JPH0864910A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0864910A
JPH0864910A JP19833694A JP19833694A JPH0864910A JP H0864910 A JPH0864910 A JP H0864910A JP 19833694 A JP19833694 A JP 19833694A JP 19833694 A JP19833694 A JP 19833694A JP H0864910 A JPH0864910 A JP H0864910A
Authority
JP
Japan
Prior art keywords
sic
layer
substrate
light emitting
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19833694A
Other languages
Japanese (ja)
Other versions
JP3561536B2 (en
Inventor
Katsumi Yagi
克己 八木
Takashi Kano
隆司 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19833694A priority Critical patent/JP3561536B2/en
Publication of JPH0864910A publication Critical patent/JPH0864910A/en
Application granted granted Critical
Publication of JP3561536B2 publication Critical patent/JP3561536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To provide a semiconductor light emitting element in which the generation of dislocation is prevented. CONSTITUTION: An n-SiC clad layer 2, an In1-x Gax N active layer 3, and a p-SiC clad layer 4 are formed on an n-SiC substrate 1 successively. As a material for the n-SiC substrate l, 2H-SiC, 4H-SiC, or 6H-SiC is used. The Ga composition X in the In1-x Gax N active layer 3 is so set that the band gap of the In1-x Gax N active layer may be smaller than those of the n-SiC clad layer and the p-SiC clad layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device.

【0002】[0002]

【従来の技術】直接遷移型のバンド構造を有するZnS
eやGaNは、青色あるいは紫色の光を発する半導体レ
ーザ装置、発光ダイオード等の半導体発光素子の材料と
して有望である。しかしながら、ZnSeやGaNから
なる基板が存在しないため、このような半導体発光素子
を形成する際には他の材料からなる基板を用いる必要が
ある。
2. Description of the Related Art ZnS having a direct transition type band structure
e and GaN are promising as materials for semiconductor light emitting elements such as semiconductor laser devices and light emitting diodes that emit blue or violet light. However, since there is no substrate made of ZnSe or GaN, it is necessary to use a substrate made of another material when forming such a semiconductor light emitting device.

【0003】図6は従来のZnSe系半導体レーザ装置
の構造を示す断面図である。図6の半導体レーザ装置は
M.A.Haase et al.,Appl.Phy
s.Lett.59(11),9 September
1991,pp.1272−1273に開示されてい
る。
FIG. 6 is a sectional view showing the structure of a conventional ZnSe semiconductor laser device. The semiconductor laser device shown in FIG. A. Haase et al. , Appl. Phy
s. Lett. 59 (11), 9 September
1991, pp. 1272-1273.

【0004】図6において、n−GaAs基板21上
に、n+ −ZnSeコンタクト層22、n−ZnSSe
クラッド層23、CdZnSe/ZnSe量子井戸活性
層24、p−ZnSSeクラッド層25、p+ −ZnS
eコンタクト層26およびポリイミド層27が順に形成
されている。ポリイミド層27の中央部にはストライプ
状の開口部が形成されている。ポリイミド層27の上面
およびp+ −ZnSeコンタクト層26の中央部の上面
にはAu電極28が形成され、n−GaAs基板21の
下面にはIn電極29が形成されている。
In FIG. 6, an n + -ZnSe contact layer 22 and an n-ZnSSe are formed on an n-GaAs substrate 21.
Cladding layer 23, CdZnSe / ZnSe quantum well active layer 24, p-ZnSSe cladding layer 25, p + -ZnS
The e-contact layer 26 and the polyimide layer 27 are sequentially formed. A stripe-shaped opening is formed in the center of the polyimide layer 27. An Au electrode 28 is formed on the upper surface of the polyimide layer 27 and the central upper surface of the p + -ZnSe contact layer 26, and an In electrode 29 is formed on the lower surface of the n-GaAs substrate 21.

【0005】このように、図6の半導体レーザ装置は、
CdZnSe/ZnSe量子井戸活性層24をn−Zn
SSeクラッド層23およびp−ZnSSeクラッド層
25で挟んだダブルヘテロ構造のpn接合を有する。
As described above, the semiconductor laser device of FIG.
The CdZnSe / ZnSe quantum well active layer 24 is n-Zn.
It has a pn junction having a double hetero structure sandwiched between the SSe cladding layer 23 and the p-ZnSSe cladding layer 25.

【0006】一方、図7は従来のGaN系発光ダイオー
ドの構造を示す断面図である。図7の発光ダイオードは
日経マイクロデバイス1994年2月号の第92頁〜第
93頁に開示されている。
On the other hand, FIG. 7 is a sectional view showing the structure of a conventional GaN-based light emitting diode. The light emitting diode of FIG. 7 is disclosed on pages 92 to 93 of the February 1994 issue of Nikkei Microdevices.

【0007】図7において、サファイア(Al2 3
基板31上に、GaNバッファ層32、n−GaN層3
3、n−AlGaNクラッド層34、InGaN活性層
35、p−AlGaNクラッド層36およびp−GaN
層37が順に形成されている。n−GaN層33の上部
領域およびn−AlGaNクラッド層34からp−Ga
N層37までの幅は、サファイア基板31からn−Ga
N層33の下部領域までの幅よりも狭く形成されてい
る。p−GaN層37の上面に正電極38が形成され、
n−GaN層33の上面に負電極39が形成されてい
る。
In FIG. 7, sapphire (Al 2 O 3 )
The GaN buffer layer 32 and the n-GaN layer 3 are formed on the substrate 31.
3, n-AlGaN clad layer 34, InGaN active layer 35, p-AlGaN clad layer 36 and p-GaN
Layer 37 is formed in sequence. From the upper region of the n-GaN layer 33 and the n-AlGaN cladding layer 34 to the p-Ga
The width up to the N layer 37 is from the sapphire substrate 31 to n-Ga.
It is formed narrower than the width to the lower region of the N layer 33. A positive electrode 38 is formed on the upper surface of the p-GaN layer 37,
The negative electrode 39 is formed on the upper surface of the n-GaN layer 33.

【0008】図7の発光ダイオードは、InGaN活性
層35をn−AlGaNクラッド層34およびp−Al
GaNクラッド層36で挟んだダブルヘテロ構造のpn
接合を有し、青色の光を効率良く発生することができ
る。
In the light emitting diode shown in FIG. 7, the InGaN active layer 35 is formed on the n-AlGaN cladding layer 34 and the p-Al layer.
Double hetero structure pn sandwiched between GaN cladding layers 36
It has a junction and can efficiently generate blue light.

【0009】[0009]

【発明が解決しようとする課題】表1に各種材料の格子
定数および熱膨張係数を示す。
Table 1 shows lattice constants and thermal expansion coefficients of various materials.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように、GaAsの格子
定数はZnSeの格子定数に近くなっているが、Ga
N、サファイアおよびSiCの格子定数は互いに異なっ
ている。
As is clear from Table 1, the lattice constant of GaAs is close to that of ZnSe, but Ga
The lattice constants of N, sapphire and SiC are different from each other.

【0012】図6のZnSe系半導体レーザ装置では、
ZnSeに近い格子定数を有するGaAs基板を用いて
おり、クラッド層の材料としてZnSSe混晶を用いて
いる。この半導体レーザ装置においては、ある温度、例
えば成長温度でZnSSe混晶を用いると格子整合がと
れるが、他の温度、例えば室温にすると格子整合がとれ
ず、転位が発生してしまうという問題がある。
In the ZnSe based semiconductor laser device of FIG.
A GaAs substrate having a lattice constant close to that of ZnSe is used, and a ZnSSe mixed crystal is used as a material for the cladding layer. In this semiconductor laser device, when ZnSSe mixed crystal is used at a certain temperature, for example, growth temperature, lattice matching can be achieved, but at other temperature, for example, room temperature, lattice matching cannot be achieved and dislocation occurs. .

【0013】一方、図7のGaN系発光ダイオードで
は、表1から明らかなように、GaNの格子定数がサフ
ァイアの格子定数と大きく異なっているので、サファイ
ア上に成長したGaNに転位が発生する。
On the other hand, in the GaN-based light-emitting diode of FIG. 7, as is clear from Table 1, the lattice constant of GaN is greatly different from the lattice constant of sapphire, so dislocations occur in GaN grown on sapphire.

【0014】これらの結果、上記の従来の半導体レーザ
装置および発光ダイオードに通電すると、転位が増大
し、素子寿命が短くなるという問題があった。本発明の
目的は、転位の発生が防止された半導体発光素子を提供
することである。
As a result, there is a problem that dislocations increase and the device life is shortened when the above conventional semiconductor laser device and light emitting diode are energized. An object of the present invention is to provide a semiconductor light emitting device in which dislocations are prevented from occurring.

【0015】[0015]

【課題を解決するための手段】本発明に係る半導体発光
素子は、SiC基板上にSiCからなる第1のクラッド
層、InGaNからなる活性層およびSiCからなる第
2のクラッド層が順に形成されたものである。
In a semiconductor light emitting device according to the present invention, a first clad layer made of SiC, an active layer made of InGaN and a second clad layer made of SiC are sequentially formed on a SiC substrate. It is a thing.

【0016】活性層は、In組成の小さい複数のInG
aN層とIn組成の大きい1以上のInGaN層とが交
互に積層された多層膜により構成されてもよい。
The active layer is composed of a plurality of InG having a small In composition.
The aN layer and one or more InGaN layers having a large In composition may be alternately laminated to form a multilayer film.

【0017】[0017]

【作用】本発明に係る半導体発光素子においては、Si
C基板上にSiCからなる第1のクラッド層が形成され
ているので、格子定数および熱膨張係数が互いに一致し
ている。したがって、比較的膜厚の厚いクラッド層が基
板に対して広い温度範囲で格子整合しているので、クラ
ッド層に転位が発生しない。
In the semiconductor light emitting device according to the present invention, Si
Since the first cladding layer made of SiC is formed on the C substrate, the lattice constant and the thermal expansion coefficient match each other. Therefore, since the clad layer having a relatively large film thickness is lattice-matched with the substrate in a wide temperature range, dislocation does not occur in the clad layer.

【0018】また、活性層が直接遷移型のバンド構造を
有するInGaNにより形成されているので、青色ある
いは紫色の光を効率良く発することができる。活性層の
膜厚はクラッド層の膜厚に比べて薄くてよいので、活性
層の格子定数がクラッド層の格子定数と異なっても、格
子が歪むだけで活性層での転位の発生が防止される。
Further, since the active layer is made of InGaN having a direct transition type band structure, blue or violet light can be efficiently emitted. Since the thickness of the active layer may be smaller than that of the cladding layer, even if the lattice constant of the active layer is different from that of the cladding layer, dislocation of the active layer is prevented only by straining the lattice. It

【0019】特に、In組成の小さいInGaN層はS
iCに近い格子定数を有し、In組成の大きいInGa
N層はSiCに比べて小さいバンドギャップを有する。
したがって、活性層をIn組成の小さいInGaN層お
よびIn組成の大きいInGaN層の多層膜で構成すれ
ば、In組成の小さいInGaN層によりクラッド層と
の格子整合をとり、かつIn組成の大きいInGaN層
によりクラッド層とのバンドギャップの差を大きくする
ことができる。それにより、転位の発生を防止しつつ、
光の閉じ込めを良くするために活性層の膜厚を厚くする
ことができる。
In particular, the InGaN layer having a small In composition is S
InGa having a large In composition with a lattice constant close to iC
The N layer has a band gap smaller than that of SiC.
Therefore, if the active layer is composed of a multilayer film of an InGaN layer having a small In composition and an InGaN layer having a large In composition, the InGaN layer having a small In composition provides lattice matching with the cladding layer and the InGaN layer having a large In composition is used. The difference in band gap from the cladding layer can be increased. Thereby, while preventing the occurrence of dislocations,
The thickness of the active layer can be increased to improve the light confinement.

【0020】[0020]

【実施例】図1は本発明の第1の実施例による発光ダイ
オードの構造を示す断面図である。
1 is a sectional view showing the structure of a light emitting diode according to a first embodiment of the present invention.

【0021】図1において、n−SiC基板1上に、n
−SiCクラッド層2、In1-x Gax N(0<x<
1)活性層3およびp−SiCクラッド層4が順に形成
されている。p−SiCクラッド層4の上面の中央部に
Al電極5が形成され、n−SiC基板1の下面の中央
部にNi電極6が形成されている。
In FIG. 1, n on the n-SiC substrate 1
-SiC cladding layer 2, In 1-x Ga x N (0 <x <
1) The active layer 3 and the p-SiC cladding layer 4 are sequentially formed. An Al electrode 5 is formed in the center of the upper surface of the p-SiC cladding layer 4, and a Ni electrode 6 is formed in the center of the lower surface of the n-SiC substrate 1.

【0022】このように、図1の発光ダイオードは、直
接遷移型のIn1-x Gax N活性層3を活性層3よりバ
ンドギャップが大きくかつ屈折率の小さいn−SiCク
ラッド層2およびp−SiCクラッド層4で挟んだダブ
ルヘテロ構造のpn接合を有している。
As described above, in the light emitting diode of FIG. 1, the direct transition type In 1-x Ga x N active layer 3 has the n-SiC cladding layers 2 and p having a band gap larger than that of the active layer 3 and a refractive index smaller than that of the active layer 3. -It has a pn junction of a double hetero structure sandwiched between -SiC cladding layers 4.

【0023】表2に各種材料のバンドギャップ、線熱膨
張係数、格子定数および格子不整合を示す。格子不整合
は、GaNに対する格子定数のずれの割合(%)を示し
ている。
Table 2 shows band gaps, linear thermal expansion coefficients, lattice constants and lattice mismatches of various materials. The lattice mismatch indicates the ratio (%) of the deviation of the lattice constant with respect to GaN.

【0024】[0024]

【表2】 [Table 2]

【0025】本実施例では、特にn−SiC基板1、n
−SiCクラッド層2およびp−SiCクラッド層4の
材料として、2.9eVのバンドギャップを有する6H
−SiC、3.2eVのバンドギャップを有する4H−
SiCまたは3.3eVのバンドギャップを有する2H
−SiCを用いる。表2から明らかなように、6H−S
iC、4H−SiCおよび2H−SiCの格子定数はい
ずれも3.08Åであり、GaNの格子定数3.16Å
に近く、格子不整合が2.6%と小さくなっている。
In this embodiment, in particular, the n-SiC substrates 1, n
-SiC cladding layer 2 and p-SiC cladding layer 4 are made of 6H having a band gap of 2.9 eV.
-SiC, 4H-having a band gap of 3.2 eV-
SiC or 2H with a bandgap of 3.3 eV
-Using SiC. As is clear from Table 2, 6H-S
The lattice constants of iC, 4H-SiC and 2H-SiC are all 3.08Å, and the lattice constant of GaN is 3.16Å
, And the lattice mismatch is as small as 2.6%.

【0026】図2にIn1-x Gax NにおけるGa組成
xとバンドギャップとの関係を示す。図2から明らかな
ように、In1-x Gax NのバンドギャップはGa組成
xが0から1.0まで増加するにしたがって2.0eV
から3.4eVまで変化する。
FIG. 2 shows the relationship between the Ga composition x and the band gap in In 1-x Ga x N. As is clear from FIG. 2, the band gap of In 1-x Ga x N is 2.0 eV as the Ga composition x increases from 0 to 1.0.
To 3.4 eV.

【0027】n−SiCクラッド層2およびp−SiC
クラッド層4の材料として2H−SiCを用いた場合に
は、In1-x Gax Nのバンドギャップが3.3よりも
小さくなるように、Ga組成xを0.9よりも小さく設
定する。また、4H−SiCを用いた場合には、In
1-x Gax Nのバンドギャップが3.2eVよりも小さ
くなるようにGa組成xを0.9以下に設定し、6H−
SiCを用いた場合には、In1-x Gax Nのバンドギ
ャップが2.9eVよりも小さくなるようにGa組成x
を0.7以下に設定する。
N-SiC cladding layer 2 and p-SiC
When 2H—SiC is used as the material of the cladding layer 4, the Ga composition x is set to be smaller than 0.9 so that the band gap of In 1-x Ga x N is smaller than 3.3. When 4H-SiC is used, In
The Ga composition x is set to 0.9 or less so that the band gap of 1-x Ga x N is smaller than 3.2 eV, and 6H-
When SiC is used, the Ga composition x is set so that the band gap of In 1-x Ga x N becomes smaller than 2.9 eV.
Is set to 0.7 or less.

【0028】表3にn−SiCクラッド層2およびp−
SiCクラッド層4の成膜条件およびIn1-x Gax
活性層3の成膜条件を示す。
Table 3 shows the n-SiC cladding layer 2 and p-
Film forming conditions of the SiC clad layer 4 and In 1-x Ga x N
The conditions for forming the active layer 3 are shown below.

【0029】[0029]

【表3】 [Table 3]

【0030】表3に示すように、n−SiCクラッド層
2およびp−SiCクラッド層4の成膜には、CVD
(化学的気相成長)法を用い、原料ガスとしてSi
4 、C38 、CH4 およびH2 を用いて基板温度を
1500℃以下に設定する。n−SiCクラッド層2の
成膜の際には、N2 およびNH3 を用いてn型不純物と
してNをドープする。p−SiCクラッド層4の成膜の
際には、TMA〔トリメチルアルミニウム;(CH3
3 Al〕を用いてp型不純物としてAlをドープする。
As shown in Table 3, CVD is used to form the n-SiC cladding layer 2 and the p-SiC cladding layer 4.
(Chemical vapor deposition) method is used, and Si is used as a source gas.
The substrate temperature is set to 1500 ° C. or lower using H 4 , C 3 H 8 , CH 4 and H 2 . When the n-SiC cladding layer 2 is formed, N 2 and NH 3 are used to dope N as an n-type impurity. When forming the p-SiC cladding layer 4, TMA [trimethylaluminum; (CH 3 )
3 Al] is used to dope Al as a p-type impurity.

【0031】In1-x Gax N活性層3の成膜には、C
VD法を用い、原料ガスとしてTMG〔トリメチルガリ
ウム(CH3 3 Ga〕、TMI〔トリメチルインジウ
ム;(CH3 3 In〕、TMA、NH3 、N2 および
2 を用い、基板温度を750〜850℃に設定する。
また、SiH4 を用いてn型不純物としてSiをドープ
してもよく、Cp2 Mg〔ビス(シクロペンタジエニ
ル)マグネシウム;Mg(C5 5 2 〕、DEZ〔ジ
エチルジンク;(C2 5 2 Zn〕等を用いてp型不
純物としてMg、Zn、Cd等をドープしてもよい。
To form the In 1-x Ga x N active layer 3, C
Using the VD method, using TMG [trimethylgallium (CH 3 ) 3 Ga], TMI [trimethylindium; (CH 3 ) 3 In], TMA, NH 3 , N 2 and H 2 as source gases, and using a substrate temperature of 750. Set to ~ 850 ° C.
Also, SiH 4 may be used to dope Si as an n-type impurity, and Cp 2 Mg [bis (cyclopentadienyl) magnesium; Mg (C 5 H 5 ) 2 ], DEZ [diethyl zinc; (C 2 H 5 ) 2 Zn] or the like may be used to dope Mg, Zn, Cd or the like as a p-type impurity.

【0032】図1の発光ダイオードにおいては、1μm
以上の膜厚を有するクラッド層2,4がn−SiC基板
1と同じSiCにより形成されるので、広い温度範囲で
格子整合がとれ、転位が発生しない。また、In1-x
x N活性層3の膜厚は数百Å(例えば500Å)程度
に設定されるので、In1-x Gax Nの格子定数がn−
SiC基板1の格子定数に一致していなくても、歪みを
吸収する。したがって、転位の発生が防止される。
In the light emitting diode of FIG. 1, 1 μm
Since the clad layers 2 and 4 having the above film thicknesses are formed of the same SiC as the n-SiC substrate 1, lattice matching can be achieved in a wide temperature range and dislocations do not occur. Also, In 1-x G
Since the film thickness of the a x N active layer 3 is set to several hundred Å (for example, 500 Å), the lattice constant of In 1-x Ga x N is n−.
Even if the lattice constant of the SiC substrate 1 does not match, the strain is absorbed. Therefore, generation of dislocations is prevented.

【0033】このように、図1の発光ダイオードにおい
ては、広い温度範囲でn−SiCクラッド層2、In
1-x Gax N活性層3およびp−SiCクラッド層4に
転位が発生せず、n−SiC基板1上に高品質な結晶層
が得られるため、発光効率が高く、かつ信頼性が高い。
As described above, in the light emitting diode of FIG. 1, the n-SiC cladding layer 2 and the In layer have a wide temperature range.
Dislocations do not occur in the 1-x Ga x N active layer 3 and the p-SiC cladding layer 4, and a high-quality crystal layer can be obtained on the n-SiC substrate 1, so that the luminous efficiency is high and the reliability is high. .

【0034】特に、n−SiCクラッド層2およびp−
SiCクラッド層4として4H−SiCを用いた場合に
は、バンドギャップが約3.2eVであるので、In
1-x Gax N活性層3は約3eV(波長で415nm付
近)までの短波長光を効率良く発生する。
In particular, the n-SiC cladding layer 2 and p-
When 4H—SiC is used as the SiC clad layer 4, the band gap is about 3.2 eV, so In
The 1-x Ga x N active layer 3 efficiently generates short-wavelength light up to about 3 eV (wavelength near 415 nm).

【0035】図3は本発明の第2の実施例による半導体
レーザ装置の構造を示す断面図である。図3において、
n−SiC基板11上に、n−SiCクラッド層12、
In1- x Gax N活性層13、p−SiCクラッド層1
4、およびSiO2 、SiN等の絶縁層15が順に形成
されている。絶縁層15の中央部にはストライプ状の開
口部が形成されている。絶縁層15の上面およびp−S
iCクラッド層14の中央部の上面にAl電極16が形
成され、n−SiC基板11の下面にNi電極17が形
成されている。
FIG. 3 is a sectional view showing the structure of a semiconductor laser device according to the second embodiment of the present invention. In FIG.
On the n-SiC substrate 11, the n-SiC clad layer 12,
In 1- x Ga x N active layer 13, p-SiC cladding layer 1
4 and an insulating layer 15 made of SiO 2 , SiN or the like are sequentially formed. A stripe-shaped opening is formed in the center of the insulating layer 15. The upper surface of the insulating layer 15 and p-S
An Al electrode 16 is formed on the upper surface of the center of the iC cladding layer 14, and a Ni electrode 17 is formed on the lower surface of the n-SiC substrate 11.

【0036】n−SiC基板11の材料およびIn1-x
Gax N活性層13のGa組成xは、第1の実施例と同
様にして選択する。n−SiCクラッド層12およびp
−SiCクラッド層14は光の閉じ込めのためにそれぞ
れ1μm程度の膜厚を有し、In1-x Gax N活性層1
3は数百Å(例えば500Å)程度の膜厚を有する。
Material of n-SiC Substrate 11 and In 1-x
The Ga composition x of the Ga x N active layer 13 is selected in the same manner as in the first embodiment. n-SiC cladding layer 12 and p
The -SiC cladding layer 14 has a film thickness of about 1 μm for confining light, and the In 1-x Ga x N active layer 1
3 has a film thickness of about several hundred Å (for example, 500 Å).

【0037】このように、図3の半導体レーザ装置にお
いても、膜厚の薄い活性層を挟む膜厚の厚いクラッド層
12,14がn−SiC基板11と同じSiCにより形
成されているので、広い温度範囲で格子整合がとれ、転
位の発生が防止される。それにより、n−SiC基板1
1上に高品質な結晶層が得られるため、発光効率が高
く、かつ信頼性が高い。
As described above, also in the semiconductor laser device of FIG. 3, since the thick clad layers 12 and 14 sandwiching the thin active layer are made of the same SiC as the n-SiC substrate 11, it is wide. Lattice matching is achieved in the temperature range and dislocations are prevented. Thereby, the n-SiC substrate 1
1, a high-quality crystal layer can be obtained, so that the luminous efficiency is high and the reliability is high.

【0038】図4は本発明の第3の実施例による半導体
レーザ装置の構造を示す断面図である。図4の半導体レ
ーザ装置においては、図3の半導体レーザ装置における
In1- x Gax N活性層13の代わりに多層膜活性層
(量子井戸構造層)18が設けられている。多層膜活性
層18は、図5に示すように、3つのIn0.1 Ga0.9
N層18aおよび2つのIn0.3 Ga0.7 N層18bが
交互に積層されてなる。各In0.1 Ga0.9 N層18a
は100Åの膜厚を有し、各In0.3 Ga0.7 N層18
bは80Åの膜厚を有する。
FIG. 4 is a sectional view showing the structure of a semiconductor laser device according to the third embodiment of the present invention. In the semiconductor laser device of FIG. 4, a multilayer active layer (quantum well structure layer) 18 is provided in place of the In 1- x Ga x N active layer 13 of the semiconductor laser device of FIG. As shown in FIG. 5, the multilayer active layer 18 includes three In 0.1 Ga 0.9 layers.
The N layer 18a and the two In 0.3 Ga 0.7 N layers 18b are alternately laminated. Each In 0.1 Ga 0.9 N layer 18a
Has a film thickness of 100 Å, and each In 0.3 Ga 0.7 N layer 18
b has a film thickness of 80Å.

【0039】In組成(1−x)の小さいIn0.1 Ga
0.9 N層18aはSiCに近い格子定数を有する。ま
た、図2から明らかなように、In組成(1−x)の大
きいIn0.3 Ga0.7 N層18bはSiCに比べて小さ
いバンドギャップを有する。したがって、In0.1 Ga
0.9 N層18aによりn−SiCクラッド層12および
p−SiCクラッド層14に対して格子整合がとられ
る。また、In0.3 Ga0. 7 N層18bによりn−Si
Cクラッド層12およびp−SiCクラッド層14との
バンドギャップの差を大きくすることができる。それに
より、転位の発生を防止しつつ、In1-x Gax N活性
層3の膜厚を厚くして光の閉じ込めを良くすることがで
きる。
In 0.1 Ga with small In composition (1-x)
The 0.9 N layer 18a has a lattice constant close to that of SiC. Further, as is clear from FIG. 2, the In 0.3 Ga 0.7 N layer 18b having a large In composition (1-x) has a band gap smaller than that of SiC. Therefore, In 0.1 Ga
The 0.9 N layer 18a provides lattice matching with the n-SiC cladding layer 12 and the p-SiC cladding layer 14. Further, n-Si by In 0.3 Ga 0. 7 N layer 18b
The difference in band gap between the C cladding layer 12 and the p-SiC cladding layer 14 can be increased. This makes it possible to increase the film thickness of the In 1-x Ga x N active layer 3 and improve the light confinement while preventing the generation of dislocations.

【0040】このように、図4の半導体レーザ装置にお
いても、広い温度範囲で転位の発生が防止され、n−S
iC基板11上に高品質な結晶層が得られるので、発光
効率が高く、かつ信頼性が高く、しかも光の閉じ込めが
良好となる。
As described above, also in the semiconductor laser device of FIG. 4, the generation of dislocations is prevented in a wide temperature range, and the n-S
Since a high-quality crystal layer can be obtained on the iC substrate 11, the luminous efficiency is high, the reliability is high, and the light confinement is good.

【0041】上記実施例では、結晶の面方位が傾斜して
いないSiC基板を用いているが、結晶の面方位が低指
数面から10°以下に傾けられた基板を用いてもよい。
また、上記実施例のように、SiC基板、n−SiCク
ラッド層およびp−SiCクラッド層を同じ結晶多系の
SiCにより形成する方が、格子定数が一致するので好
ましいが、SiC基板、n−SiCクラッド層およびp
−SiCクラッド層のいずれかまたは全てを異なる結晶
多系のSiCにより形成してもよい。ただし、SiC基
板上のクラッド層はエピタキシャル成長により形成され
るので、SiC基板とそれに接するクラッド層を同じ結
晶多系のSiCにより形成する方が製造上容易である。
In the above embodiment, the SiC substrate in which the crystal plane orientation is not tilted is used, but a substrate in which the crystal plane orientation is tilted at 10 ° or less from the low index plane may be used.
Further, it is preferable to form the SiC substrate, the n-SiC clad layer and the p-SiC clad layer from the same crystalline poly-system SiC as in the above-mentioned embodiment because the lattice constants are the same, but the SiC substrate, the n- SiC clad layer and p
Any or all of the -SiC cladding layers may be formed of different crystalline poly-SiC. However, since the clad layer on the SiC substrate is formed by epitaxial growth, it is easier in terms of manufacturing to form the SiC substrate and the clad layer in contact with the SiC substrate with the same polycrystal SiC.

【0042】さらに、上記実施例では、基板の側からn
np構造としているが、基板および各層を逆の導電型の
層で形成し、基板の側からppn構造としてもよい。
Further, in the above embodiment, n from the substrate side.
Although the np structure is used, the substrate and each layer may be formed of layers of opposite conductivity type to have a ppn structure from the substrate side.

【0043】[0043]

【発明の効果】以上のように本発明によれば、SiC基
板上にSiCからなる第1のクラッド層、InGaNか
らなる活性層およびSiCからなる第2のクラッド層を
順に形成することにより、広い温度範囲で格子整合がと
れるので、転位の発生が防止され、SiC基板上に高品
質な結晶層が得られる。したがって、発光効率が高く、
信頼性の高い半導体発光素子が得られる。
As described above, according to the present invention, a first clad layer made of SiC, an active layer made of InGaN, and a second clad layer made of SiC are formed in this order on a SiC substrate, thereby providing a wide area. Since lattice matching can be achieved in the temperature range, generation of dislocations is prevented, and a high quality crystal layer can be obtained on the SiC substrate. Therefore, the luminous efficiency is high,
A highly reliable semiconductor light emitting device can be obtained.

【0044】特に、活性層をIn組成の小さいInGa
N層とIn組成の大きいInGaN層との多層膜で構成
した場合には、光の閉じ込めを良くしつつ転位の発生を
防止することが可能となる。
In particular, the active layer is made of InGa with a small In composition.
In the case of a multilayer film including an N layer and an InGaN layer having a large In composition, it is possible to improve the light confinement and prevent the generation of dislocations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による発光ダイオードの
構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a light emitting diode according to a first embodiment of the present invention.

【図2】In1-x Gax NにおけるGa組成xとバンド
ギャップとの関係を示す図である。
FIG. 2 is a diagram showing a relationship between a Ga composition x and a band gap in In 1-x Ga x N.

【図3】本発明の第2の実施例による半導体レーザ装置
の構造を示す断面図である。
FIG. 3 is a sectional view showing the structure of a semiconductor laser device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例による半導体レーザ装置
の構造を示す断面図である。
FIG. 4 is a sectional view showing the structure of a semiconductor laser device according to a third embodiment of the present invention.

【図5】図4の半導体レーザ装置における多層膜活性層
の構造を示す図である。
5 is a diagram showing a structure of a multilayer active layer in the semiconductor laser device of FIG.

【図6】従来のZnSe系半導体レーザ装置の構造を示
す断面図である。
FIG. 6 is a sectional view showing a structure of a conventional ZnSe based semiconductor laser device.

【図7】従来のGaN系発光ダイオードの構造を示す断
面図である。
FIG. 7 is a cross-sectional view showing the structure of a conventional GaN-based light emitting diode.

【符号の説明】[Explanation of symbols]

1,11 n−SiC基板 2,12 n−SiCクラッド層 3,13 In1-x Gax N活性層 4,14 p−SiCクラッド層 18 多層膜活性層 なお、各図中同一符号は同一または相当部分を示す。1, 11 n-SiC substrate 2, 12 n-SiC clad layer 3, 13 In 1-x Ga x N active layer 4, 14 p-SiC clad layer 18 Multi-layer active layer A considerable part is shown.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiC基板上にSiCからなる第1のク
ラッド層、InGaNからなる活性層およびSiCから
なる第2のクラッド層が順に形成されたことを特徴とす
る半導体発光素子。
1. A semiconductor light emitting device comprising a SiC substrate, a first clad layer made of SiC, an active layer made of InGaN, and a second clad layer made of SiC, which are sequentially formed on a SiC substrate.
【請求項2】 前記活性層は、In組成の小さい複数の
InGaN層とIn組成の大きい1以上のInGaN層
とが交互に積層された多層膜からなることを特徴とする
請求項1記載の半導体発光素子。
2. The semiconductor according to claim 1, wherein the active layer comprises a multilayer film in which a plurality of InGaN layers having a small In composition and one or more InGaN layers having a large In composition are alternately laminated. Light emitting element.
JP19833694A 1994-08-23 1994-08-23 Semiconductor light emitting device Expired - Fee Related JP3561536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19833694A JP3561536B2 (en) 1994-08-23 1994-08-23 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19833694A JP3561536B2 (en) 1994-08-23 1994-08-23 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0864910A true JPH0864910A (en) 1996-03-08
JP3561536B2 JP3561536B2 (en) 2004-09-02

Family

ID=16389426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19833694A Expired - Fee Related JP3561536B2 (en) 1994-08-23 1994-08-23 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3561536B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307190A (en) * 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JPH1027940A (en) * 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd Semiconductor laser device
WO2001084640A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Gan-based light-emitting-diode chip and a method for producing a luminescent diode component
US6632694B2 (en) * 2001-10-17 2003-10-14 Astralux, Inc. Double heterojunction light emitting diodes and laser diodes having quantum dot silicon light emitters
EP1447856A2 (en) * 2003-02-13 2004-08-18 Cree, Inc. Group III nitride light emitting device with silicon carbide cladding layer
US6878563B2 (en) 2000-04-26 2005-04-12 Osram Gmbh Radiation-emitting semiconductor element and method for producing the same
US6927422B2 (en) 2002-10-17 2005-08-09 Astralux, Inc. Double heterojunction light emitting diodes and laser diodes having quantum dot silicon light emitters
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
JP2007066986A (en) * 2005-08-29 2007-03-15 National Univ Corp Shizuoka Univ Semiconductor light emitting element, package thereof, and manufacturing method thereof
US7265392B2 (en) 2000-05-26 2007-09-04 Osram Gmbh Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same
JP2012038958A (en) * 2010-08-09 2012-02-23 Toshiba Corp Semiconductor light-emitting device
JP2013179363A (en) * 2007-02-12 2013-09-09 Regents Of The Univ Of California Al(x)Ga(1-x)N-CLADDING-FREE NONPOLAR III-NITRIDE BASED LASER DIODE AND LIGHT EMITTING DIODE
JP2013219386A (en) * 2013-06-24 2013-10-24 Toshiba Corp Semiconductor light-emitting element
EP2273574A3 (en) * 2000-04-26 2014-01-01 OSRAM Opto Semiconductors GmbH Light-emitting diode chip on a GaN basis and method for producing a light-emitting diode component with a light-emitting diode chip on a GaN basis
KR101617312B1 (en) * 2011-01-26 2016-05-02 에피스타 코포레이션 A light-emitting device
KR20160096959A (en) * 2015-02-06 2016-08-17 한국전자통신연구원 Silicon nanocrystal light emitting diode and fabricating method of the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
JPH09307190A (en) * 1996-05-15 1997-11-28 Fuji Photo Film Co Ltd Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device
JPH1027940A (en) * 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd Semiconductor laser device
WO2001084640A1 (en) * 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Gan-based light-emitting-diode chip and a method for producing a luminescent diode component
EP2273574A3 (en) * 2000-04-26 2014-01-01 OSRAM Opto Semiconductors GmbH Light-emitting diode chip on a GaN basis and method for producing a light-emitting diode component with a light-emitting diode chip on a GaN basis
US6878563B2 (en) 2000-04-26 2005-04-12 Osram Gmbh Radiation-emitting semiconductor element and method for producing the same
US7319247B2 (en) 2000-04-26 2008-01-15 Osram Gmbh Light emitting-diode chip and a method for producing same
US7265392B2 (en) 2000-05-26 2007-09-04 Osram Gmbh Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same
US6632694B2 (en) * 2001-10-17 2003-10-14 Astralux, Inc. Double heterojunction light emitting diodes and laser diodes having quantum dot silicon light emitters
US6927422B2 (en) 2002-10-17 2005-08-09 Astralux, Inc. Double heterojunction light emitting diodes and laser diodes having quantum dot silicon light emitters
EP1447856A3 (en) * 2003-02-13 2006-10-25 Cree, Inc. Group III nitride light emitting device with silicon carbide cladding layer
US6952024B2 (en) * 2003-02-13 2005-10-04 Cree, Inc. Group III nitride LED with silicon carbide cladding layer
EP1447856A2 (en) * 2003-02-13 2004-08-18 Cree, Inc. Group III nitride light emitting device with silicon carbide cladding layer
JP2007066986A (en) * 2005-08-29 2007-03-15 National Univ Corp Shizuoka Univ Semiconductor light emitting element, package thereof, and manufacturing method thereof
JP2013179363A (en) * 2007-02-12 2013-09-09 Regents Of The Univ Of California Al(x)Ga(1-x)N-CLADDING-FREE NONPOLAR III-NITRIDE BASED LASER DIODE AND LIGHT EMITTING DIODE
US9040327B2 (en) 2007-02-12 2015-05-26 The Regents Of The University Of California Al(x)Ga(1-x)N-cladding-free nonpolar III-nitride based laser diodes and light emitting diodes
JP2012038958A (en) * 2010-08-09 2012-02-23 Toshiba Corp Semiconductor light-emitting device
KR101617312B1 (en) * 2011-01-26 2016-05-02 에피스타 코포레이션 A light-emitting device
JP2013219386A (en) * 2013-06-24 2013-10-24 Toshiba Corp Semiconductor light-emitting element
KR20160096959A (en) * 2015-02-06 2016-08-17 한국전자통신연구원 Silicon nanocrystal light emitting diode and fabricating method of the same

Also Published As

Publication number Publication date
JP3561536B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP1116282B1 (en) VERTICAL GEOMETRY InGaN LED
JP5434882B2 (en) GaN-based III-V compound semiconductor light emitting device
US8106403B2 (en) III-nitride light emitting device incorporation boron
JP2004521495A (en) III-nitride LED with undoped cladding layer
JP3561536B2 (en) Semiconductor light emitting device
JP2005286338A (en) 4 h-type polytype gallium nitride-based semiconductor element formed on 4 h-type polytype substrate
EP2192623A1 (en) Vertical Geometry InGaN LED
US20050040414A1 (en) Light-emitting device and manufacturing method thereof
JP2008288397A (en) Semiconductor light-emitting apparatus
JP3105981B2 (en) Semiconductor light emitting device
JPH11274560A (en) Semiconductor element and manufacture thereof
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
US6639258B2 (en) Group III nitride compound semiconductor device
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JPH05243613A (en) Light-emitting device and its manufacture
JP4333092B2 (en) Manufacturing method of nitride semiconductor
TWI807552B (en) Nitride semiconductor light emitting element and method of manufacturing same
JPH08116092A (en) Semiconductor light emitting element and its manufacture
JP2000294884A (en) Optical semiconductor device
JP3767534B2 (en) Light emitting device
JP2001085735A (en) Nitride compound semiconductor light emitting element and its manufacturing method
JP2002305322A (en) Group iii nitride semiconductor light emitting device and its manufacturing method
JPH1065270A (en) Semiconductor element employing nitride based semiconductor
JPH08330627A (en) Semiconductor light-emitting element and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees