JPH07125128A - Biodegradable nonwoven laminate - Google Patents

Biodegradable nonwoven laminate

Info

Publication number
JPH07125128A
JPH07125128A JP5300904A JP30090493A JPH07125128A JP H07125128 A JPH07125128 A JP H07125128A JP 5300904 A JP5300904 A JP 5300904A JP 30090493 A JP30090493 A JP 30090493A JP H07125128 A JPH07125128 A JP H07125128A
Authority
JP
Japan
Prior art keywords
woven fabric
fibers
laminated
woven
nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5300904A
Other languages
Japanese (ja)
Inventor
So Yamaguchi
創 山口
Shigetaka Nishimura
重孝 西村
Yoshimoto Miyahara
芳基 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5300904A priority Critical patent/JPH07125128A/en
Publication of JPH07125128A publication Critical patent/JPH07125128A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a biodegradable nonwoven laminate having high separation strength suitable for medical and sanitary use by laminating a nonwoven fabric layer composed of biodegradable thermoplastic synthetic filaments and a nonwoven fabric layer formed of natural fibers being entangled each other. CONSTITUTION:This structure is formed by laminating two nonwoven fabrics, wherein one is composed of biodegradable thermoplastic synthetic filaments consisting of an aliphatic polyester copolymer obtained by ring-opening polymerization, and the other is composed of natural fibers being mechanically entangled each other. This is also a laminated nonwoven structural body having dotted fusional areas formed of synthetic filaments and natural fibers that are fused one another, in which in the dotted fusional areas, the natural fibers 2 situated at least on the boundary surface of both the nonwoven layers are fixed to be integrated with the synthetic filaments in the form of being buried in its fused parts 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,熱可塑性合成長繊維不
織布層と天然繊維不織布層とが積層されてなる積層不織
構造体であって,生分解性を有し,剥離強力が高く,吸
水性と疎水性を併せて有し,医療・衛生材料,拭き取り
布や包装材料あるいは家庭用又は業務用の生塵捕集用袋
等の一般生活関連材,あるいは農業用に代表される産業
資材用の各素材として好適な積層不織構造体に関するも
のである。
FIELD OF THE INVENTION The present invention relates to a laminated non-woven structure comprising a thermoplastic synthetic filament non-woven fabric layer and a natural fiber non-woven fabric layer, which has biodegradability and high peel strength. Having both water absorbency and hydrophobicity, medical / sanitary materials, wiping cloths and packaging materials, general household goods such as household or commercial dust collection bags, or industrial materials typified by agriculture. The present invention relates to a laminated non-woven structure suitable as each material for use.

【0002】[0002]

【従来の技術】従来から,医療・衛生材料や一般生活関
連材あるいは一部の産業資材用の素材としてポリエチレ
ンやポリプロピレン,ポリエステル,ポリアミド等の熱
可塑性合成重合体繊維からなる不織布が知られている。
これらの不織布は,通常の自然環境下では化学的に安定
な前記のような重合体から構成されるため自己分解性が
なく,したがって使い捨て用途では,焼却あるいは埋め
立てという方法で処理されているのが実情である。焼却
処理に関しては,多大の費用が必要とされ,しかも廃棄
プラスチツクによる公害を生じる等,自然・生活環境保
護の観点からして問題である。一方,埋め立てに関して
は,上述したように素材が通常の自然環境下では化学的
に安定であるため土中で長期間にわたって元の状態のま
ま保持されるという問題がある。これらの問題を解決す
べく,生分解性を有する素材からなる不織布を選択する
ことが考えられる。例えば,乾式法あるいは溶液浸漬法
により得られるビスコースレーヨン短繊維不織布,湿式
スパンボンド法により得られるキユプラレーヨン長繊維
不織布,コツトンや麻に代表されるセルロース系繊維か
らなる短繊維不織布,その他,キチン等の多糖類,カツ
トグツト(脹線)あるいはアテロコラーゲン等の蛋白
質,ポリペプチド(ポリアミノ酸),微生物が自然界で
作るポリ−3−ヒドロキシブチレート,ポリ−3−ヒド
ロキシバリレート,ポリ−3−ヒドロキシカプロレート
等の微生物ポリエステルといった天然物の化学繊維から
なる不織布,ポリグリコリドやポリラクチド等の合成脂
肪族ポリエステルの合成繊維からなる不織布が挙げられ
る。しかしながら,前者の各種レーヨン繊維,セルロー
ス系繊維あるいは前記天然物の化学繊維からなる不織布
は,生分解性は有するものの不織布自体の構成素材自体
の機械的強度が低くかつ親水性があるため,吸水・湿潤
時の機械的強度低下が著しい,また柔軟性が劣る,さら
に素材自体が非熱可塑性であるため熱接着性を有しない
等の種々の問題を有している。また,後者の合成脂肪族
ポリエステル繊維からなる不織布は,生分解性を有しか
つ機械的強度は向上するものの細繊度化が困難であるた
め,柔軟性の兼備を要求されるような用途分野に適用す
ることが困難であり,しかも重合体特性の点で湿式紡糸
法に頼らざるを得ないため,不織布を得るに際して段階
的な複数の工程を必要とし,また加工コストを低減しよ
うとすると大規模な装置を要するという問題を有してい
る。
2. Description of the Related Art Nonwoven fabrics made of thermoplastic synthetic polymer fibers such as polyethylene, polypropylene, polyester and polyamide have been known as materials for medical / sanitary materials, general living materials and some industrial materials. .
Since these non-woven fabrics are not self-decomposable because they are composed of the above-mentioned polymers that are chemically stable under normal natural environment, they are treated by incineration or landfill in disposable applications. It's a reality. Incineration is a problem from the viewpoint of protecting the natural and living environment, because it requires a great deal of expense and causes pollution due to waste plastics. On the other hand, with respect to landfill, there is a problem that the material is chemically stable in a normal natural environment as described above, and therefore, is kept in the original state for a long time in the soil. In order to solve these problems, it is possible to select a non-woven fabric made of a biodegradable material. For example, a viscose rayon short fiber nonwoven fabric obtained by a dry method or a solution dipping method, a Kyupra rayon long fiber nonwoven fabric obtained by a wet spunbond method, a short fiber nonwoven fabric composed of cellulosic fibers represented by Kotsuton and hemp, and others, Polysaccharides such as chitin, protein (polyamino acid) such as cutout (inflation) or atelocollagen, poly-3-hydroxybutyrate, poly-3-hydroxyvalerate, poly-3-hydroxy produced by microorganisms in the natural world Examples include non-woven fabrics made of natural chemical fibers such as microbial polyesters such as caprolate, and non-woven fabrics made of synthetic aliphatic polyester synthetic fibers such as polyglycolide and polylactide. However, the former non-woven fabric made of various rayon fibers, cellulosic fibers or the above-mentioned natural chemical fibers has biodegradability, but the constituent material of the non-woven fabric itself has low mechanical strength and hydrophilicity. There are various problems such as a significant decrease in mechanical strength when wet, poor flexibility, and lack of thermal adhesiveness because the material itself is non-thermoplastic. The latter non-woven fabric made of synthetic aliphatic polyester fiber has biodegradability and improved mechanical strength, but it is difficult to make it finer. Therefore, it is suitable for applications requiring flexibility. It is difficult to apply, and because it has to rely on the wet spinning method in terms of polymer properties, it requires multiple stepwise steps to obtain a non-woven fabric, and it is a large scale to reduce the processing cost. There is a problem in that a different device is required.

【0003】一方,積層不織構造体として,従来から,
熱可塑性合成繊維不織布層と天然繊維不織布層とが積層
されてなる積層不織構造体が知られている。例えば,特
公昭54−24506号公報には,熱可塑性合成繊維不
織布からなる通気性熱溶着層と天然繊維等からなる通気
性非熱溶着層とが積層され,非熱溶着層上に熱溶着性物
質が点在的に配置されかつ熱溶着性物質と熱溶着層との
溶融部が非熱溶着層の両面から浸透して前記非熱溶着層
を接着挟持した構造を有する積層不織構造体が提案され
ている。しかしながら,この積層不織構造体は,天然繊
維が積層されているため吸水性は優れるものの,熱可塑
性合成繊維不織布が生分解性を有する素材からなるもの
ではなく,使い捨て用途の場合に上述したような問題を
生じる。しかも,この積層不織構造体は,これを製造す
るに際して通気性熱溶着層と通気性非熱溶着層とを積層
する工程と,非熱溶着層上に含浸用熱溶着性シート層を
重合し,超音波融着処理により熱溶着性物質と熱溶着層
との溶融部が非熱溶着層の両面から浸透して前記非熱溶
着層を接着挟持した構造を発現する工程と,前記含浸用
熱溶着性シートをその溶融部を残して剥離する工程とを
必要とするなど製造技術の観点からすれば煩雑で,経済
性にも劣るものであった。
On the other hand, as a laminated non-woven structure, conventionally,
A laminated non-woven structure is known in which a thermoplastic synthetic fiber nonwoven fabric layer and a natural fiber nonwoven fabric layer are laminated. For example, in Japanese Examined Patent Publication No. 54-24506, a breathable heat-welding layer made of a thermoplastic synthetic fiber nonwoven fabric and a breathable non-heat-welding layer made of natural fibers are laminated, and the heat-welding property is formed on the non-heat-welding layer. A laminated non-woven structure having a structure in which substances are arranged in a scattered manner, and a fusion portion of a heat-welding substance and a heat-welding layer penetrates from both sides of a non-heat-welding layer to sandwich and sandwich the non-heat-welding layer. Proposed. However, this laminated non-woven structure is excellent in water absorption because natural fibers are laminated, but the thermoplastic synthetic fiber non-woven fabric is not made of a material having biodegradability. Cause problems. In addition, this laminated non-woven structure has a step of laminating a breathable heat-welding layer and a breathable non-heat-welding layer when manufacturing the same, and polymerizing an impregnating heat-welding sheet layer on the non-heat-welding layer. , A step of developing a structure in which the fused portion of the heat-welding substance and the heat-welding layer permeates from both sides of the non-heat-welding layer by ultrasonic fusion treatment to sandwich and sandwich the non-heat-welding layer, and the heat for impregnation. From the viewpoint of manufacturing technology, such as requiring a step of peeling the weldable sheet leaving the melted portion, it is complicated and economically inferior.

【0004】[0004]

【発明が解決しようとする課題】本発明は,熱可塑性合
成長繊維不織布層と天然繊維不織布層とが積層されてな
る積層不織構造体であって,生分解性を有し,剥離強力
が高く,吸水性と疎水性を併せて有し,医療・衛生材
料,拭き取り布や包装材料あるいは家庭用又は業務用の
生塵捕集用袋等の一般生活関連材,あるいは農業用に代
表される産業資材用の各素材として好適な積層不織構造
体を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is a laminated non-woven structure comprising a thermoplastic synthetic continuous fiber non-woven fabric layer and a natural fiber non-woven fabric layer, which has biodegradability and peel strength. It has high water absorbency and hydrophobicity, and is represented by medical / sanitary materials, wiping cloths, packaging materials, general household materials such as household or commercial dust collection bags, and agriculture. It is intended to provide a laminated nonwoven structure suitable as each material for industrial materials.

【0005】[0005]

【課題を解決するための手段】本発明者らは,前記課題
を達成すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,以下の構成をその要旨とするものであ
る。 (1)開環重合で得られる脂肪族ポリエステル系重合体
からなる生分解性熱可塑性合成長繊維で構成された不織
布層と天然繊維同士が機械的に交絡してなる不織布層と
が積層され,かつ前記合成長繊維と天然繊維とが融着さ
れてなる点状融着区域を有する積層不織構造体であっ
て,前記点状融着区域において前記両不織布層の少なく
とも境界面に位置する天然繊維が前記合成長繊維の融解
部に埋設された状態で固定されることにより全体として
一体化されてなることを特徴とする生分解性積層不織構
造体。 (2)開環重合で得られる脂肪族ポリエステル系重合体
が,ポリ−ε−カプロラクトン及び/又はポリ−β−プ
ロピオラクトンである前記生分解性積層不織構造体。
The inventors of the present invention have arrived at the present invention as a result of extensive studies to achieve the above object. That is, the present invention has the following configurations as its gist. (1) A non-woven fabric layer composed of biodegradable thermoplastic synthetic long fibers made of an aliphatic polyester polymer obtained by ring-opening polymerization and a non-woven fabric layer formed by mechanically entangled natural fibers are laminated. A laminated non-woven structure having a point-like fused area formed by fusing the synthetic long fibers and the natural fibers, wherein the natural non-woven fabric is located at least at the boundary surface between the two non-woven fabric layers in the point-like fused area. A biodegradable laminated non-woven structure, characterized in that the fibers are fixed in a state of being embedded in the melted portion of the synthetic continuous fiber so as to be integrated as a whole. (2) The biodegradable laminated nonwoven structure, wherein the aliphatic polyester polymer obtained by ring-opening polymerization is poly-ε-caprolactone and / or poly-β-propiolactone.

【0006】次に,本発明を詳細に説明する。本発明に
おける生分解性熱可塑性合成長繊維不織布層は,開環重
合で得られる生分解性熱可塑性脂肪族ポリエステル系重
合体繊維からなるスパンボンド不織布である。この生分
解性熱可塑性脂肪族ポリエステル系重合体とは,ポリ−
ω−ヒドロキシアルカノエート系を主体とするポリエス
テルであり,例えばポリ−ε−カプロラクトンやポリ−
β−プロピオラクトン又はこれらの共重合体が挙げられ
る。なお,本発明においては,上述したところの生分解
性熱可塑性重合体に,必要に応じて,例えば艶消し剤,
顔料,光安定剤,熱安定剤,酸化防止剤等の各種添加剤
を本発明の効果を損なわない範囲内で添加することがで
きる。
Next, the present invention will be described in detail. The biodegradable thermoplastic synthetic continuous fiber non-woven fabric layer in the present invention is a spunbonded non-woven fabric composed of biodegradable thermoplastic aliphatic polyester polymer fibers obtained by ring-opening polymerization. This biodegradable thermoplastic aliphatic polyester polymer is a poly-
ω-Hydroxyalkanoate-based polyesters such as poly-ε-caprolactone and poly-
β-propiolactone or a copolymer thereof may be used. In the present invention, the biodegradable thermoplastic polymer described above may be added, for example, to a matting agent, if necessary.
Various additives such as pigments, light stabilizers, heat stabilizers and antioxidants can be added within a range that does not impair the effects of the present invention.

【0007】本発明における生分解性熱可塑性合成長繊
維不織布層は,前記重合体長繊維からなるスパンボンド
不織布であって,この長繊維は,前記重合体単独からな
るものの他に前記重合体の中から選択された2種以上の
相異なる重合体が各々溶融紡糸性を損なわない範囲内で
ブレンドされたブレンド物からなるものであってもよ
い。また,この長繊維の形態は,前記重合体の中から選
択された2種の相異なる重合体が芯鞘型あるいは並列型
に配されたものであってもよい。
The biodegradable thermoplastic synthetic continuous fiber non-woven fabric layer in the present invention is a spunbonded non-woven fabric composed of the above-mentioned polymer continuous fibers. It may consist of a blended product in which two or more different polymers selected from the above are blended within a range that does not impair the melt spinnability. Further, the form of the long fibers may be one in which two different polymers selected from the above polymers are arranged in a core-sheath type or a parallel type.

【0008】スパンボンド不織布に関してであるが,ま
ず前述した重合体を単独で,あるいは前記重合体の中か
ら選択された2種以上の相異なる重合体がブレンドされ
たブレンド物を,あるいは前記重合体の中から選択され
た2種の相異なる重合体を芯鞘型あるいは並列型に配す
るようにしていわゆるスパンボンド法で溶融紡出し,す
なわち紡糸口金から溶融紡出・冷却し,エアーサツカ等
の引き取り手段を用い引取り速度を例えば2000〜6
000m/分として牽引・細化した後,開繊器を用いて
開繊し,移動する捕集面上に捕集・堆積させることによ
って,容易にスパンボンド不織ウエブを得ることができ
る。この場合,前述した重合体から選択された非相溶性
の2種以上の重合体を用いて複合紡出し,前述したと同
様にして不織ウエブを作成し,得られた不織ウエブに機
械的割繊処理を施して各重合体単独からなる割繊繊維と
する方法を採用すると,より容易に極細長繊維のスパン
ボンド不織ウエブを得ることができる。なお,この非相
溶性の2種以上の重合体としてはほぼ同等の融点を有す
るものであってもよいが,相互に融点を少なくとも20
℃異にする重合体を選択することもできる。スパンボン
ド法で溶融紡出するに際しては,前記脂肪族ポリエステ
ル系重合体としてASTM−D−1238(L)に準じ
て温度200℃で測定したメルトフローレート値が20
g/10分以上100g/10分以下のものを採用する
のが好ましい。このメルトフローレート値が20g/1
0分未満であると重合体の粘度が高過ぎて得られる不織
布が硬い風合いのものとなるため,一方,メルトフロー
レート値が100g/10分を超えると重合体の粘度が
低過ぎて溶融紡糸時の高速製糸性が低下するため,いず
れも好ましくない。また,その引取り速度を2000〜
6000m/分とするのがよく,引取り速度が2000
m/分未満であると紡出繊維の分子配向度が十分に増大
しないため得られるウエブの機械的特性や寸法安定性が
向上せず,一方,引取り速度が6000m/分を超える
と溶融紡糸時の製糸性が低下し,いずれも好ましくな
い。
Regarding the spunbonded nonwoven fabric, first, the above-mentioned polymer alone, or a blended product of two or more different polymers selected from the above-mentioned polymers, or the above-mentioned polymer Melt spinning by so-called spunbond method by arranging two different polymers selected from the above in a core-sheath type or a parallel type, that is, melt spinning from a spinneret and cooling, and take-up of air sucker etc. The take-up speed is, for example, 2000 to 6
A spunbond non-woven web can be easily obtained by pulling and thinning at 000 m / min, then opening with a fiber opener, and collecting and depositing on a moving collecting surface. In this case, composite spinning was performed using two or more incompatible polymers selected from the above polymers, a nonwoven web was prepared in the same manner as described above, and the resulting nonwoven web was mechanically If a method of splitting fibers into split fibers composed of each polymer alone is adopted, a spunbond nonwoven web of ultrafine long fibers can be obtained more easily. The incompatible two or more kinds of polymers may have melting points that are substantially equal to each other, but they have melting points of at least 20%.
It is also possible to select polymers that differ in temperature. When melt-spun by the spunbond method, the melt flow rate value measured at a temperature of 200 ° C. according to ASTM-D-1238 (L) as the aliphatic polyester polymer is 20.
It is preferable to adopt a material having a content of g / 10 minutes or more and 100 g / 10 minutes or less. This melt flow rate value is 20 g / 1
If it is less than 0 minutes, the viscosity of the polymer is too high and the resulting nonwoven fabric has a hard texture. On the other hand, if the melt flow rate value is more than 100 g / 10 minutes, the viscosity of the polymer is too low and melt spinning is performed. Both are not preferable because the high-speed spinnability at that time is deteriorated. Also, the take-up speed is 2000-
6000m / min is good, and take-up speed is 2000
When it is less than m / min, the degree of molecular orientation of the spun fiber does not sufficiently increase, so that the mechanical properties and dimensional stability of the obtained web are not improved, while when the take-up speed exceeds 6000 m / min, melt spinning is performed. At that time, the spinning property is deteriorated, which is not preferable.

【0009】スパンボンド不織布では,その機械的特性
と寸法安定性の向上を目的に,得られた不織ウエブに部
分的熱圧接処理を施すことが好ましい。ウエブに部分的
な熱圧接処理を施すに際しては,公知の方法を採用する
ことができる。例えば,加熱されたエンボスローラと表
面が平滑な金属ローラとを用いて長繊維間に点状融着区
域を形成する方法である。加熱されたエンボスローラを
用いてエンボスパターン部に存在する長繊維同士を部分
的に熱圧接させるに際しては,熱エンボスローラの個々
の圧接点面積を円形換算にて0.1〜1.0mm2 ,圧
接面積率を2〜30%好ましくは4〜20%,かつ圧接
点密度を2〜80点/cm2 好ましくは4〜60点/c
2 とし,圧接面積率が2%未満あるいは圧接点密度が
2点/cm2 未満であると熱接着域が少な過ぎるため不
織布の機械的強度と形態保持性そして寸法安定性が低下
し,一方,圧接面積率が30%を超えあるいは圧接点密
度が60点/cm2 を超えると不織布が剛直化して柔軟
性が損なわれるため,いずれも好ましくない。また,ロ
ーラ温度を,通常は用いる脂肪族ポリエステル系重合体
の融点より5〜40℃程度低い温度とするのが好まし
く,この温度を適宜選択することにより長繊維間の接着
力が高くすなわち機械的強度が優れ,しかも柔軟性に富
む不織布を得ることができる。熱エンボスローラのエン
ボスパターンは,その圧接面積率が2〜30%の範囲内
であれば特に限定されるものではなく,丸型,楕円型,
菱型,三角型,T字型,井型等,任意の形状でよい。な
お,この熱エンボスローラを用いる部分的熱圧接処理
は,連続工程あるいは別工程のいずれであってもよい。
In the spunbonded non-woven fabric, it is preferable to subject the obtained nonwoven web to a partial hot press treatment for the purpose of improving its mechanical properties and dimensional stability. A publicly known method can be adopted when the web is subjected to the partial heat-pressing treatment. For example, there is a method of forming a point fusion zone between long fibers by using a heated embossing roller and a metal roller having a smooth surface. When the long fibers existing in the embossed pattern portion are partially hot-pressed by using the heated embossing roller, the individual pressure contact area of the hot embossing roller is converted into a circle of 0.1 to 1.0 mm 2 , The pressure contact area ratio is 2 to 30%, preferably 4 to 20%, and the pressure contact density is 2 to 80 points / cm 2, preferably 4 to 60 points / c.
and m 2, the mechanical strength and shape retention and dimensional stability of the nonwoven fabric for heat bonding zone with pressure area ratio or pressure point density less than 2% is less than 2 points / cm 2 is too small decreases, whereas However, if the pressure contact area ratio exceeds 30% or the pressure contact density exceeds 60 points / cm 2 , the nonwoven fabric becomes rigid and the flexibility is impaired. The roller temperature is preferably lower than the melting point of the aliphatic polyester polymer usually used by about 5 to 40 ° C. By appropriately selecting this temperature, the adhesive force between the long fibers is high, that is, the mechanical strength is high. It is possible to obtain a non-woven fabric having excellent strength and flexibility. The embossing pattern of the heat embossing roller is not particularly limited as long as the pressure contact area ratio is within the range of 2 to 30%, and is round, elliptic,
Any shape such as a rhombus, a triangle, a T-shape, and a well may be used. The partial hot press contacting process using the hot embossing roller may be a continuous process or another process.

【0010】本発明における生分解性熱可塑性合成長繊
維不織布層は,前述したような製法により得られるもの
であり,その構成繊維の単繊維繊度を1.0デニール以
上8.0デニール以下好ましくは2.0デニール以上
5.0デニール以下とするのがよい。単繊維繊度を1.
0デニール以上8.0デニール以下とすることによって
機械的特性と寸法安定性に優れた積層不織構造体を得る
ことができる。
The biodegradable thermoplastic synthetic continuous fiber non-woven fabric layer in the present invention is obtained by the above-mentioned manufacturing method, and the single fiber fineness of its constituent fibers is preferably 1.0 denier or more and 8.0 denier or less. It is preferable to set it to 2.0 denier or more and 5.0 denier or less. Single fiber fineness is 1.
By setting it to 0 denier or more and 8.0 denier or less, a laminated nonwoven structure excellent in mechanical properties and dimensional stability can be obtained.

【0011】本発明における生分解性熱可塑性合成長繊
維不織布層は,その目付けが10〜70g/m2 である
のが好ましい。目付けが10g/m2 未満であると繊維
同士の緻密な重なりの程度が低く,この不織布に天然繊
維不織布を積層・一体化して得られる積層不織構造体の
層間接着力が低下したりあるいは地合いが劣るため,好
ましくない。一方,目付けが70g/m2 を超えると厚
みが大きくなり過ぎ,得られる積層不織構造体を例えば
柔軟性が要求されるような分野に適用することが困難と
なり,あるいは例えば医療・衛生材料や生活関連材等の
直接皮膚に接触する分野における素材として使用したと
き皮膚を刺激し,しかもこの不織布に天然繊維不織布を
積層した後,超音波融着装置を用い融着処理を施して一
体化するに際して加工速度を遅くしたりあるいは多大の
超音波エネルギを供給するなどの必要が生じるため,好
ましくない。
The biodegradable thermoplastic synthetic filament non-woven fabric layer in the present invention preferably has a basis weight of 10 to 70 g / m 2 . When the basis weight is less than 10 g / m 2 , the degree of dense overlap between fibers is low, and the interlaminar adhesive strength of the laminated non-woven structure obtained by laminating and integrating a natural fiber non-woven fabric with this non-woven fabric is reduced or the texture is formed. Is inferior because it is inferior. On the other hand, when the basis weight exceeds 70 g / m 2 , the thickness becomes too large, and it becomes difficult to apply the obtained laminated non-woven structure to a field requiring flexibility, for example, medical or hygiene materials or When used as a material in the field of direct contact with the skin such as life related materials, it stimulates the skin, and after laminating a natural fiber non-woven fabric on this non-woven fabric, it is fused by using an ultrasonic fusing device and integrated. At this time, it is not preferable because it is necessary to reduce the processing speed or supply a large amount of ultrasonic energy.

【0012】次に,本発明における天然繊維同士が機械
的に交絡してなる不織布層に関してであるが,この不織
布層を構成する天然繊維とは,木綿繊維や麻繊維等のセ
ルロース系繊維の他に,ラミー等の動物繊維,絹短繊
維,天然パルプ,レーヨンに代表される各種再生短繊維
をも包含するものである。本発明では,この不織布層の
出発原料として,晒し加工の施されていないコーマ糸,
晒し加工された晒し綿,あるいは織物・編物から得られ
る各種反毛を用いることもできる。出発原料として反毛
を用いる場合,効果的に用い得る反毛機としては,ラツ
グマシン,ノツトブレーカ,ガーネツトマシン,廻切機
が挙げられる。用いる反毛機の種類と組み合わせは,反
毛される織物・編物等の布帛形状や構成する糸の太さあ
るいは撚りの強さにもよるが,同一の反毛機を複数台直
列に連結したり,2種以上の反毛機を組み合わせて使用
したりするとより効果的である。この反毛機による解繊
率(%)は30〜95%の範囲であるのが好ましい。こ
の解繊率が30%未満であると,カードウエブ中に未解
繊繊維が存在するため不織布表面にザラツキが生じるの
みでなく,例えば高圧液体柱状流処理により天然繊維同
士を三次元的機械的交絡を施すに際して未解繊繊維部分
を高圧液体柱状流が十分貫通せず,一方,解繊率が95
%を超えると,前記生分解性熱可塑性合成長繊維不織布
と積層・一体化して得られる積層不織構造体において,
十分な表面摩擦強度が得られず,いずれも好ましくな
い。なお,ここでいう解繊率(%)とは,下記式(1)
により求められるものである。 解繊率(%)=(被反毛重量−糸状物重量)×100/被反毛重量・・(1)
Next, regarding the non-woven fabric layer in which the natural fibers are mechanically entangled with each other in the present invention, the natural fibers constituting the non-woven fabric layer include cellulosic fibers such as cotton fiber and hemp fiber. It also includes animal fibers such as ramie, silk staple fibers, natural pulp, and various recycled staple fibers represented by rayon. In the present invention, as a starting material for this non-woven fabric layer, combed yarn that has not been subjected to bleaching processing,
Bleached cotton that has been bleached or various fluff obtained from woven or knitted fabric can also be used. When using fluff as the starting material, the fluff machine that can be effectively used includes a ratchet machine, a notch breaker, a garnet machine, and a cutting machine. The type and combination of anti-fluffing machines used depend on the shape of the woven or knitted fabric to be fluffed and the thickness or twisting strength of the constituent threads, but multiple identical anti-fluffing machines are connected in series. It is more effective to use two or more types of anti-hairbrushing machine in combination. The defibration rate (%) by the fluffing machine is preferably in the range of 30 to 95%. When the defibration rate is less than 30%, unwoven fibers are present in the card web, so that not only the surface of the non-woven fabric is rough but also natural fibers are three-dimensionally mechanically processed by the high pressure liquid columnar flow treatment. When the entanglement is performed, the high-pressure liquid columnar flow does not sufficiently penetrate the undisentangled fiber portion, while the disentanglement rate is 95
%, In the laminated non-woven structure obtained by laminating and integrating with the biodegradable thermoplastic synthetic filament nonwoven fabric,
Sufficient surface friction strength cannot be obtained, and neither is preferable. In addition, the defibration rate (%) here means the following formula (1)
Is required by. Disentanglement rate (%) = (weight of woven fabric-weight of filamentous material) x 100 / weight of woven fabric ... (1)

【0013】本発明における天然繊維不織布層は,前記
天然繊維からなり,かつ繊維同士が機械的に交絡してな
るものである。すなわち,天然繊維同士が,高圧液体柱
状流処理あるいはニードルパンチング処理により機械的
に交絡したものであり,特に前者の場合,繊維同士が三
次元的に交絡して不織布の嵩高性が向上すると共に柔軟
性も向上するため,例えば前記生分解性熱可塑性合成長
繊維不織布と積層・一体化して得られる積層不織構造体
を衛生材用あるいは生活関連材用の素材として用いる上
で好ましい。この不織布層は,前記天然繊維素材の中か
ら選択された単一素材あるいは複数種の素材が混合され
てなるものを出発原料とし,カード機を用いて所定目付
けのカードウエブを作成し,次いで得られたウエブに高
圧液体柱状流処理あるいはニードルパンチング処理によ
り繊維間に機械的交絡を施すことにより容易に得ること
ができる。このカードウエブは,構成繊維の配列度合に
よって種々選択することができ,例えばカード機の進行
方向に配列したパラレルウエブ,パラレルウエブがクロ
スレイドされたウエブ,ランダムに配列したランダムウ
エブあるいは両者の中程度に配列したセミランダムウエ
ブ等が挙げられる。また,衣料用素材としての展開を図
りたい場合には,不織布強力の縦/横比が概ね1/1と
なるカードウエブを使用するのが好ましい。
The natural fiber non-woven fabric layer in the present invention is made of the above-mentioned natural fibers, and the fibers are mechanically entangled with each other. That is, the natural fibers are mechanically entangled by the high-pressure liquid columnar flow treatment or the needle punching treatment. Especially in the former case, the fibers are entangled three-dimensionally and the bulkiness of the non-woven fabric is improved and the flexibility is high. Since the property is also improved, for example, a laminated non-woven structure obtained by laminating and integrating with the biodegradable thermoplastic synthetic long-fiber nonwoven fabric is preferable as a material for sanitary materials or life-related materials. This non-woven fabric layer is made of a single material or a mixture of a plurality of materials selected from the above natural fiber materials as a starting material. It can be easily obtained by subjecting the obtained web to mechanical entanglement between fibers by high pressure liquid columnar flow treatment or needle punching treatment. The card web can be variously selected according to the degree of arrangement of the constituent fibers. For example, a parallel web arranged in the traveling direction of the card machine, a web in which parallel webs are crosslaid, a random web arranged in random, or a medium degree of both. Examples thereof include a semi-random web and the like. Further, when it is desired to develop it as a material for clothing, it is preferable to use a card web in which the aspect ratio of the strength of the nonwoven fabric is about 1/1.

【0014】高圧液体柱状流処理の場合,例えば孔径が
0.05〜1.5mm特に0.1〜0.4mmの噴射孔
を孔間隔を0.05〜5mmで1列あるいは複数列に多
数配列した装置を用い,噴射圧力が5〜150kg/c
2 Gの高圧液体を前記噴射孔から噴射し,多孔性支持
部材上に載置したカードウエブに衝突させることにより
繊維間に三次元的交絡を付与する方法を採用する。噴射
孔の配列は,このカードウエブの進行方向と直交する方
向に列状に配列する。高圧液体としては,常温の水ある
いは温水を用いることができる。噴射孔とウエブとの間
の距離は,1〜15cmとするのがよい。この距離が1
cm未満であるとこの処理により得られる不織布の地合
いが乱れ,一方,この距離が15cmを超えると液体流
がウエブに衝突したときの衝撃力が低下して三次元的な
交絡が十分に施されず,いずれも好ましくない。この高
圧液体柱状流による処理は,少なくとも2段階に別けて
施とよい。すなわち,第1段階の処理として圧力が5〜
40kg/cm2 Gの高圧液体流を噴出し前記ウエブに
衝突させ,ウエブの構成繊維同士を予備的に交絡させ
る。この第1段階の処理において,液体流の圧力が5k
g/cm2 G未満であるとウエブの構成繊維同士を予備
的に交絡させることができず,一方,液体流の圧力が4
0kg/cm2 Gを超えるとウエブに高圧液体流を噴出
し衝突させたときウエブの構成繊維が液体流の作用によ
って乱れ,ウエブに地合いの乱れや目付け斑が生じるた
め,いずれも好ましくない。引き続き,第2段階の処理
として圧力が50〜150kg/cm2 Gの高圧液体流
を噴出し前記ウエブに衝突させ,ウエブの構成繊維同士
を三次元的に交絡させて全体として緻密に一体化させ
る。この第2段階の処理において,液体流の圧力が50
kg/cm2 G未満であると,上述したような繊維間の
三次元的交絡を十分に形成することができず,一方,液
体流の圧力が150kg/cm2 Gを超えると,得られ
る不織布の嵩高性と柔軟性が向上せず,いずれも好まし
くない。なお,ウエブの目付けによっては,第2段階の
処理に引き続き第3段階の処理として,第2段階の処理
側と逆の側から第2段階の処理と同様の条件にて再度処
理を施すことにより,表裏共に緻密に繊維同士が交絡し
た不織布を得ることができる。高圧液体柱状流処理を施
すに際して用いる前記ウエブを担持する多孔性支持部材
としては,例えば20〜100メツシユの金網製あるい
は合成樹脂製等のメツシユスクリーンや有孔板など,高
圧液体流がウエブを貫通し得るものであれば特に限定さ
れない。また,多孔性支持部材のメツシユ構成は20本
/25mm〜200本/25mmの範囲であるのが好ま
しく,20本/25mm未満であると,高圧液体柱状流
がウエブに衝突した際に繊維が柱状流と共にメツシユス
クリーンを通過して繊維の脱落が発生し,一方,200
本/25mmを超えると,高圧液体柱状流がウエブとメ
ツシユスクリーンとを通過するに要するエネルギー量が
多大になって生産コストが上昇し,いずれも好ましくな
い。高圧液体流処理を施した後,処理後の前記ウエブか
ら過剰水分を除去する。この過剰水分を除去するに際し
ては,公知の方法を採用することができる。例えばマン
グルロール等の絞り装置を用いて過剰水分をある程度機
械的に除去し,引き続きサクシヨンバンド方式の熱風循
環式乾燥機等の乾燥装置を用いて残余の水分を除去して
不織布を得ることができる。
In the case of the high-pressure liquid columnar flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in one row or a plurality of rows with a hole interval of 0.05 to 5 mm. The injection pressure is 5 to 150 kg / c
A method of injecting a high-pressure liquid of m 2 G from the injection hole and colliding with a card web placed on the porous support member to give a three-dimensional entanglement between the fibers is adopted. The ejection holes are arranged in rows in a direction orthogonal to the traveling direction of the card web. As the high-pressure liquid, room temperature water or warm water can be used. The distance between the injection hole and the web is preferably 1 to 15 cm. This distance is 1
When the distance is less than 15 cm, the texture of the non-woven fabric obtained by this treatment is disturbed. On the other hand, when the distance exceeds 15 cm, the impact force when the liquid flow collides with the web is reduced and the three-dimensional entanglement is sufficiently performed. No, neither is preferable. This high pressure liquid columnar flow treatment may be performed in at least two stages. That is, the pressure is 5 to 5 in the first stage treatment.
A high-pressure liquid flow of 40 kg / cm 2 G is jetted and collided with the web to pre-entangle the constituent fibers of the web. In this first stage treatment, the pressure of the liquid flow is 5k
If it is less than g / cm 2 G, the constituent fibers of the web cannot be pre-entangled with each other, while the pressure of the liquid flow is 4
When the pressure exceeds 0 kg / cm 2 G, when the high-pressure liquid flow is jetted and collided with the web, the constituent fibers of the web are disturbed by the action of the liquid flow, and the web is disturbed in texture and is unsatisfactory. Subsequently, in the second step, a high-pressure liquid flow having a pressure of 50 to 150 kg / cm 2 G is jetted to collide with the web, and the fibers constituting the web are three-dimensionally entangled with each other so as to be densely integrated as a whole. . In this second stage treatment, the pressure of the liquid stream is 50
If it is less than kg / cm 2 G, the above-mentioned three-dimensional entanglement between fibers cannot be sufficiently formed, while if the pressure of the liquid flow exceeds 150 kg / cm 2 G, the resulting nonwoven fabric is obtained. The bulkiness and flexibility are not improved, and both are not preferable. Depending on the basis weight of the web, as a third stage process following the second stage process, the second side process is performed again from the side opposite to the second stage process side under the same conditions as the second stage process. It is possible to obtain a non-woven fabric in which fibers are closely entangled with each other on the front and back. As the porous supporting member for carrying the web used for performing the high-pressure liquid columnar flow treatment, for example, a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 20 to 100 mesh is used as the high-pressure liquid stream. It is not particularly limited as long as it can penetrate. The mesh structure of the porous support member is preferably in the range of 20 fibers / 25 mm to 200 fibers / 25 mm. When it is less than 20 fibers / 25 mm, the fibers become columnar when the high pressure liquid columnar flow collides with the web. As the flow passes through the mesh screen, fibers drop out, while
When the number exceeds 25 mm / column, the amount of energy required for the high-pressure liquid columnar flow to pass through the web and the mesh screen increases and the production cost increases, which is not preferable. After performing the high pressure liquid flow treatment, excess moisture is removed from the treated web. A known method can be adopted for removing the excess water. For example, a nonwoven fabric can be obtained by mechanically removing excess moisture to some extent using a squeezing device such as a mangle roll, and then using a drying device such as a hot band circulation dryer of the saxion band system to remove residual moisture. it can.

【0015】本発明における天然繊維不織布層は,その
目付けが30〜200g/m2 好ましくは50〜150
g/m2 のものであるのがよい。目付けが30g/m2
未満であると天然繊維の単位面積当たりの存在量が小さ
過ぎて本発明が目的とする吸水性が十分に具備されず,
一方,目付けが200g/m2 を超えると前記生分解性
熱可塑性合成長繊維不織布との積層後に超音波融着装置
を用いて点状融着区域を形成することにより一体化して
得られる積層不織構造体においてその剥離強力が十分に
向上せず,いずれも好ましくない。
The natural fiber nonwoven fabric layer in the present invention has a basis weight of 30 to 200 g / m 2, preferably 50 to 150.
It is preferably g / m 2 . Basis weight is 30 g / m 2
If the amount is less than the above, the amount of natural fiber present per unit area is too small to sufficiently provide the water absorption targeted by the present invention.
On the other hand, when the basis weight is more than 200 g / m 2 , a lamination failure obtained by integrating the biodegradable thermoplastic synthetic filament non-woven fabric with the above-mentioned biodegradable thermoplastic synthetic filament non-woven fabric and forming point-like fusion zones by using an ultrasonic fusion device. In the woven structure, the peel strength is not sufficiently improved, which is not preferable.

【0016】次に,本発明の積層不織構造体に関して説
明する。本発明の積層不織構造体は,前記生分解性熱可
塑性合成長繊維不織布層と天然繊維不織布層とが積層さ
れ,前記合成長繊維と天然繊維とが融着されてなる点状
融着区域を有し,かつ前記点状融着区域において前記両
不織布層の少なくとも境界面に位置する天然繊維が前記
合成長繊維の融解部に埋設された状態で固定されること
により全体として一体化されてなるものである。この点
状融着区域とは,周波数が19.5KHz程度の通常ホ
ーンと呼称される超音波発振器と,円周上に点状又は帯
状に凸状突起部を具備するパターンロールとからなる超
音波融着装置を用いて形成され,前記凸状突起部に該当
する部分に当接する長繊維同士を融着させたものであ
る。さらに詳しくは,この点状融着区域は,不織構造体
全表面積に対して特定の領域と特定の配置とを有し,個
々の点状融着区域は必ずしも円形の形状である必要はな
いが,不織構造体全表面積に対する全点状融着区域の面
積の比が2〜40%,好ましくは4〜25%,同区域密
度が7〜80点/cm2 ,好ましくは8〜50点/cm
2 であるものがよい。不織構造体全表面積に対する全点
状融着区域の面積の比が2%未満であると,前記生分解
性熱可塑性合成長繊維不織布と天然繊維不織布との積層
後に超音波融着装置を用いて点状融着区域を形成するこ
とにより一体化して得られる積層不織構造体においてそ
の剥離強力が十分に向上せず,一方,前記面積の比が4
0%を超えると,得られる積層不織構造体の柔軟性と嵩
高性が低下するため,いずれも好ましくない。また,同
区域密度が7点/cm2 未満であると得られる積層不織
構造体の層間接着力すなわち剥離強力に斑が生じたり,
あるいは割繊スパンボンド不織布の場合にバクテリアバ
リア性が低下し,一方,同区域密度が80点/cm2
超えると得られる積層不織構造体の柔軟性と嵩高性が低
下し,いずれも好ましくない。
Next, the laminated nonwoven structure of the present invention will be described. The laminated non-woven structure of the present invention is a point-like fused area formed by laminating the biodegradable thermoplastic synthetic continuous fiber non-woven fabric layer and the natural fiber non-woven fabric layer, and fusing the synthetic continuous fiber and the natural fiber. And the natural fibers located in at least the boundary surface of both of the non-woven fabric layers in the point-like fusion zone are fixed in a state of being embedded in the fused portion of the synthetic continuous fiber, thereby being integrated as a whole. It will be. The point-shaped fusion zone is an ultrasonic wave composed of an ultrasonic oscillator, which is usually called a horn, having a frequency of about 19.5 KHz, and a pattern roll having point-shaped or band-shaped convex protrusions on the circumference. It is formed by using a fusing device and fusing long fibers that come into contact with the portions corresponding to the convex protrusions. More specifically, the spot-shaped fused areas have a specific area and a specific arrangement with respect to the total surface area of the non-woven structure, and the individual dotted-shaped fused areas do not necessarily have a circular shape. However, the ratio of the area of all the point-like fused areas to the total surface area of the non-woven structure is 2 to 40%, preferably 4 to 25%, and the area density is 7 to 80 points / cm 2 , preferably 8 to 50 points. / Cm
What is 2 is good. When the ratio of the area of all the spot-shaped fused areas to the total surface area of the non-woven structure is less than 2%, the ultrasonic fusion apparatus is used after the biodegradable thermoplastic synthetic continuous fiber nonwoven fabric and the natural fiber nonwoven fabric are laminated. The peel strength of the laminated non-woven structure integrally obtained by forming the point-like fused areas is not sufficiently improved, while the area ratio is 4
When it exceeds 0%, the flexibility and the bulkiness of the obtained laminated nonwoven structure are deteriorated, and thus both are not preferable. In addition, when the area density is less than 7 points / cm 2 , unevenness in interlaminar adhesive strength, that is, peeling strength, of the obtained laminated nonwoven structure may occur,
Alternatively, in the case of split fiber spunbonded non-woven fabric, the bacterial barrier property decreases, while if the area density exceeds 80 points / cm 2 , the flexibility and bulkiness of the obtained laminated non-woven structure will decrease, and both are preferable. Absent.

【0017】本発明において用い得る超音波融着装置と
は,公知の装置すなわち周波数が19.5KHz程度の
通常ホーンと呼称される超音波発振器と,円周上に点状
又は帯状に凸状突起部を具備するパターンロールとから
なる装置である。前記超音波発振器の下部に前記パター
ンロールが配設され,被処理物は超音波発振器とパター
ンロールとの間に通される。このパターンロールに配設
される凸状突起部は1列あるいは複数列であってもよ
く,また,その配設が複数列の場合には,並列あるいは
千鳥型のいずれの配列でもよい。融着処理に際しては,
ホーンに空気圧を印加して加圧する。ホーンとパターン
ロール間の線圧は,通常1〜10kg/cmとし,線圧
が1kg/cm未満であると,前記熱可塑性合成長繊維
不織布層と天然繊維不織布層との積層物に対する押し圧
が不足して融着が生じなく,一方,線圧が10kg/c
mを超えると,点状融着区域に対する押し圧が高過ぎて
融着区域に相当する前記生分解性熱可塑性合成長繊維不
織布層が熱分解したり,あるいは極端な場合には穿孔が
生じたりして得られる積層不織構造体の層間接着力が低
下し,いずれも好ましくない。本発明の積層不織構造体
は,前記生分解性熱可塑性合成長繊維不織布と天然繊維
不織布との積層物に前述した超音波融着装置を用いて融
着処理を施すことにより,点状融着区域において,前記
両不織布層の少なくとも境界面に位置する天然繊維が前
記合成長繊維の融解部に埋設された状態で固定され全体
として一体化されたものである。図1は,本発明の積層
不織構造体における前記点状融着区域の断面を示す模式
図である。図において,1は点状融着区域において融解
した生分解性熱可塑性合成長繊維層,2は天然繊維で,
同図から明らかなように点状融着区域において両不織布
層の少なくとも境界面に位置する天然繊維2は,熱可塑
性合成長繊維が融解した融解部すなわち1に埋設された
状態で固定されており,両不織布層が点状融着区域にお
いて,このような接着構造を有するため,剥離強力の高
い積層不織構造体となる。
The ultrasonic fusing device that can be used in the present invention is a known device, that is, an ultrasonic oscillator generally called a horn having a frequency of about 19.5 KHz, and a convex projection in the form of dots or bands on the circumference. And a pattern roll having a section. The pattern roll is disposed below the ultrasonic oscillator, and the object to be processed is passed between the ultrasonic oscillator and the pattern roll. The convex protrusions arranged on the pattern roll may be arranged in one row or a plurality of rows, and when the arrangement is a plurality of rows, they may be arranged in parallel or in a staggered arrangement. When fusing,
Pressurize the horn by applying air pressure. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and when the linear pressure is less than 1 kg / cm, the pressing force against the laminate of the thermoplastic synthetic long fiber non-woven fabric layer and the natural fiber non-woven fabric layer is Insufficient fusion occurs, while linear pressure is 10 kg / c
When it exceeds m, the pressing force against the spot-shaped fused area is too high and the biodegradable thermoplastic synthetic long fiber non-woven fabric layer corresponding to the fused area is thermally decomposed or, in extreme cases, perforation occurs. The interlaminar adhesive strength of the laminated non-woven structure obtained by the above-mentioned method is deteriorated, which is not preferable. The laminated non-woven structure of the present invention is obtained by subjecting a laminate of the biodegradable thermoplastic synthetic continuous fiber non-woven fabric and natural fiber non-woven fabric to a fusion treatment using the above-mentioned ultrasonic fusion device to form a point-like fusion. In the landing area, the natural fibers located at least at the boundary surface between the both nonwoven fabric layers are fixed and integrated as a whole in a state of being embedded in the fusion portion of the synthetic long fibers. FIG. 1 is a schematic view showing a cross section of the spot-shaped fused area in the laminated nonwoven structure of the present invention. In the figure, 1 is a biodegradable thermoplastic synthetic continuous fiber layer melted in a dot fusion zone, 2 is a natural fiber,
As is clear from the figure, the natural fibers 2 located at least at the boundary surface between the two non-woven fabric layers in the dot-like fused area are fixed in a state where they are embedded in the melting portion where the thermoplastic synthetic filaments are melted, that is, 1. Since both non-woven fabric layers have such an adhesive structure in the dot-like fused area, a laminated non-woven structure having high peel strength is obtained.

【0018】[0018]

【作用】本発明の積層不織構造体は,片面が生分解性熱
可塑性合成長繊維からなる不織布層から構成されるため
疎水性を有し,他面が天然繊維同士が機械的に交絡して
なる不織布層から構成されるため吸水性を有し,しかも
両面の不織布共に生分解性を有する。また,前記合成長
繊維と天然繊維とが融着されてなる点状融着区域におい
て,前記両不織布層の少なくとも境界面に位置する天然
繊維が前記合成長繊維の融解部に埋設された状態で固定
された接着構造を有するため,剥離強力の高い積層不織
構造体となる。
The laminated non-woven structure of the present invention is hydrophobic because one side is composed of a nonwoven fabric layer made of biodegradable thermoplastic synthetic filaments and the other side is mechanically entangled with natural fibers. Since it is composed of a non-woven fabric layer, it is water-absorbent and both non-woven fabrics are biodegradable. Further, in a point fusion area where the synthetic long fibers and the natural fibers are fused, the natural fibers located at least at the boundary surface of the both nonwoven fabric layers are embedded in the fusion part of the synthetic long fibers. Since it has a fixed adhesive structure, it is a laminated non-woven structure with high peel strength.

【0019】[0019]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 メルトフローレート値(g/10分):ASTM−D−
1238(L)に記載の方法に準じて測定した。なお,
生分解性熱可塑性脂肪族ポリエステル系重合体の場合,
測定温度を200℃とした。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,試料重量を5mg,昇温速度を20℃
/分として測定して得た融解吸熱曲線の最大極値を与え
る温度を融点(℃)とした。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。 引張り強力(kg/5cm幅)及び引張り伸度(%):
JIS−L−1096Aに記載の方法に準じて測定し
た。すなわち,試料長が10cm,試料幅が5cmの試
料片計10点を作成し,各試料片毎に不織布の経方向に
ついて,定速伸長型引張り試験機(東洋ボールドウイン
社製テンシロンUTM−4−1−100)を用いて引張
り速度10cm/分で伸長し,得られた切断時荷重値
(kg/5cm幅)の平均値を引張り強力(kg/5c
m幅),切断時伸長率(%)の平均値を引張り伸度
(%)とした。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張り速度10cm/分で天然繊維不織布
層が合成長繊維不織布層から積層構造体の端部から計っ
て5cmの位置まで強制的に剥離させ,得られた荷重値
(g/5cm幅)の平均値を層間剥離強力(g/5cm
幅)とした。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。 生分解性の評価:試料片を土壌中に3カ月間埋設した後
に取り出し,試料片がその形態を保持しいる場合,ある
いはその形態を保持していても引張り強力が初期の50
%以下に低下している場合,生分解性が良好であると評
価した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melt flow rate value (g / 10 minutes): ASTM-D-
It was measured according to the method described in 1238 (L). In addition,
In the case of biodegradable thermoplastic aliphatic polyester polymer,
The measurement temperature was 200 ° C. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using C-2 type, sample weight 5 mg, temperature rising rate 20 ℃
The temperature that gives the maximum extremum of the melting endothermic curve obtained by measuring as / min was defined as the melting point (° C). Unit weight (g / m 2 ): 10 cm in length from standard state sample
After making 10 pieces of 10 cm wide sample piece to reach the equilibrium water content, weigh each sample piece (g) and calculate the average value of the obtained values per unit area (m 2 ). Unit weight (g /
m 2 ). Tensile strength (kg / 5cm width) and tensile elongation (%):
It was measured according to the method described in JIS-L-1096A. That is, a total of 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-4- manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp direction of the nonwoven fabric. 1-100) was stretched at a pulling speed of 10 cm / min, and the average value of the load values during cutting (kg / 5 cm width) obtained was measured for tensile strength (kg / 5 c).
The average value of the m-width) and the elongation at break (%) was defined as the tensile elongation (%). Delamination strength (g / 5 cm width): A total of 10 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Toyo Bold Win Tensilon UTM-4-1-10
0) was used to forcibly separate the natural fiber nonwoven fabric layer from the synthetic continuous fiber nonwoven fabric layer at a pulling speed of 10 cm / min up to a position of 5 cm from the end of the laminated structure, and the obtained load value (g / 5 cm) was obtained. The average value of the width is the delamination strength (g / 5 cm)
Width). Bending resistance (g): A total of 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were made, and each piece was bent laterally to form a cylindrical object, and the ends were joined together. The sample was measured for bending resistance. Then, for each measurement sample, the maximum obtained was obtained by compressing in the axial direction using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) at a compression rate of 5 cm / min. The average value of the load values (g) was defined as the bending resistance (g). Water absorption (mm): Measured according to the Bayrek method described in JIS-L-1096. Evaluation of biodegradability: A sample piece was buried in soil for 3 months and then taken out, and when the sample piece retained its morphology, or even when it retained that morphology, the tensile strength was 50% of the initial value.
When it was less than%, the biodegradability was evaluated as good.

【0020】実施例1 融点が59℃,温度200℃で測定したメルトフローレ
ート値が25g/10分のポリ−ε−カプロラクトンチ
ツプを用い,前記重合体の長繊維からなるスパンボンド
不織布を作成した。すなわち,前記重合体チツプをエク
ストルーダ型溶融押出し機を用いて溶融し,これを孔径
が0.35mmの円形断面紡糸孔を有する紡糸口金を通
し紡糸温度を230℃かつ単孔吐出量を0.78g/分
として溶融紡出し,温度が20℃の冷却風を用いて冷却
した後,エアーサツカを用い引取り速度を3500m/
分として牽引・細化した後,開繊器を用いて開繊し,移
動する捕集面上に捕集・堆積させてウエブとし,得られ
たウエブに先端部面積が0.6mm2 の突起状彫刻模様
部が圧接面積率17%かつ密度36点/cm2 で配設さ
れた熱エンボスローラと表面平滑な金属ローラとを用い
処理温度を57℃,かつ線圧を40kg/cmとして加
工速度10m/分で部分熱圧接処理を施し,単繊維繊度
が2.0デニールで,目付けが30g/m2 のスパンボ
ンド不織布を得た。得られたスパンボンド不織布は,引
張り強力が5.1kg/5cm幅,引張り伸度が50
%,剛軟度が25g,吸水性が17mmのものであっ
た。別途,平均単繊維繊度が1.5デニールで,かつ平
均繊維長が25mmの木綿晒し綿を用い,木綿繊維同士
が三次元的に交絡してなる不織布を作成した。すなわ
ち,前記晒し綿を出発原料とし,ランダムカード機によ
り繊維配列がランダムなカードウエブを作成し,次いで
得られたウエブを移動速度20m/分で移動する70メ
ツシユの金網上に載置して高圧液体流処理を施した。高
圧液体流処理は孔径0.1mmの噴射孔が孔間隔0.6
mmで一列に配設された高圧柱状水流処理装置を用い,
ウエブの上方50mmの位置から2段階に別けて柱状水
流を作用させた。第1段階の処理では圧力を30kg/
cm2 Gとし,第2段階の処理では圧力を70kg/c
2 Gとした。なお,第2段階の処理は,まずウエブの
表側から4回施した後にウエブを反転し,裏側から5回
施した。次いで,得られた処理物からマングルロールを
用いて過剰水分を除去した後,得られた処理物に熱風乾
燥機を用い温度100℃の条件で乾燥処理を施し,木綿
繊維同士が緻密に三次元的交絡をした目付けが35g/
2 の木綿繊維不織布を得た。得られた木綿繊維不織布
は,引張り強力が4.5kg/5cm幅,引張り伸度が
35%,剛軟度が28g,吸水性が132mmのもので
あった。
Example 1 A spunbonded non-woven fabric composed of long fibers of the above polymer was prepared using poly-ε-caprolactone chips having a melting point of 59 ° C. and a melt flow rate value of 25 g / 10 min measured at a temperature of 200 ° C. . That is, the polymer chip was melted using an extruder type melt extruder, passed through a spinneret having a circular cross-section spinning hole with a hole diameter of 0.35 mm, the spinning temperature was 230 ° C., and the single hole discharge rate was 0.78 g. / Min, melt spinning, cooling with cooling air at a temperature of 20 ° C, and then using an air sacker at a take-up speed of 3500 m /
After being pulled / thinned as a part, it is opened using an opener, collected and deposited on a moving collecting surface to form a web, and the obtained web has a protrusion with a tip area of 0.6 mm 2 . Using a hot embossing roller and a metal roller with a smooth surface where the engraved pattern part is arranged at a pressing area ratio of 17% and a density of 36 points / cm 2 , the processing temperature is 57 ° C and the linear pressure is 40 kg / cm. Partial hot pressing was performed at 10 m / min to obtain a spunbonded nonwoven fabric having a single fiber fineness of 2.0 denier and a basis weight of 30 g / m 2 . The spunbonded non-woven fabric obtained has a tensile strength of 5.1 kg / 5 cm width and a tensile elongation of 50.
%, The bending resistance was 25 g, and the water absorption was 17 mm. Separately, a non-woven fabric having an average single fiber fineness of 1.5 denier and an average fiber length of 25 mm bleached from cotton was used to fabricate three-dimensionally entangled cotton fibers. That is, using the above-mentioned bleached cotton as a starting material, a card web having a random fiber arrangement was prepared by a random card machine, and then the obtained web was placed on a wire mesh of 70 mesh which moved at a moving speed of 20 m / min, and a high pressure was applied. Liquid flow treatment was applied. In the high-pressure liquid flow treatment, injection holes with a hole diameter of 0.1 mm have a hole spacing of 0.6.
Using a high-pressure columnar water stream treatment device arranged in a line in mm,
A columnar water stream was applied in two steps from a position 50 mm above the web. In the first stage treatment, the pressure is 30 kg /
cm 2 G, and the pressure was 70 kg / c in the second stage treatment.
m 2 G. The treatment of the second stage was performed 4 times from the front side of the web, then the web was turned over, and 5 times from the back side. Then, after removing excess water from the obtained treated product with a mangle roll, the obtained treated product was dried with a hot air dryer at a temperature of 100 ° C., and the cotton fibers were densely three-dimensionally The basis weight is 35g /
m 2 cotton fiber non-woven fabric was obtained. The obtained cotton fiber non-woven fabric had a tensile strength of 4.5 kg / 5 cm width, a tensile elongation of 35%, a bending resistance of 28 g, and a water absorption of 132 mm.

【0021】次いで,前記で得られたスパンボンド不織
布と木綿繊維不織布とを積層し,周波数が19.5KH
zの超音波発振器と円周上に点状に凸状突起部が面積比
(ロール全表面積に対する全凸状突起部の面積の比)1
1%かつ密度18点/cm2で配設されたパターンロー
ルとからなる超音波融着装置を用い,加工速度を30m
/分,線圧を1.5kg/cm,超音波の振幅を16μ
mとし超音波融着処理を施して積層不織構造体を得た。
得られた積層不織構造体の特性を表1に示す。
Next, the spunbonded non-woven fabric obtained above and a cotton fiber non-woven fabric are laminated, and the frequency is 19.5 KH.
The area ratio of the z-shaped ultrasonic oscillator and the convex projections in the shape of dots on the circumference (ratio of the area of all convex projections to the total surface area of the roll) 1
Using an ultrasonic fusing device consisting of a pattern roll arranged at 1% and a density of 18 points / cm 2 , the processing speed was 30 m.
/ Min, linear pressure 1.5 kg / cm, ultrasonic amplitude 16μ
m and subjected to ultrasonic fusion treatment to obtain a laminated nonwoven structure.
The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0022】実施例2 融点が101℃,温度200℃で測定したメルトフロー
レート値が25g/10分のポリ−β−プロピオラクト
ンチツプを用い,前記重合体の長繊維からなるスパンボ
ンド不織布を作成した。すなわち,前記重合体チツプを
エクストルーダ型溶融押出し機を用いて溶融し,これを
孔径が0.35mmの紡糸孔を有する紡糸口金を通し紡
糸温度を250℃かつ単孔吐出量を0.78g/分とし
て溶融紡出し,温度が20℃の冷却風を用いて冷却した
後,エアーサツカを用い引取り速度を2400m/分と
して牽引・細化した後,開繊器を用いて開繊し,移動す
る捕集面上に捕集・堆積させてウエブとし,得られたウ
エブに実施例1で用いた熱エンボスローラと表面平滑な
金属ローラとを用い処理温度を95℃,かつ線圧を40
kg/cmとして加工速度10m/分で部分熱圧接処理
を施し,単繊維繊度が2.0デニールで,目付けが30
g/m2 のスパンボンド不織布を得た。得られたスパン
ボンド不織布は,引張り強力が5.3kg/5cm幅,
引張り伸度が52%,剛軟度が28g,吸水性が16m
mのものであった。次いで,前記で得られたスパンボン
ド不織布と実施例1で作成した木綿繊維不織布とを積層
し,以降は実施例1と同様にして,積層不織構造体を得
た。得られた積層不織構造体の特性を表1に示す。
Example 2 A spunbonded non-woven fabric composed of long fibers of the above polymer was prepared by using a poly-β-propiolactone chip having a melt flow rate value of 25 g / 10 min measured at a melting point of 101 ° C. and a temperature of 200 ° C. Created. That is, the polymer chip was melted using an extruder type melt extruder, passed through a spinneret having spinning holes with a hole diameter of 0.35 mm, a spinning temperature of 250 ° C. and a single hole discharge rate of 0.78 g / min. After melt-spinning as, and cooling with cooling air at a temperature of 20 ° C., using an air blower to pull / thin at a take-up speed of 2400 m / min, open with a fiber opener and move to capture. A web was obtained by collecting and depositing on the collecting surface, and using the hot embossing roller used in Example 1 and the metal roller having a smooth surface, the treatment temperature was 95 ° C. and the linear pressure was 40.
Partial hot press treatment was applied at a processing speed of 10 m / min as kg / cm, a single fiber fineness of 2.0 denier and a basis weight of 30.
A spunbonded nonwoven fabric of g / m 2 was obtained. The resulting spunbond nonwoven fabric has a tensile strength of 5.3 kg / 5 cm width,
Tensile elongation 52%, bending resistance 28g, water absorption 16m
It was m. Next, the spunbonded non-woven fabric obtained above was laminated with the cotton fiber non-woven fabric prepared in Example 1, and thereafter a laminated non-woven structure was obtained in the same manner as in Example 1. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0023】比較例1 融点が156℃,メルトフローレート値が50g/10
分のポリプロピレンチツプを用い,前記重合体の長繊維
からなるスパンボンド不織布を作成した。すなわち,前
記重合体チツプをエクストルーダ型溶融押出し機を用い
て溶融し,以降は紡糸温度を230℃とした以外は実施
例1と同様にして,単繊維繊度が2.0デニールで,目
付けが30g/m2 のスパンボンド不織布を得た。得ら
れたスパンボンド不織布は,引張り強力が7.0kg/
5cm幅,引張り伸度が38%,剛軟度が38g,吸水
性が10mmのものであった。次いで,前記で得られた
スパンボンド不織布と実施例1で作成した木綿繊維不織
布とを積層し,以降は実施例1と同様にして,積層不織
構造体を得た。得られた積層不織構造体の特性を表1に
示す。
Comparative Example 1 Melting point: 156 ° C. Melt flow rate value: 50 g / 10
A polypropylene chip of 1 minute was used to prepare a spunbonded nonwoven fabric made of the above-mentioned polymer long fibers. That is, the polymer chip was melted using an extruder type melt extruder, and thereafter the spinning temperature was set to 230 ° C., and the single fiber fineness was 2.0 denier and the basis weight was 30 g. A spunbonded nonwoven fabric of / m 2 was obtained. The resulting spunbond nonwoven fabric has a tensile strength of 7.0 kg /
The width was 5 cm, the tensile elongation was 38%, the bending resistance was 38 g, and the water absorption was 10 mm. Next, the spunbonded non-woven fabric obtained above was laminated with the cotton fiber non-woven fabric prepared in Example 1, and thereafter a laminated non-woven structure was obtained in the same manner as in Example 1. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0024】比較例2 実施例1で作成したスパンボンド不織布と実施例1で作
成した木綿繊維不織布とを積層し,超音波融着処理に代
わり圧接面積率が12%の熱エンボスローラと表面平滑
な金属ローラとを用い,処理温度を50℃,かつ線圧を
80kg/cmとして加工速度15m/分で部分熱圧接
処理を施した以外は実施例1と同様にして,積層不織構
造体を得た。得られた積層不織構造体の特性を表1に示
す。
Comparative Example 2 The spunbonded non-woven fabric prepared in Example 1 and the cotton fiber non-woven fabric prepared in Example 1 were laminated, and a hot embossing roller having a pressure contact area ratio of 12% was used instead of ultrasonic fusion treatment, and the surface was smoothed. A laminated non-woven structure was prepared in the same manner as in Example 1 except that a partial heat-bonding treatment was carried out at a processing temperature of 50 ° C. and a linear pressure of 80 kg / cm at a processing speed of 15 m / min. Obtained. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例1及び2で得られた積層不織構造体
は,表1から明らかなように実用上十分な引張り強伸度
を有すると共に剥離強力が高く,生分解性を具備するも
のであった。これに対し,比較例1で得られた積層不織
構造体は,生分解性繊維を含有しておらず前記評価試験
の結果,生分解性が劣ると評価された。比較例2で得ら
れた積層不織構造体は,熱エンボスローラを用いた部分
熱圧接処理が施されたものであるため,剥離強力が極め
て低いものであった。
As can be seen from Table 1, the laminated non-woven structures obtained in Examples 1 and 2 have practically sufficient tensile strength and elongation, high peel strength, and biodegradability. there were. On the other hand, the laminated non-woven structure obtained in Comparative Example 1 did not contain biodegradable fibers and was evaluated to be inferior in biodegradability as a result of the evaluation test. The laminated non-woven structure obtained in Comparative Example 2 was subjected to partial hot press contact treatment using a hot embossing roller, and therefore had extremely low peel strength.

【0027】[0027]

【発明の効果】本発明の生分解性積層不織構造体は,前
記特定の生分解性熱可塑性合成長繊維不織布層と天然繊
維同士が機械的に交絡してなる不織布層とが積層され,
前記合成長繊維と天然繊維とが融着されてなる点状融着
区域とを有し,前記点状融着区域において前記両不織布
層の少なくとも境界面に位置する天然繊維が前記合成長
繊維の融解部に埋設された状態で固定されることにより
全体として一体化されてなるものであって,生分解性を
有し,剥離強力が高く,吸水性と疎水性を併せて有し,
医療・衛生材料,拭き取り布や包装材料あるいは家庭用
又は業務用の生塵捕集用袋等の一般生活関連材,あるい
は農業用に代表される産業資材用の各素材として好適で
ある。
The biodegradable laminated non-woven structure of the present invention comprises the above-mentioned specific biodegradable thermoplastic synthetic continuous fiber non-woven fabric layer and a non-woven fabric layer in which natural fibers are mechanically entangled,
The synthetic long fibers and the natural fibers have a point-like fused area formed by fusing, and in the point-like fused area, the natural fibers located at least at the boundary surface between the both nonwoven fabric layers are the synthetic long fibers. It is integrated as a whole by being fixed in a state of being embedded in the melting part, has biodegradability, high peeling strength, has both water absorption and hydrophobicity,
It is suitable as a medical / sanitary material, a wiping cloth or a packaging material, a general life-related material such as a household or commercial dust collection bag, or an industrial material typified by agriculture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生分解性積層不織構造体における前記
点状融着区域の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of the spot-shaped fused area in the biodegradable laminated nonwoven structure of the present invention.

【符号の説明】[Explanation of symbols]

1:融解した生分解性熱可塑性合成長繊維層 2:天然繊維 1: Molten biodegradable thermoplastic synthetic long fiber layer 2: Natural fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D04H 3/14 Z 7199−3B 5/02 Z 7199−3B 5/06 7199−3B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D04H 3/14 Z 7199-3B 5/02 Z 7199-3B 5/06 7199-3B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 開環重合で得られる脂肪族ポリエステル
系重合体からなる生分解性熱可塑性合成長繊維で構成さ
れた不織布層と天然繊維同士が機械的に交絡してなる不
織布層とが積層され,かつ前記合成長繊維と天然繊維と
が融着されてなる点状融着区域を有する積層不織構造体
であって,前記点状融着区域において前記両不織布層の
少なくとも境界面に位置する天然繊維が前記合成長繊維
の融解部に埋設された状態で固定されることにより全体
として一体化されてなることを特徴とする生分解性積層
不織構造体。
1. A non-woven fabric layer composed of biodegradable thermoplastic synthetic long fibers made of an aliphatic polyester polymer obtained by ring-opening polymerization and a non-woven fabric layer formed by mechanically entangled natural fibers. A laminated non-woven structure having a point-like fused area formed by fusing the synthetic long fibers and natural fibers, wherein the point-like fused area is located at least at the boundary surface between the two non-woven fabric layers. A biodegradable laminated non-woven structure, characterized in that the natural fibers are integrated as a whole by being fixed in a state of being embedded in the melting portion of the synthetic continuous fiber.
【請求項2】 開環重合で得られる脂肪族ポリエステル
系重合体が,ポリ−ε−カプロラクトン及び/又はポリ
−β−プロピオラクトンである請求項1記載の生分解性
積層不織構造体。
2. The biodegradable laminated nonwoven structure according to claim 1, wherein the aliphatic polyester polymer obtained by ring-opening polymerization is poly-ε-caprolactone and / or poly-β-propiolactone.
JP5300904A 1993-11-05 1993-11-05 Biodegradable nonwoven laminate Pending JPH07125128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300904A JPH07125128A (en) 1993-11-05 1993-11-05 Biodegradable nonwoven laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300904A JPH07125128A (en) 1993-11-05 1993-11-05 Biodegradable nonwoven laminate

Publications (1)

Publication Number Publication Date
JPH07125128A true JPH07125128A (en) 1995-05-16

Family

ID=17890532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300904A Pending JPH07125128A (en) 1993-11-05 1993-11-05 Biodegradable nonwoven laminate

Country Status (1)

Country Link
JP (1) JPH07125128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607996B1 (en) 1995-09-29 2003-08-19 Tomoegawa Paper Co., Ltd. Biodegradable filament nonwoven fabric and method of producing the same
US6787493B1 (en) 1995-09-29 2004-09-07 Unitika, Ltd. Biodegradable formable filament nonwoven fabric and method of producing the same
US8268738B2 (en) 2008-05-30 2012-09-18 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
JP2013538710A (en) * 2010-09-20 2013-10-17 フェデラル−モーグル パワートレイン インコーポレイテッド Composite panel having bonded nonwoven and biodegradable resin fiber layers and method of construction
US11236443B2 (en) 2008-06-06 2022-02-01 Kimberly-Clark Worldwide, Inc. Fibers formed from a blend of a modified aliphatic-aromatic copolyester and theremoplastic starch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607996B1 (en) 1995-09-29 2003-08-19 Tomoegawa Paper Co., Ltd. Biodegradable filament nonwoven fabric and method of producing the same
US6787493B1 (en) 1995-09-29 2004-09-07 Unitika, Ltd. Biodegradable formable filament nonwoven fabric and method of producing the same
US8268738B2 (en) 2008-05-30 2012-09-18 Kimberly-Clark Worldwide, Inc. Polylactic acid fibers
US11236443B2 (en) 2008-06-06 2022-02-01 Kimberly-Clark Worldwide, Inc. Fibers formed from a blend of a modified aliphatic-aromatic copolyester and theremoplastic starch
JP2013538710A (en) * 2010-09-20 2013-10-17 フェデラル−モーグル パワートレイン インコーポレイテッド Composite panel having bonded nonwoven and biodegradable resin fiber layers and method of construction

Similar Documents

Publication Publication Date Title
JPH03137257A (en) Perforated nonwoven fabric produced from a plurality of melt blow microfibers
JP3264720B2 (en) Biodegradable composite short fiber non-woven fabric
JP5329860B2 (en) Composite sheet and manufacturing method thereof
JPH0742057A (en) Nonwoven fabric to be used as surface material of sanitary material
JPH07125128A (en) Biodegradable nonwoven laminate
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure
JP3305453B2 (en) Laminated non-woven structure
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JPH08109567A (en) Laminated nonwoven structure and its production
JPH0768686A (en) Laminated nonwoven structure
JPH05214648A (en) Microbially degradable nonwoven fabric and its production
JPH083855A (en) Laminated nonwoven structure
JPH05222656A (en) Microorganism decomposable extra fine fiber nonwoven fabric and its production
JPH07266479A (en) Laminated nonwoven structure
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH08232152A (en) Zebra pattern-imparted nonwoven fabric and its production
JPH083856A (en) Laminated nonwoven structure
JPH0874162A (en) Laminated nonwoven structural material
JPH07316969A (en) Laminated nonwoven structure
JPH0147585B2 (en)
JPH0931857A (en) Laminated nonwoven fabric and its production
JPH07207561A (en) Laminated nonwoven fabric and its production
JPH08109559A (en) Laminated nonwoven structure