからなる超音波融着装置を用いて形成され,前記
凸状突起部に該当する部分に当接する繊維同士を融着さ
せたものである。この点状融着区域は,不織構造体全表
面積に対して特定の領域と特定の配置とを有し,個々の
点状融着区域は必ずしも円形の形状である必要はなく,
円形の他に例えば十字形,−形,菱形,T字形,□形,
△形等いずれの形状であってもよいが,不織構造体全表
面積に対する全点状融着区域の面積の比A(%)及び点
状融着区域密度B(点/cm2 )がそれぞれ前記式
(1)及び(2)を満足することが必要である。不織構
造体全表面積に対する全点状融着区域の面積の比A
(%)が4%未満であると,前記長繊維不織布と天然繊
維不織布との積層後に超音波融着装置を用いて点状融着
区域を形成することにより一体化して得られる積層不織
構造体においてその剥離強力が十分に向上せず,一方,
前記面積の比A(%)が50%を超えると,得られる積
層不織構造体の柔軟性と嵩高性が低下し,したがって本
発明では,前記面積の比A(%)を4〜50%,好まし
くは5〜30%とする。また,点状融着区域密度B(点
/cm2 )が7点/cm2 未満であると,得られる積層
不織構造体の接着力すなわち剥離強力が低下するのみな
らず強力に斑が生じ,一方,同区域密度が80点/cm
2 を超えると,得られる積層不織構造体の柔軟性と嵩高
性が低下し,したがって本発明では,前記区域密度B
(点/cm2 )を7〜80点/cm2 ,好ましくは8〜
50点/cm2 とする。
Next, the laminated nonwoven structure of the present invention will be described. The laminated non-woven structure of the present invention has a point-like fused area formed by laminating the long-fiber non-woven fabric layer and the natural-fiber non-woven fabric layer and fusing the long-fiber and the natural fiber, and The natural fibers located at least at the boundary surface of the two nonwoven fabric layers in the melt-bonded area are fixed in a state of being embedded in the melted portion of the long fibers so that they are integrated as a whole. This point-like fused area has a frequency of about 2
The convex protrusion is formed by using an ultrasonic fusing device including an ultrasonic oscillator, which is generally called a 0 KHz horn, and a pattern roll having a convex protrusion in a dot shape or a strip shape on the circumference. The fibers that come into contact with the portions corresponding to are fused together. The spot-shaped fused areas have a specific area and a specific arrangement with respect to the total surface area of the non-woven structure, and the individual dotted-shaped fused areas do not necessarily have a circular shape.
Besides circular shape, for example, cross shape, − shape, diamond shape, T shape, □ shape,
Although it may have any shape such as a triangle shape, the ratio A (%) of the area of all the spot-shaped fused areas to the total surface area of the non-woven structure and the point-shaped fused area density B (points / cm 2 ) are respectively It is necessary to satisfy the expressions (1) and (2). The ratio A of the area of all point-like fused areas to the total surface area of the nonwoven structure A
When the (%) is less than 4%, a laminated non-woven structure obtained by integrating the long fiber non-woven fabric and the natural fiber non-woven fabric by forming point-like fused areas by using an ultrasonic fusing device The peel strength of the body does not improve sufficiently, while
When the area ratio A (%) exceeds 50%, the flexibility and bulkiness of the obtained laminated nonwoven structure are deteriorated. Therefore, in the present invention, the area ratio A (%) is 4 to 50%. , Preferably 5 to 30%. Further, if the density of spot-shaped fused areas B (points / cm 2 ) is less than 7 points / cm 2 , not only the adhesive strength of the obtained laminated non-woven structure, that is, the peel strength is lowered, but also strong spots are formed. On the other hand, the same area density is 80 points / cm
When it exceeds 2 , the flexibility and bulkiness of the obtained laminated non-woven structure deteriorates. Therefore, in the present invention, the area density B
(Point / cm 2 ) is 7 to 80 points / cm 2 , preferably 8 to
50 points / cm 2 .

【0015】本発明において用い得る超音波融着装置
は,公知の装置すなわち周波数が約20KHzの通常ホ
ーンと呼称される超音波発振器と,円周上に点状又は帯
状に凸状突起部を具備するパターンロールとからなる装
置である。前記超音波発振器の下部に前記パターンロー
ルが配設され,被処理物は超音波発振器とパターンロー
ルとの間に通される。このパターンロールに配設される
凸状突起部は1列あるいは複数列であってもよく,ま
た,その配設が複数列の場合には,並列あるいは千鳥型
のいずれの配列でもよい。融着処理に際しては,ホーン
に空気圧を印加して加圧する。ホーンとパターンロール
間の線圧は,通常1〜10kg/cmとし,線圧が1k
g/cm未満であると,前記長繊維不織布層と天然繊維
不織布層との積層物に対する押し圧が不足して融着が生
じなく,一方,線圧が10kg/cmを超えると,点状
融着区域に対する押し圧が高過ぎて融着区域に相当する
前記長繊維不織布層が熱分解したり,あるいは極端な場
合には穿孔が生じたりして得られる積層不織構造体の接
着力が低下し,いずれも好ましくない。本発明の積層不
織構造体は,前記長繊維不織布と天然繊維不織布との積
層物に前述した超音波融着装置を用いて融着処理を施す
ことにより,点状融着区域において,前記両不織布層の
少なくとも境界面に位置する天然繊維が前記長繊維の融
解部に埋設された状態で固定され全体として一体化され
たものである。図1は,本発明の積層不織構造体におけ
る前記点状融着区域の断面を示す模式図である。図にお
いて,1は点状融着区域において融解した長繊維層,2
は天然繊維で,同図から明らかなように点状融着区域に
おいて両不織布層の少なくとも境界面に位置する天然繊
維2は,長繊維が融解した融解部すなわち1に埋設され
た状態で固定されており,両不織布層が点状融着区域に
おいてこのような接着構造を有するため,引張り強力の
みならず層間剥離強力の高い積層不織構造体となる。
The ultrasonic fusing apparatus which can be used in the present invention comprises a known apparatus, namely an ultrasonic oscillator generally called a horn having a frequency of about 20 KHz, and a point-like or band-like convex projection on the circumference. And a pattern roll to be used. The pattern roll is disposed below the ultrasonic oscillator, and the object to be processed is passed between the ultrasonic oscillator and the pattern roll. The convex protrusions arranged on the pattern roll may be arranged in one row or a plurality of rows, and when the arrangement is a plurality of rows, they may be arranged in parallel or in a staggered arrangement. During the fusion treatment, air pressure is applied to the horn to apply pressure. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and the linear pressure is 1 k.
If it is less than g / cm, the pressing force against the laminate of the long-fiber non-woven fabric layer and the natural-fiber non-woven fabric layer is insufficient and fusion does not occur. On the other hand, if the linear pressure exceeds 10 kg / cm, the point-like fusion occurs. Adhesion of the laminated non-woven structure obtained when the pressing force against the adhesion area is too high and the long-fiber nonwoven fabric layer corresponding to the fusion area is thermally decomposed or, in extreme cases, perforation occurs However, neither is preferable. The laminated non-woven structure of the present invention is obtained by subjecting a laminate of the long fiber non-woven fabric and the natural fiber non-woven fabric to a fusion treatment by using the ultrasonic fusion device described above, thereby forming the two Natural fibers located at least at the boundary surface of the non-woven fabric layer are fixed in a state of being embedded in the fused portion of the long fibers and integrated as a whole. FIG. 1 is a schematic view showing a cross section of the spot-shaped fused area in the laminated nonwoven structure of the present invention. In the figure, 1 is a long fiber layer melted in a spot-shaped fusion zone, 2
Is a natural fiber, and as is clear from the figure, the natural fiber 2 located at least at the boundary surface of both non-woven fabric layers in the dotted fusion area is fixed in a state where it is embedded in the melting portion where the long fiber is melted, that is, 1. Since both non-woven fabric layers have such an adhesive structure in the dot-like fused region, the laminated non-woven structure has high tensile strength as well as delamination strength.

【0016】[0016]

【作用】本発明の積層不織構造体は,片面がポリエステ
ル系重合体の長繊維からなる不織布層から構成されるた
め可染性と疎水性を有し,かつ耐摩耗性が優れ,他面が
天然繊維同士が機械的に交絡してなる不織布層から構成
されるため可染性と吸水性を有する。また,天然繊維同
士が三次元的に交絡してなるため,優れた柔軟性が具備
される。さらに,前記長繊維と天然繊維とが融着されて
なる点状融着区域において前記両不織布層の少なくとも
境界面に位置する天然繊維が前記長繊維の融解部に埋設
された状態で固定された接着構造を有するため,層間剥
離強力の高い積層不織構造体となる。
The laminated non-woven structure of the present invention has dyeability and hydrophobicity because it is composed of a non-woven fabric layer consisting of long fibers of polyester-based polymer on one side, and has excellent abrasion resistance, and the other side. Since it is composed of a non-woven fabric layer in which natural fibers are mechanically entangled with each other, it has dyeability and water absorbability. Moreover, since natural fibers are entangled three-dimensionally, excellent flexibility is provided. Furthermore, the natural fibers located at least at the boundary surface between the two nonwoven fabric layers in the spot-shaped fusion area formed by fusing the long fibers and the natural fibers are fixed in a state of being embedded in the fusion portion of the long fibers. Since it has an adhesive structure, it is a laminated non-woven structure with high delamination strength.

【0017】[0017]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,試料重量を5mg,昇温速度を20℃
/分として測定して得た融解吸熱曲線の最大極値を与え
る温度を融点(℃)とした。 相対粘度:フエノールと四塩化エタンとの等重量混合溶
液を溶媒とし,試料濃度が0.5g/100cc,温度
が20℃の条件で常法により測定した。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。引張り強力(kg/5cm幅)及び引張
り伸度(%):JIS−L−1096Aに記載の方法に
準じて測定した。すなわち,試料長が10cm,試料幅
が5cmの試料片計10点を作成し,各試料片毎に不織
布の経及び緯方向について,定速伸長型引張り試験機
(東洋ボールドウイン社製テンシロンUTM−4−1−
100)を用いて引張り速度10cm/分で伸長し,得
られた切断時荷重値(kg/5cm幅)の平均値を引張
り強力(kg/5cm幅),切断時伸長率(%)の平均
値を引張り伸度(%)とした。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張速度10cm/分で天然繊維不織布層
を長繊維不織布層から積層構造体の端部から計って5c
mの位置まで強制的に剥離させ,得られた荷重値(g/
5cm幅)の平均値を層間剥離強力(g/5cm幅)と
した。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。したがって,この剛軟度の値
が低いほど,柔軟な不織布であることを意味する。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。 耐摩耗性:JIS−L−1084 A−1に記載の学振
型耐摩擦試験機を用いる45R法に準じて評価した。す
なわち,不織構造体の経方向×横方向にて14cm×5
cm及び5cm×14cmの試料片を各々5点作成し,
各試料片毎にその長繊維不織布層を外側にして前記試験
機に取付け,一方,45Rの摩擦子としてJIS−L−
0803に記載された染色堅牢度用白布綿布3号を用
い,印加荷重200g,摩擦子の往復動速度30回/分
の条件で100回摩擦を行った後,試料片の外観を目視
にて観察し,次の5段階で評価した。 5級:摩擦面に変化が全くない,4級:摩擦面の繊維が
わずかに乱れている,3級:摩擦面の繊維がやや乱れて
いるが実用上の問題はない,2級:摩擦面の繊維がやや
毛玉状の形態を呈している,1級:摩擦面の繊維がほと
んど毛玉状の形態を呈している。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using C-2 type, sample weight 5 mg, temperature rising rate 20 ℃
The temperature that gives the maximum extremum of the melting endothermic curve obtained by measuring as / min was defined as the melting point (° C). Relative viscosity: Measured by a conventional method under the conditions of a sample concentration of 0.5 g / 100 cc and a temperature of 20 ° C. using an equal weight mixed solution of phenol and ethane tetrachloride as a solvent. Unit weight (g / m 2 ): 10 cm in length from standard state sample
After making 10 pieces of 10 cm wide sample piece to reach the equilibrium water content, weigh each sample piece (g) and calculate the average value of the obtained values per unit area (m 2 ). Unit weight (g /
m 2 ). Tensile strength (kg / 5 cm width) and tensile elongation (%): Measured according to the method described in JIS-L-1096A. That is, a total of 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-made by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric. 4-1
100) was stretched at a pulling speed of 10 cm / min, and the average value of the load values during cutting (kg / 5 cm width) obtained was the average value of tensile strength (kg / 5 cm width) and elongation at cutting (%). Was defined as the tensile elongation (%). Delamination strength (g / 5 cm width): A total of 10 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Toyo Bold Win Tensilon UTM-4-1-10
0) and a tensile speed of 10 cm / min to form a natural fiber non-woven fabric layer from the long fiber non-woven fabric layer from the end of the laminated structure to 5c.
The load value (g /
The average value of (5 cm width) was defined as the delamination strength (g / 5 cm width). Bending resistance (g): A total of 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were made, and each piece was bent laterally to form a cylindrical object, and the ends were joined together. The sample was measured for bending resistance. Then, for each measurement sample, the maximum obtained was obtained by compressing in the axial direction using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) at a compression rate of 5 cm / min. The average value of the load values (g) was defined as the bending resistance (g). Therefore, a lower value of this bending resistance means a softer nonwoven fabric. Water absorption (mm): Measured according to the Bayrek method described in JIS-L-1096. Abrasion resistance: The abrasion resistance was evaluated according to the 45R method using the Gakushin type friction resistance tester described in JIS-L-1084 A-1. That is, 14 cm x 5 in the warp direction x the transverse direction of the non-woven structure.
cm and 5 cm x 14 cm sample pieces were made at 5 points each,
For each sample piece, the long fiber non-woven fabric layer was placed outside and attached to the tester, while a 45R friction element was specified as JIS-L-
Using the white cloth cotton cloth No. 3 for dyeing fastness described in 0803, after rubbing 100 times under the condition of an applied load of 200 g and a reciprocating reciprocating speed of 30 times / minute, the appearance of the sample piece is visually observed. Then, the evaluation was made in the following 5 grades. Grade 5: No change on friction surface, Grade 4: Fiber on friction surface is slightly disturbed, Grade 3: Fiber on friction surface is slightly disturbed, but there is no practical problem, Grade 2: Friction surface The fibers of (1) have a slightly pill-like form, and the fibers of the first grade: friction surface have a pill-like form.

【0018】実施例1 まず,融点が259℃,相対粘度が1.35のポリエチ
レンテレフタレートチツプを用い,ポリエチレンテレフ
タレート長繊維からなるスパンボンド不織布を作成し
た。すなわち,前記重合体チツプをエクストルーダ型溶
融押出し機を用いて溶融し,これを紡糸口金を通して紡
糸温度を295℃かつ単孔吐出量を1.6g/分として
溶融紡出し,紡出糸条を冷却した後,紡糸口金の下方に
配設されたエアーサツカを用い引取り速度を4800m
/分として牽引・細化した後,開繊器を用いて開繊し,
移動する捕集面上に捕集・堆積させてウエブとし,得ら
れたウエブに先端部面積が0.6mm2 の突起状彫刻模
様部が圧接面積率13.2%かつ密度20点/cm2
配設された熱エンボスローラと表面平滑な金属ローラと
を用い,処理温度を230℃,かつ線圧を50kg/c
mとして加工速度10m/分で部分熱圧着処理を施し,
単繊維繊度が3.0デニールで,目付けが30g/m2
のポリエチレンテレフタレート長繊維スパンボンド不織
布を得た。別途,平均単繊維繊度が1.5デニールで,
かつ平均繊維長が25mmの木綿晒し綿を用い,木綿繊
維同士が三次元的に交絡してなる不織布を作成した。す
なわち,前記晒し綿を出発原料とし,ランダムカード機
により繊維配列がランダムで目付けが40g/m2 相当
のランダムカードウエブを作成し,次いで得られたウエ
ブを移動速度20m/分で移動する70メツシユの金網
上に載置して高圧液体流処理を施した。高圧液体流処理
は,孔径0.1mmの噴射孔が孔間隔0.6mmで一列
に配設された高圧柱状水流処理装置を用い,ウエブの上
方50mmの位置から2段階に別けて柱状水流を作用さ
せた。第1段階の処理では圧力を30kg/cm2 Gと
し,第2段階の処理では圧力を70kg/cm2 Gとし
た。なお,第2段階の処理は,ウエブの表裏から各々2
回施した。次いで,得られた処理物からマングルロール
を用いて過剰水分を除去した後,処理物に熱風乾燥機を
用いて温度98℃の条件で乾燥処理を施し,木綿繊維同
士が緻密に三次元的交絡をした目付けが40g/m2
不織布を得た。次いで,前記で得られたポリエチレンテ
レフタレート長繊維スパンボンド不織布と木綿繊維不織
布とを積層し,周波数が19.5KHzの超音波発振器
と円周上に点状に凸状突起部が面積比(ロール全表面積
に対する全凸状突起部の面積の比)11%かつ密度18
点/cm2 で配設されたパターンロールとからなる超音
波融着装置を用いて,加工速度を30m/分,線圧を
1.5kg/cmとして超音波融着処理を施して積層不
織構造体を得た。得られた積層不織構造体の特性を表1
に示す。
Example 1 First, a polyethylene terephthalate chip having a melting point of 259 ° C. and a relative viscosity of 1.35 was used to prepare a spunbond nonwoven fabric made of continuous polyethylene terephthalate fibers. That is, the polymer chip was melted using an extruder type melt extruder, melted and spun through a spinneret at a spinning temperature of 295 ° C. and a single hole discharge rate of 1.6 g / min, and the spun yarn was cooled. After that, the take-up speed is set to 4800 m using the air sucker arranged below the spinneret.
After pulling and thinning as / min, open with a fiber opener,
A web was obtained by collecting and depositing it on a moving collection surface, and a protruding engraved pattern portion with a tip area of 0.6 mm 2 was pressed onto the obtained web at an area ratio of 13.2% and a density of 20 points / cm 2. Using a hot embossing roller and a metal roller with a smooth surface, the processing temperature is 230 ° C and the linear pressure is 50 kg / c.
m is subjected to partial thermocompression bonding at a processing speed of 10 m / min,
Single fiber fineness is 3.0 denier and basis weight is 30 g / m 2
Polyethylene terephthalate long-fiber spunbonded non-woven fabric was obtained. Separately, the average single fiber fineness is 1.5 denier,
Moreover, a non-woven fabric in which cotton fibers were three-dimensionally entangled with each other was prepared by using cotton bleached cotton having an average fiber length of 25 mm. That is, using the above-mentioned bleached cotton as a starting material, a random card machine was used to prepare a random card web having a random fiber arrangement and a basis weight of 40 g / m 2 , and then the obtained web was moved at a moving speed of 20 m / min. It was placed on the wire mesh and subjected to high-pressure liquid flow treatment. In the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.1 mm are arranged in a row with a hole interval of 0.6 mm is used, and the columnar water flow is applied in two stages from a position 50 mm above the web. Let The pressure was set to 30 kg / cm 2 G in the first stage treatment, and the pressure was set to 70 kg / cm 2 G in the second stage treatment. In addition, the process of the 2nd step is 2 each from the front and back of the web.
Circulated. Then, after removing excess water from the obtained treated product with a mangle roll, the treated product was dried with a hot air dryer at a temperature of 98 ° C., and the cotton fibers were densely three-dimensionally entangled. A non-woven fabric having a basis weight of 40 g / m 2 was obtained. Next, the polyethylene terephthalate long-fiber spunbonded non-woven fabric and the cotton fiber non-woven fabric obtained above were laminated, and an ultrasonic wave oscillator having a frequency of 19.5 KHz and a point-shaped convex projection on the circumference were used as an area ratio (roll total Ratio of area of all convex protrusions to surface area) 11% and density 18
Using an ultrasonic fusing device consisting of a pattern roll arranged at points / cm 2 , ultrasonic fusing treatment was applied at a processing speed of 30 m / min and a linear pressure of 1.5 kg / cm to obtain a laminated nonwoven fabric. The structure was obtained. The properties of the obtained laminated nonwoven structure are shown in Table 1.
Shown in

【0019】実施例2〜5 スパンボンド不織布を構成する長繊維の単繊維繊度を
0.8デニール(実施例2),1.0デニール(実施例
3),8.0デニール(実施例4)及び10.0デニー
ル(実施例5)とした以外は実施例1と同様にして,積
層不織構造体を得た。得られた積層不織構造体の特性を
表1に示す。
Examples 2 to 5 The single fiber fineness of the long fibers constituting the spunbonded nonwoven fabric is 0.8 denier (Example 2), 1.0 denier (Example 3), 8.0 denier (Example 4). And a laminated non-woven structure were obtained in the same manner as in Example 1 except that the denier was 10.0 (Example 5). The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0020】実施例6 長繊維スパンボンド不織布の目付けを60g/m2 とし
た以外は実施例1と同様にして,積層不織構造体を得
た。得られた積層不織構造体の特性を表1に示す。
Example 6 A laminated nonwoven structure was obtained in the same manner as in Example 1 except that the basis weight of the long fiber spunbonded nonwoven fabric was changed to 60 g / m 2 . The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0021】実施例7〜10 超音波融着装置におけるパターンロールの凸状突起部面
積比を4%(実施例7),16%(実施例8),20%
(実施例9)及び50%(実施例10)とした以外は実
施例1と同様にして,積層不織構造体を得た。得られた
積層不織構造体の特性を表2に示す。
Examples 7 to 10 The area ratio of the convex protrusions of the pattern roll in the ultrasonic fusing apparatus was 4% (Example 7), 16% (Example 8) and 20%.
A laminated nonwoven structure was obtained in the same manner as in Example 1 except that (Example 9) and 50% (Example 10) were used. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0022】実施例11〜13 超音波融着装置におけるパターンロールの凸状突起部配
設密度を9点/cm2(実施例11),36点/cm2
(実施例12)及び80点/cm2 (実施例13)とし
た以外は実施例1と同様にして,積層不織構造体を得
た。得られた積層不織構造体の特性を表2に示す。
Examples 11 to 13 The distribution density of the convex projections of the pattern roll in the ultrasonic fusing apparatus was 9 points / cm 2 (Example 11), 36 points / cm 2
A laminated nonwoven structure was obtained in the same manner as in Example 1 except that (Example 12) and 80 points / cm 2 (Example 13) were used. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0023】比較例1 超音波融着装置に代わり圧接面積率が12%の熱エンボ
スロールと表面が平滑な熱金属ロールとを用い,処理温
度を230℃,線圧を100kg/cm,かつ加工速度
を10m/分として部分熱圧接処理を施した以外は実施
例1と同様にして,積層不織構造体を得た。得られた積
層不織構造体の特性を表1に示す。
Comparative Example 1 A hot embossing roll having a pressing area ratio of 12% and a hot metal roll having a smooth surface were used in place of the ultrasonic fusing device, the treatment temperature was 230 ° C., the linear pressure was 100 kg / cm, and the working was performed. A laminated non-woven structure was obtained in the same manner as in Example 1 except that the partial hot press treatment was performed at a speed of 10 m / min. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0024】比較例2及び3 超音波融着装置におけるパターンロールの凸状突起部面
積比を2%(比較例2)及び55%(比較例3)とした
以外は実施例1と同様にして,積層不織構造体を得た。
得られた積層不織構造体の特性を表2に示す。
Comparative Examples 2 and 3 In the same manner as in Example 1 except that the area ratio of the convex protrusions of the pattern roll in the ultrasonic fusing apparatus was set to 2% (Comparative Example 2) and 55% (Comparative Example 3). , A laminated non-woven structure was obtained.
The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0025】比較例4及び5 超音波融着装置におけるパターンロールの凸状突起部配
設密度を4点/cm2(比較例4)及び90点/cm2
(比較例5)とした以外は実施例1と同様にして,積層
不織構造体を得た。得られた積層不織構造体の特性を表
2に示す。
Comparative Examples 4 and 5 The density of the convex projections on the pattern roll in the ultrasonic fusing apparatus was 4 points / cm 2 (Comparative Example 4) and 90 points / cm 2.
A laminated nonwoven structure was obtained in the same manner as in Example 1 except that (Comparative Example 5) was used. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】実施例1,3,4,6,8,9及び12で
得られた積層不織構造体は,表1から明らかなように引
張り強力と層間剥離強力が高く,吸水性を有し,耐摩耗
性も高いものであった。実施例3で得られた積層不織構
造体は,長繊維のデニールが低めであるため,柔軟性も
優れたものであった。実施例2で得られた積層不織構造
体は,長繊維のデニールがさらに低めであるため柔軟性
は優れるものの,耐摩耗性が若干劣るものであった。実
施例4と5で得られた積層不織構造体は,長繊維のデニ
ールが高めであるため引張り強力と層間剥離強力は優れ
るものの,柔軟性が実施例1に比べるとやや劣るもので
あった。すなわち,本発明の積層不織構造体では,長繊
維のデニールが低くなると柔軟性が向上し,一方,この
デニールが高くなると層間剥離強力と柔軟性が低下する
ことがわかる。また,実施例7で得られた積層不織構造
体は,超音波融着装置におけるパターンロールの凸状突
起部面積比が4%であって不織構造体全表面積に対する
全点状融着区域の面積の比が低めであるため,層間剥離
強力が実施例1に比べると若干低いものであり,実施例
10で得られた積層不織構造体は,同面積比が50%で
あって不織構造体全表面積に対する全点状融着区域の面
積の比が高めであるため層間剥離強力は優れるものの,
柔軟性が実施例1に比べるとやや劣るものであった。さ
らに,実施例11で得られた積層不織構造体は,超音波
融着装置におけるパターンロールの凸状突起部配設密度
が9点/cm2 であって不織構造体における点状融着区
域の密度が低めであるため,層間剥離強力にやや斑を有
するものであり,実施例13で得られた積層不織構造体
は,同凸状突起部配設密度が80点/cm2 であって不
織構造体における点状融着区域の密度が高めであるた
め,柔軟性が実施例1に比べるとやや劣るものであっ
た。すなわち,本発明の積層不織構造体では,不織構造
体全表面積に対する全点状融着区域の面積の比と点状融
着区域の密度とが前記(1)及び(2)式を満足するこ
とにより,引張り強力と層間剥離強力そして柔軟性が共
に向上することがわかる。
The laminated nonwoven structures obtained in Examples 1, 3, 4, 6, 8, 9, and 12 have high tensile strength and delamination strength, as shown in Table 1, and have water absorbency. The wear resistance was also high. The laminated nonwoven structure obtained in Example 3 was also excellent in flexibility because the denier of the long fibers was low. The laminated non-woven structure obtained in Example 2 was excellent in flexibility because the long fiber denier was lower, but was slightly inferior in abrasion resistance. The laminated non-woven structures obtained in Examples 4 and 5 were excellent in tensile strength and delamination strength due to the high denier of the long fibers, but were slightly inferior in flexibility to Example 1. . That is, in the laminated nonwoven structure of the present invention, it is understood that the flexibility increases as the denier of the long fibers decreases, while the delamination strength and the flexibility decrease when the denier increases. In the laminated nonwoven structure obtained in Example 7, the area ratio of the convex protrusions of the pattern roll in the ultrasonic fusing device was 4%, and the entire point-like fused area was based on the total surface area of the nonwoven structure. The area delamination strength of the laminated non-woven structure obtained in Example 10 was 50% because the delamination strength was slightly lower than that of Example 1. The delamination strength is excellent because the ratio of the area of all punctate fusion areas to the total surface area of the woven structure is high.
The flexibility was slightly inferior to that of Example 1. Furthermore, the laminated non-woven structure obtained in Example 11 has a density of convex protrusions of pattern rolls of 9 points / cm 2 in the ultrasonic fusing apparatus, and the point-shaped fusion of the non-woven structure is confirmed. Since the area density is low, the delamination strength is slightly uneven, and the laminated non-woven structure obtained in Example 13 has the same convex protrusion disposition density of 80 points / cm 2 . Since the density of the spot-shaped fused regions in the non-woven structure was high, the flexibility was slightly inferior to that of Example 1. That is, in the laminated non-woven structure of the present invention, the ratio of the area of all dot-like fused areas to the total surface area of the non-woven structure and the density of dot-like fused areas satisfy the above equations (1) and (2). It can be seen that the tensile strength, the delamination strength, and the flexibility are improved by doing so.

【0029】これに対し,比較例1で得られた積層不織
構造体は,熱エンボスローラを用いた部分熱圧着処理が
施されたものであるため,層間剥離強力が極めて低いも
のであった。すなわち,この例では,点状融着区域にお
いて長繊維不織布層と天然繊維不織布層の境界面に位置
する天然繊維が前記長繊維の融解部に十分に埋設された
状態で固定されていないため,層間剥離強力が極端に低
下した。また,比較例2で得られた積層不織構造体は,
超音波融着装置におけるパターンロールの凸状突起部面
積比が2%であって不織構造体全表面積に対する全点状
融着区域の面積の比が低過ぎるため,引張り強力と層間
剥離強力が共に低いものであった。比較例3で得られた
積層不織構造体は,同面積比が55%であって不織構造
体全表面積に対する全点状融着区域の面積の比が高過ぎ
るため引張り強力と層間剥離強力は高いものの剛軟度が
高く,硬い風合いを有するものであった。また,比較例
4で得られた積層不織構造体は,超音波融着装置におけ
るパターンロールの凸状突起部配設密度が4点/cm2
であって不織構造体における点状融着区域の密度が低過
ぎるため,引張り強力が低く,しかも不織構造体の面内
で層間剥離強力に斑を有するものであった。さらに,比
較例5で得られた積層不織構造体は,同凸状突起部配設
密度が90点/cm2 であって不織構造体における点状
融着区域の密度が高過ぎるため,長繊維が融解されてな
る前記融着区域において天然繊維が融解部に十分に埋設
・固定されて引張り強力と層間剥離強力が共に高いもの
の剛軟度が高くて,硬い風合いを有するものであった。
On the other hand, the laminated non-woven structure obtained in Comparative Example 1 was subjected to partial thermocompression bonding treatment using a hot embossing roller, and therefore had extremely low delamination strength. . That is, in this example, since the natural fibers located at the boundary surface between the long-fiber non-woven fabric layer and the natural-fiber non-woven fabric layer in the spot-shaped fusion-bonded area are not sufficiently fixed in the fused part of the long-fiber, they are not fixed. The delamination strength was extremely reduced. Further, the laminated non-woven structure obtained in Comparative Example 2 was
Since the area ratio of the convex protrusions of the pattern roll in the ultrasonic fusing device is 2% and the ratio of the area of all the point fusion areas to the total surface area of the non-woven structure is too low, the tensile strength and delamination strength are Both were low. The laminated non-woven structure obtained in Comparative Example 3 had the same area ratio of 55%, and the ratio of the area of all spot-shaped fused areas to the total surface area of the non-woven structure was too high. Although it had a high hardness, it had a high bending resistance and a hard texture. The laminated non-woven structure obtained in Comparative Example 4 had a pattern roll convex density of 4 points / cm 2 in the ultrasonic fusing device.
However, since the density of the spot-like fused regions in the non-woven structure was too low, the tensile strength was low, and there was uneven delamination strength in the plane of the non-woven structure. Furthermore, in the laminated non-woven structure obtained in Comparative Example 5, the density of the convex projecting portions was 90 points / cm 2 , and the density of the dot-like fused regions in the non-woven structure was too high. In the fusion zone where long fibers were melted, natural fibers were sufficiently embedded and fixed in the fusion zone, and both tensile strength and delamination strength were high, but they had high bending resistance and a hard texture. .

【0030】[0030]

【発明の効果】本発明の積層不織構造体は,ポリエステ
ル系重合体からなる長繊維不織布層と天然繊維同士が機
械的に交絡してなる不織布層とが積層され,前記長繊維
と天然繊維とが融着されてなる点状融着区域とを有し,
前記点状融着区域において前記両不織布層の少なくとも
境界面に位置する天然繊維が前記長繊維の融解部に埋設
された状態で固定されることにより全体として一体化さ
れてなるものであって,引張り強力と層間剥離強力が高
く,柔軟性が優れ,可染性を有し,吸水性と疎水性を併
せて具備し,さらに耐摩耗性が高く,医療・衛生材用,
衣料用あるいは生活関連材用の素材として好適である。
The laminated non-woven structure of the present invention comprises a long-fiber non-woven fabric layer made of a polyester polymer and a non-woven fabric layer in which natural fibers are mechanically entangled with each other. And a point-like fused area in which and are fused,
Natural fibers located at least at the boundary surface of both the non-woven fabric layers in the point fusion area are fixed in a state of being embedded in the fusion part of the long fibers, thereby being integrated as a whole, High tensile strength and delamination strength, excellent flexibility, dyeability, water absorption and hydrophobicity, high abrasion resistance, medical and sanitary materials,
It is suitable as a material for clothing or life related materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層不織構造体における点状融着区域
の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a dot-like fused area in a laminated nonwoven structure of the present invention.

【符号の説明】[Explanation of symbols]

1:点状融着区域において融解したポリエステル系長繊
維層 2:天然繊維
1: Polyester long fiber layer melted in the spot-shaped fusion zone 2: Natural fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリエステル系重合体からなる長繊維で
構成される不織布層と天然繊維同士が機械的に交絡して
なる不織布層とが積層され,かつ前記長繊維と天然繊維
とが融着されてなる点状融着区域を有する積層不織構造
体であって,前記点状融着区域において前記両不織布層
の少なくとも境界面に位置する天然繊維が,不織構造体
全表面積に対する全点状融着区域の面積の比A(%)及
び点状融着区域密度B(点/cm2 )がそれぞれ下記式
(1)及び(2)を満足する前記長繊維の融解部に埋設
された状態で固定されることにより全体として一体化さ
れてなることを特徴とする積層不織構造体。 4≦A(%)≦50 ・・・・・・・・・・・・・・・・・・・・・・(1) 7≦B(点/cm2 )≦80 ・・・・・・・・・・・・・・・・・・(2)
1. A non-woven fabric layer composed of long fibers made of a polyester polymer and a non-woven fabric layer in which natural fibers are mechanically entangled with each other are laminated, and the long fibers and the natural fibers are fused to each other. In the laminated non-woven structure having dot-shaped fused areas, the natural fibers located at least at the boundary surface of the two non-woven fabric layers in the dot-shaped fused areas are all dot-shaped with respect to the total surface area of the non-woven structure. A state in which the area ratio A (%) of the fusion-bonding area and the dot-like fusion-bonding area density B (points / cm 2 ) satisfy the following formulas (1) and (2), respectively, and are embedded in the fusion part of the long fiber. A laminated non-woven structure characterized by being integrated as a whole by being fixed by. 4 ≦ A (%) ≦ 50 (1) 7 ≦ B (points / cm 2 ) ≦ 80・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2)
JP6232245A 1994-08-31 1994-08-31 Laminated nonwoven structural material Pending JPH0874162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6232245A JPH0874162A (en) 1994-08-31 1994-08-31 Laminated nonwoven structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6232245A JPH0874162A (en) 1994-08-31 1994-08-31 Laminated nonwoven structural material

Publications (1)

Publication Number Publication Date
JPH0874162A true JPH0874162A (en) 1996-03-19

Family

ID=16936253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6232245A Pending JPH0874162A (en) 1994-08-31 1994-08-31 Laminated nonwoven structural material

Country Status (1)

Country Link
JP (1) JPH0874162A (en)

Similar Documents

Publication Publication Date Title
EP0418493A1 (en) A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
JPH09209254A (en) Laminated nonwoven fabric and its production
JP3305453B2 (en) Laminated non-woven structure
JPH073606A (en) Laminated non-woven fabric and production thereof
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JPH07125128A (en) Biodegradable nonwoven laminate
JPH08109567A (en) Laminated nonwoven structure and its production
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JPH0874162A (en) Laminated nonwoven structural material
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JPH0768686A (en) Laminated nonwoven structure
JPH06240553A (en) Composite nonwoven fabric and its production
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH083855A (en) Laminated nonwoven structure
JPH07266479A (en) Laminated nonwoven structure
JPH07227338A (en) Head rest cover
JPH083856A (en) Laminated nonwoven structure
JP3784093B2 (en) Disposable handbag
JPH07238403A (en) Apron
JPH07316968A (en) Composite non-woven fabric and its production
JPH07316969A (en) Laminated nonwoven structure
JPH08109559A (en) Laminated nonwoven structure
JPH08311758A (en) Stretchable composite web and its production