JP3767534B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP3767534B2
JP3767534B2 JP2002244428A JP2002244428A JP3767534B2 JP 3767534 B2 JP3767534 B2 JP 3767534B2 JP 2002244428 A JP2002244428 A JP 2002244428A JP 2002244428 A JP2002244428 A JP 2002244428A JP 3767534 B2 JP3767534 B2 JP 3767534B2
Authority
JP
Japan
Prior art keywords
layer
grown
nitride semiconductor
substrate
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002244428A
Other languages
Japanese (ja)
Other versions
JP2003078163A (en
Inventor
慎一 長濱
成人 岩佐
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2002244428A priority Critical patent/JP3767534B2/en
Publication of JP2003078163A publication Critical patent/JP2003078163A/en
Application granted granted Critical
Publication of JP3767534B2 publication Critical patent/JP3767534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は気相成長法により窒化物半導体InAlGa1−a−bN(0≦a、0≦b、a+b≦1)の結晶を基板上に成長させた発光デバイスに関する。
【0002】
【従来の技術】
窒化物半導体は有機金属気相成長法(MOVPE)、分子線気相成長法(MBE)、ハライド気相成長法(HDVPE)等の気相成長法により基板上にエピタキシャル成長される。一般に化合物半導体をエピタキシャル成長させるには、化合物半導体と格子定数が一致した基板を用いると結晶性の良いものが得られることが常識であるが、窒化物半導体には格子整合する基板がないため、現在格子定数で13%もの差があるサファイア基板の上に成長されるのが常であった。
【0003】
サファイア基板の場合、窒化物半導体を成長させる前にまずサファイア基板上にAlN、GaNよりなるバッファ層を成長させ、そのバッファ層の上に窒化物半導体を成長することが知られている。例えば特公昭59−48794号、特公平4−15200号公報にはAlNをバッファ層とする方法が記載され、また特開昭60−173829号、平4−297023号公報にはGaNをバッファ層とする方法が記載されている。その中でも特開平4−297023号による方法は現在実用化されている窒化物半導体LEDの基幹技術の一つとなっている。
【0004】
その他窒化物半導体を成長させる基板にはZnS(特開平4−68579)、MnO(特開平4−209577)、ZnO(特開平4−236477)、SiC(特開平4−223330)等数々提案されており、特に特開平4−223330号公報にはSiC基板表面にSiCバッファ層を形成し、このバッファ層の上に窒化物半導体を成長させる技術が示されている。
【0005】
【発明が解決しようとする課題】
現在、サファイア基板の上に成長された窒化物半導体で、青色LED、青緑色LED等が実用化されているが、将来、さらに高輝度で信頼性に優れたLED、またLDのような高度な発光デバイス等を実現するためには、窒化物半導体の結晶性をさらに向上させる必要がある。従って本発明はこのような事情を鑑みて成されたもので、その目的とするところは基板の上に成長させる窒化物半導体の結晶性を向上させ、信頼性に優れたLED、LD等を実現することにある。
【0006】
【課題を解決するための手段】
本発明の窒化物半導体の発光デバイスは、 SiC基板上に、窒化物半導体層を有する発光デバイスであって、
前記窒化物半導体層は、少なくとも前記SiC基板より離れるに従ってX値が順次小さくなるように組成傾斜した1μm以上5μm以下のAl Ga 1−X N層(0≦X≦1)と、その上に活性層とを有し、前記Al Ga 1−X N層(0≦X≦1)はX線ロッキングカーブの半値幅(FWHM)が2分以下でかつ移動度が800cm ・V/sec以上であることを特徴とする。さらに前記Al Ga 1−X N層(0≦X≦1)の最上層はX値が0.3以下であることを特徴とする。さらに前記Al Ga 1−X N層(0≦X≦1)には、Siがドープされてなることを特徴とする。
【0007】
本発明の発光デバイスの成長方法において、気相成長法には先にも述べたように、例えばMOVPE法、MBE法、HDVPE法等が採用できるが、好ましくはMOVPE法で成長させることにより結晶性の良い半導体層が得られる。
【0008】
また基板のSiCは単結晶のSiC基板を利用する。SiCには4H、6H、3C等数々の結晶構造があるが特に限定するものではない。好ましくは6H−SiCの(0001)面、3C−SiCの(111)面の上に成長させることにより結晶性の良い窒化物半導体が得られる。
【0009】
組成傾斜したAlGa1−XN層とはAl混晶比がSiC基板より離れるに従って少なくなるように構成したAlGa1−XN層であり、このAlGa1−XN層は単一層で組成傾斜するように構成しても良いし、また後に述べるように複数のAlGa1−XN層を積層した多層膜で構成して、各層の構成をSiCより離れるに従ってAl混晶比を少なくしたAlGa1−XNとしても良い。
【0010】
AlGa1−XN層は5nm〜5μmの膜厚で成長することが望ましく、さらに好ましくは5nm〜3μmに調整する。5nmよりも薄いと組成傾斜した層が形成しにくく、また2μmよりも厚いとAlGa1−XN層自身にクラックが入りやすくなるからである。また組成傾斜させたAlXGa1−XN層の最表面はGaNとすることがさらに望ましい。GaNとすると、その上に成長する窒化物半導体層の結晶性が特に良くなる。
【0011】
次に本発明の発光デバイスの成長方法は、前記AlGa1−XN層と基板との間にAlN層を成長させることを特徴とする。このAlN層を成長させることにより、その上のAlGa1−XN層の結晶性がさらに良くなる。従ってAlGa1−XN層の上に成長する窒化物半導体層の結晶性も良くなる。AlN層の膜厚は1nm〜0.1μmの膜厚で形成することが望ましい。0.1μmよりも厚いとAlN層自身にクラックが入りやすくなるので、その上に結晶性の良いAlGa1−XN層が成長しにくい。AlN層の成長条件は通常の気相成長法の条件で成長できる。例えばMOVPE法であれば、400℃〜1200℃の範囲内に加熱されたSiC基板の表面に、Alを含む有機金属ガスと、窒素の水素化物とを供給することにより成長できる。この場合、900℃以下で成長されたAlNはアモルファスのAlNを含む結晶となり、約900℃以上で成長されたAlNは単結晶に近い結晶となるが、いずれの場合においても、そのAlN層の上に結晶性の良いAlGa1−XN層が成長可能である。
【0012】
次にAlGa1−XN層はX値が互いに異なる層が積層された多層膜よりなることを特徴とする。つまりSiC基板側にAl混晶比が大きいAlGaN層を形成し、その上にAl混晶比が小さいAlGaN層を形成し、次第にAl組成比の小さいAlGaN層を積層した多層膜とする。多層膜は何層積層しても特に問題はないが、前記のようにAlGaN層の総膜厚は5nm〜5μmの範囲に調整することが望ましい。
【0013】
【作用】
SiC基板上に組成傾斜したAlGaN層を形成すると、そのAlGaN層が基板との格子不整合に起因する転位、歪み等を減少させることができる。これはAl混晶比の多いAlGaN層がSiCの格子定数に近いからであると推察できる。従って、組成傾斜したAlGaN層を成長させる前にAlN層を一番先に成長させると、AlGaNの結晶性が良くなる。しかも順にAl混晶比を減少させることにより、最初に形成したAl混晶比の大きいAlGaN層の格子欠陥が次第に緩和されて、結晶性の良いAlGaN層が次第に成長されるのである。結晶性のよいAlGaN層が成長できると、その上に成長させる窒化物半導体は先に形成したAlGaN層が格子整合基板となるので、窒化物半導体の結晶性が飛躍的に向上する。
【0014】
【実施例】
以下、MOVPE法によるSiC基板上の窒化物半導体層の成長方法について述べる。
【0015】
1050℃に加熱された6H−SiC基板の(0001)面に、水素ガスをキャリアガスとして、TMA(トリメチルアルミニウム)とアンモニアガスを供給し、AlNよりなる薄膜を50nmの膜厚で成長させる。このAlN薄膜は400℃〜1200℃の範囲で成長可能であり、前記のようにおよそ900℃以下で成長させるとアモルファスのAlNを含む結晶が成長し、900℃以上で成長させると単結晶のAlN薄膜が成長する傾向にあるが、アモルファスのAlN薄膜、単結晶のAlN薄膜、いずれを成長させてもよい。
【0016】
続いて、基板を1050℃に保持したままで、TMAガスに加えて、TMG(トリメチルガリウム)ガスを徐々に流し、組成傾斜したAlGaN層を成長させる。TMGおよびTMAのガス流量はマスフローコントローラにより制御し、TMGのガスのガス流量を時間の経過と共に徐々に多くし、同時にTMAガスの流量を徐々に少なくして、TMGガスとTMAガスの合計のガス量を常時ほぼ同一に調整してAlGaN層を成長させる。そして最後にTMAガスを止めてGaN層が成長するようにする。以上のようにして組成傾斜したAlGaN層を2μmの膜厚で成長させる。なお傾斜組成AlGaN層は最上層がGaNとなるようにしたが、特に傾斜組成していれば最上層をGaNとする必要はない。好ましくは最上層はX値が0.5よりも小さいAlGa1−XN層、さらに好ましくは0.3以下とする方が、そのAlGa1−XN層の上に結晶性の良い窒化物半導体層を成長できる。
【0017】
続いて、TMAガスを完全に止め、TMGガス、アンモニアガスで1050℃にてGaN層を3μmの膜厚で成長させる。
【0018】
成長後基板を取り出し、得られたGaN層の結晶性を評価するためダブルクリスタルX線ロッキングカーブの半値幅(FWHM:Full Width at Half Maximum)を測定したところ、1.5分と非常に結晶性に優れていることが判明した。またホール測定装置で結晶の移動度を測定したところ、900cm/V・secと優れた値を示した。なおFWHMは小さいほど結晶性が良いと評価でき、移動度は大きいほど結晶性がよいと評価できる。例えばサファイア基板上にGaNをバッファ層として成長したノンドープのGaN単結晶層で3分〜5分であり、また移動度は500〜600cm/V・secの範囲である。
【0019】
[実施例2]
実施例1において、SiC基板の上にAlN薄膜を成長させない他は同様にしてGaN層を成長させたところ、FWHMは2分、移動度800cm/V・secであり、実施例1に比較して若干結晶性が劣っていた。
【0020】
[実施例3]
実施例1において、AlN薄膜成長後、温度を1050℃に保持したままで、TMA、TMGのガス流量を調節して、まずAl0.9Ga0.1N層を0.2μm成長させる。続いてAl0.8Ga0.2N層を0.2μm、Al0.7Ga0.3N層を0.2μm・・・・・Al0.2Ga0.8N層を0.2μm、Al0.1Ga0.9N層を0.2μmの順に9層積層して、組成傾斜したAlGaN多層膜を1.8μmの膜厚で成長する。後は実施例1と同様にしてAl0.1Ga0.9N層の上にGaN層を2μm成長したところ、得られたGaN層の結晶性は、実施例1とほぼ同一の値を示した。
【0021】
[実施例4]
実施例1において、傾斜組成させたAlGaN層を成長させた後、同じく温度を1050℃に保持しながら、TMA、TMG及びアンモニアガスでAl0.2Ga0.8N層を2μm成長させる。このAl0.2Ga0.8N層のFWHMは2分、移動度は800cm/V・secであり、AlGaNとしては非常に結晶性がよいことを示している。
【0022】
[実施例5]図1は本発明の発光デバイスとして得られたレーザ素子の構造を示す模式的な断面図である。以下実施例5をこの図面を元に説明する。
【0023】
厚さ500μmの6H−SiC基板1の(0001)面に、AlN薄膜2を50nm、AlN〜GaNまで組成傾斜させたn型AlGaN層3を2μmの膜厚で実施例1と同様にして積層する。なお、組成傾斜AlGaN層3は好ましいn型とするためにSiをドープしており、Si源としてシランガスを原料ガスと同時に流しながらドープして成長した。
【0024】
次に基板の温度を800℃にして、原料ガスにTMI(トリメチルインジウム)ガス、TMG、アンモニア、シランガスを用い、n型In0.05Ga0.95N層4を0.1μmの膜厚で成長した。
【0025】
続いてTMIの流量を多くして、活性層としてノンドープIn0.2Ga0.8N層5を2nmの膜厚で形成して、単一量子井戸構造となるようにした。
【0026】
次にTMIを止め、基板の温度を1050℃にして、原料ガスにTMG、TMA、アンモニア、p型不純物ガスとしてCp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgドープp型Al0.15Ga0.85N層6を0.1μm成長した。
【0027】
続いてTMAの流量を多くして、Mgドープp型Al0.3Ga0.7N層7を0.1μm成長した。
【0028】
最後にTMAを止め、Mgドープp型GaN層8を0.5μm成長した。
【0029】
以上のようにして窒化物半導体層を積層したウェーハを反応容器から取り出し、エッチング装置にて最上層のp−GaN層8より、組成傾斜n−AlGaN層3が露出するまでエッチングを行う。エッチング後、露出したn−AlGaN層3に負電極10を設け、最上層のp−GaN層にストライプ状の正電極11を設けた。
【0030】
電極設置後、正電極のストライプに対して垂直な方向でウェーハを劈開し、その劈開面に常法に従って誘電体多層膜よりなる反射膜を形成してレーザ素子とする。図1はそのストライプ状の正電極11に垂直な方向で劈開した素子の断面図を示している。なおこのレーザ素子は、しきい値電流密度500mA/cmにおいて、室温でレーザ発振を示し、出力5mWであった。これは組成傾斜したAlGaN層の上に成長した窒化物半導体の結晶性が良く、さらに基板の劈開性による共振面の形成が容易であったことによる。
【0031】
このレーザ素子は以下の利点がある。まず第一に基板にSiCを用いた場合、SiC基板は導電性を有しているため通常の負電極はSiC基板に接して設けられる。つまり正電極と負電極とが対向した状態とされる。しかし、SiCと窒化物半導体とはヘテロエピである。従ってSiCと窒化物半導体層との界面にヘテロエピに起因する障壁が存在するため、素子のV(順方向電圧)が上昇する。一方、本発明によるレーザ素子はSiCという導電性基板を使用したにも関わらず、負電極を基板側に設けず、敢えて窒化物半導体をエッチングして同一面側に設けた構造としている。従って、電流がSiCと窒化物半導体層との界面を流れないので、Vの上昇を抑制できる。第二に組成傾斜させたAlGaN層3は1μm以上と厚く成長させることにより、負電極を形成するためのコンタクト層、及び活性層の発光を閉じこめるためのクラッド層にもなる。さらに第三にSiCは従来のサファイア基板と異なり劈開性を有している。このためSiCの劈開性を利用すれば、窒化物半導体の劈開面をレーザ素子の光共振面とするのに非常に都合がよい。
【0032】
【発明の効果】
以上説明したように本発明の方法によると、結晶性の良い窒化物半導体層が得られる。例えば結晶のホール測定において、移動度が900cm/V・secという値は窒化物半導体では非常に優れた値である。また本発明によると結晶性の良い窒化物半導体が得られるため、実施例5のように発光素子を作成した場合、発光出力の高い素子を得ることができ、その産業上の利用価値は大きい。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る方法により得られた窒化物半導体レーザ素子の構造を示す模式断面図。
【符号の説明】
1・・・・SiC基板
2・・・・AlN薄膜
3・・・・Siドープn型AlGaN層
4・・・・Siドープn型In0.05Ga0.95N層
5・・・・ノンドープIn0.2Ga0.8N活性層
6・・・・Mgドープp型Al0.15Ga0.85N層
7・・・・Mgドープp型Al0.3Ga0.7N層
8・・・・p型GaN層
10・・・・負電極
11・・・・正電極
[0001]
[Industrial application fields]
The present invention is by vapor deposition relates to a light-emitting device grown nitride semiconductor In a Al b Ga 1-a -b N (0 ≦ a, 0 ≦ b, a + b ≦ 1) a crystal on the substrate.
[0002]
[Prior art]
Nitride semiconductors are epitaxially grown on a substrate by vapor phase growth methods such as metal organic vapor phase epitaxy (MOVPE), molecular beam vapor phase epitaxy (MBE) and halide vapor phase epitaxy (HDVPE). In general, for epitaxial growth of compound semiconductors, it is common knowledge that a substrate having the same lattice constant as that of the compound semiconductor can be obtained. However, since nitride semiconductors do not have a lattice-matching substrate, It was usually grown on a sapphire substrate with a difference of 13% in lattice constant.
[0003]
In the case of a sapphire substrate, it is known that a buffer layer made of AlN and GaN is first grown on a sapphire substrate and a nitride semiconductor is grown on the buffer layer before growing the nitride semiconductor. For example, JP-B-59-48794 and JP-B-4-15200 describe methods using AlN as a buffer layer, and JP-A-60-173829 and JP-A-4-297023 describe that GaN is used as a buffer layer. How to do is described. Among them, the method disclosed in JP-A-4-297023 is one of the basic technologies of nitride semiconductor LEDs currently in practical use.
[0004]
In addition, ZnS (JP-A-4-68579), MnO (JP-A-4-209777), ZnO (JP-A-4-236477), SiC (JP-A-4-223330) and the like have been proposed as substrates for growing nitride semiconductors. In particular, Japanese Patent Laid-Open No. 4-223330 discloses a technique for forming a SiC buffer layer on the surface of a SiC substrate and growing a nitride semiconductor on the buffer layer.
[0005]
[Problems to be solved by the invention]
Currently, blue LEDs, blue-green LEDs, etc. are practically used in nitride semiconductors grown on sapphire substrates. In the future, LEDs with higher brightness and higher reliability, and advanced LEDs such as LD In order to realize a light emitting device or the like, it is necessary to further improve the crystallinity of the nitride semiconductor. Accordingly, the present invention has been made in view of such circumstances, and the object thereof is to improve the crystallinity of a nitride semiconductor grown on a substrate and realize an LED, LD, etc. having excellent reliability. There is to do.
[0006]
[Means for Solving the Problems]
The light emitting device of the nitride semiconductor of the present invention is a light emitting device having a nitride semiconductor layer on a SiC substrate,
The nitride semiconductor layer has an Al X Ga 1-X N layer (0 ≦ X ≦ 1) of 1 μm or more and 5 μm or less having a composition gradient so that the X value is gradually decreased as the distance from the SiC substrate increases. The Al X Ga 1-X N layer (0 ≦ X ≦ 1) has an X-ray rocking curve half-width (FWHM) of 2 minutes or less and a mobility of 800 cm 2 · V / sec or more. It is characterized by being. Further, the uppermost layer of the Al X Ga 1-X N layer (0 ≦ X ≦ 1) has an X value of 0.3 or less. Further, the Al X Ga 1-X N layer (0 ≦ X ≦ 1) is doped with Si.
[0007]
In the method for growing a light emitting device of the present invention, as described above, for example, the MOVPE method, the MBE method, the HDVPE method, etc. can be adopted as the vapor phase growth method, but preferably the crystallinity is obtained by growing by the MOVPE method. A good semiconductor layer can be obtained.
[0008]
As the substrate SiC, a single crystal SiC substrate is used. SiC has many crystal structures such as 4H, 6H, and 3C, but is not particularly limited. Preferably, a nitride semiconductor with good crystallinity can be obtained by growing on the (0001) plane of 6H—SiC and the (111) plane of 3C—SiC.
[0009]
Composition from the inclined Al X Ga 1-X N layer is Al X Ga 1-X N layer configured to be less according to Al ratio is separated from the SiC substrate, the Al X Ga 1-X N layer The composition may be configured to be a single layer with a composition gradient, or, as will be described later, a multilayer film in which a plurality of Al X Ga 1-X N layers are stacked, and the composition of each layer is mixed with Al as the distance from SiC increases. Al X Ga 1-X N with a reduced crystal ratio may be used.
[0010]
The Al X Ga 1-X N layer is desirably grown to a thickness of 5 nm to 5 μm, and more preferably adjusted to 5 nm to 3 μm. This is because if the thickness is less than 5 nm, it is difficult to form a composition-graded layer, and if the thickness is more than 2 μm, the Al X Ga 1-X N layer itself tends to crack. It is further desirable that the outermost surface of the composition-graded AlXGa1-XN layer is GaN. When GaN is used, the crystallinity of the nitride semiconductor layer grown thereon is particularly improved.
[0011]
Next, the method for growing a light emitting device according to the present invention is characterized in that an AlN layer is grown between the Al X Ga 1-X N layer and the substrate. By growing this AlN layer, the crystallinity of the Al X Ga 1- XN layer thereon is further improved. Accordingly, the crystallinity of the nitride semiconductor layer grown on the Al X Ga 1-X N layer is also improved. The thickness of the AlN layer is preferably 1 nm to 0.1 μm. If it is thicker than 0.1 μm, the AlN layer itself is liable to crack, so that it is difficult for the Al X Ga 1-X N layer having good crystallinity to grow thereon. The AlN layer can be grown under the conditions of a normal vapor phase growth method. For example, in the case of the MOVPE method, growth can be performed by supplying an organometallic gas containing Al and a hydride of nitrogen to the surface of a SiC substrate heated in a range of 400 ° C. to 1200 ° C. In this case, AlN grown at 900 ° C. or lower becomes a crystal containing amorphous AlN, and AlN grown at about 900 ° C. or higher becomes a crystal close to a single crystal. In addition, an Al X Ga 1-X N layer having good crystallinity can be grown.
[0012]
Next, the Al X Ga 1-X N layer is formed of a multilayer film in which layers having different X values are stacked. That is, an AlGaN layer having a large Al mixed crystal ratio is formed on the SiC substrate side, an AlGaN layer having a small Al mixed crystal ratio is formed thereon, and a multilayer film in which AlGaN layers having a small Al composition ratio are gradually stacked is formed. Although there are no particular problems even if the multilayer film is laminated, it is desirable to adjust the total film thickness of the AlGaN layer in the range of 5 nm to 5 μm as described above.
[0013]
[Action]
When an AlGaN layer having a composition gradient is formed on a SiC substrate, the AlGaN layer can reduce dislocations, strains, and the like due to lattice mismatch with the substrate. It can be inferred that this is because an AlGaN layer with a high Al mixed crystal ratio is close to the lattice constant of SiC. Therefore, if the AlN layer is grown first before the AlGaN layer having a composition gradient is grown, the crystallinity of AlGaN is improved. In addition, by sequentially reducing the Al mixed crystal ratio, the lattice defects of the AlGaN layer formed initially with a large Al mixed crystal ratio are gradually relaxed, and an AlGaN layer with good crystallinity is gradually grown. When an AlGaN layer with good crystallinity can be grown, the nitride semiconductor grown on the AlGaN layer grows on the lattice-matched substrate, so that the crystallinity of the nitride semiconductor is dramatically improved.
[0014]
【Example】
Hereinafter, we describe the method of growing the nitride semiconductor layer on the SiC substrate that by the MOVPE method.
[0015]
A thin film made of AlN is grown to a thickness of 50 nm on the (0001) plane of the 6H—SiC substrate heated to 1050 ° C. by supplying TMA (trimethylaluminum) and ammonia gas using hydrogen gas as a carrier gas. This AlN thin film can be grown in the range of 400 ° C. to 1200 ° C. As described above, when grown at about 900 ° C. or less, a crystal containing amorphous AlN grows, and when grown at 900 ° C. or more, single crystal AlN Although the thin film tends to grow, either an amorphous AlN thin film or a single crystal AlN thin film may be grown.
[0016]
Subsequently, while maintaining the substrate at 1050 ° C., a TMG (trimethylgallium) gas is gradually flowed in addition to the TMA gas to grow an AlGaN layer having a composition gradient. The gas flow rate of TMG and TMA is controlled by a mass flow controller, and the gas flow rate of TMG gas is gradually increased with time, and at the same time, the flow rate of TMA gas is gradually decreased to obtain the total gas of TMG gas and TMA gas. The AlGaN layer is grown with the amount always adjusted to be substantially the same. Finally, the TMA gas is stopped so that the GaN layer grows. The AlGaN layer having a composition gradient as described above is grown to a thickness of 2 μm. The uppermost layer of the graded composition AlGaN layer is made of GaN. However, the uppermost layer is not necessarily made of GaN if it has a graded composition. Preferably, the uppermost layer is an Al X Ga 1-X N layer having an X value smaller than 0.5, more preferably 0.3 or less, and the upper layer is more crystalline than the Al X Ga 1-X N layer. A good nitride semiconductor layer can be grown.
[0017]
Subsequently, the TMA gas is completely stopped, and a GaN layer is grown to a thickness of 3 μm at 1050 ° C. with TMG gas and ammonia gas.
[0018]
After growth, the substrate was taken out, and the full width at half maximum (FWHM) of the double crystal X-ray rocking curve was measured to evaluate the crystallinity of the obtained GaN layer. Turned out to be excellent. Further, when the mobility of the crystal was measured with a Hall measuring device, it showed an excellent value of 900 cm 2 / V · sec. It can be evaluated that the smaller the FWHM, the better the crystallinity, and the higher the mobility, the better the crystallinity. For example, a non-doped GaN single crystal layer grown using GaN as a buffer layer on a sapphire substrate has a duration of 3 to 5 minutes, and the mobility is in the range of 500 to 600 cm 2 / V · sec.
[0019]
[Example 2]
In Example 1, except that an AlN thin film was not grown on the SiC substrate, a GaN layer was grown in the same manner. The FWHM was 2 minutes and the mobility was 800 cm 2 / V · sec. The crystallinity was slightly inferior.
[0020]
[Example 3]
In Example 1, after the growth of the AlN thin film, while maintaining the temperature at 1050 ° C., the gas flow rates of TMA and TMG are adjusted to first grow an Al 0.9 Ga 0.1 N layer by 0.2 μm. Subsequently, the Al 0.8 Ga 0.2 N layer is 0.2 μm, the Al 0.7 Ga 0.3 N layer is 0.2 μm, the Al 0.2 Ga 0.8 N layer is 0.2 μm, and the Al 0.1 Ga 0.9 N layer is 0.2 μm. Nine layers are sequentially stacked, and an AlGaN multilayer film having a composition gradient is grown to a thickness of 1.8 μm. Thereafter, in the same manner as in Example 1, when a GaN layer was grown by 2 μm on the Al 0.1 Ga 0.9 N layer, the crystallinity of the obtained GaN layer showed almost the same value as in Example 1.
[0021]
[Example 4]
In Example 1, after an AlGaN layer having a graded composition is grown, an Al 0.2 Ga 0.8 N layer is grown by 2 μm with TMA, TMG, and ammonia gas while maintaining the temperature at 1050 ° C. The Al 0.2 Ga 0.8 N layer has a FWHM of 2 minutes and a mobility of 800 cm 2 / V · sec, which indicates that AlGaN has very good crystallinity.
[0022]
[Embodiment 5] FIG. 1 is a schematic sectional view showing a structure of a laser element obtained as a light emitting device of the present invention. Embodiment 5 will be described below with reference to this drawing.
[0023]
An n-type AlGaN layer 3 having a composition gradient of 50 nm and AlN to GaN is laminated in a thickness of 2 μm on the (0001) plane of a 500 μm-thick 6H—SiC substrate 1 in the same manner as in Example 1. . The composition-graded AlGaN layer 3 is doped with Si in order to obtain a preferable n-type, and is grown while doping with a silane gas as a Si source simultaneously with the source gas.
[0024]
Next, the temperature of the substrate was set to 800 ° C., and an n-type In 0.05 Ga 0.95 N layer 4 was grown to a thickness of 0.1 μm using TMI (trimethylindium) gas, TMG, ammonia, and silane gas as source gases.
[0025]
Subsequently, the flow rate of TMI was increased, and the non-doped In 0.2 Ga 0.8 N layer 5 was formed as an active layer with a film thickness of 2 nm so as to have a single quantum well structure.
[0026]
Next, the TMI is stopped, the temperature of the substrate is set to 1050 ° C., TMG, TMA, ammonia, Cp 2 Mg (cyclopentadienylmagnesium) is used as the source gas, and Mg-doped p-type Al 0.15 Ga 0.85 is used. The N layer 6 was grown by 0.1 μm.
[0027]
Subsequently, the flow rate of TMA was increased, and an Mg-doped p-type Al 0.3 Ga 0.7 N layer 7 was grown by 0.1 μm.
[0028]
Finally, TMA was stopped, and an Mg-doped p-type GaN layer 8 was grown by 0.5 μm.
[0029]
The wafer on which the nitride semiconductor layer is laminated as described above is taken out of the reaction vessel, and etching is performed with the etching apparatus until the composition gradient n-AlGaN layer 3 is exposed from the uppermost p-GaN layer 8. After etching, a negative electrode 10 was provided on the exposed n-AlGaN layer 3, and a striped positive electrode 11 was provided on the uppermost p-GaN layer.
[0030]
After the electrodes are installed, the wafer is cleaved in a direction perpendicular to the positive electrode stripe, and a reflective film made of a dielectric multilayer film is formed on the cleaved surface according to a conventional method to obtain a laser element. FIG. 1 shows a cross-sectional view of an element cleaved in a direction perpendicular to the striped positive electrode 11. This laser element exhibited laser oscillation at room temperature at a threshold current density of 500 mA / cm 2 and an output of 5 mW. This is because the nitride semiconductor grown on the composition-graded AlGaN layer has good crystallinity, and the resonance surface can be easily formed by the cleavage of the substrate.
[0031]
This laser device has the following advantages. First of all, when SiC is used for the substrate, the SiC substrate has conductivity, so that a normal negative electrode is provided in contact with the SiC substrate. That is, the positive electrode and the negative electrode face each other. However, SiC and nitride semiconductor are heteroepi. Therefore, since a barrier due to hetero epi exists at the interface between the SiC and the nitride semiconductor layer, the V f (forward voltage) of the device increases. On the other hand, the laser element according to the present invention has a structure in which a negative electrode is not provided on the substrate side, and a nitride semiconductor is intentionally etched and provided on the same surface side, although a conductive substrate called SiC is used. Accordingly, since no current flows through the interface between SiC and the nitride semiconductor layer, an increase in Vf can be suppressed. Second, the compositionally graded AlGaN layer 3 is grown to a thickness of 1 μm or more, thereby forming a contact layer for forming a negative electrode and a cladding layer for confining light emission of the active layer. Third, SiC has a cleavage property unlike a conventional sapphire substrate. Therefore, if the cleavage property of SiC is used, it is very convenient to use the cleavage surface of the nitride semiconductor as the optical resonance surface of the laser element.
[0032]
【The invention's effect】
As described above, according to the method of the present invention, a nitride semiconductor layer with good crystallinity can be obtained. For example, in the crystal hole measurement, a mobility of 900 cm 2 / V · sec is a very excellent value in a nitride semiconductor. Further, according to the present invention, since a nitride semiconductor with good crystallinity can be obtained, when a light emitting device is produced as in Example 5, a device having a high light emission output can be obtained, and its industrial utility value is great.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of a nitride semiconductor laser device obtained by a method according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... SiC substrate 2 ... AlN thin film 3 ... Si-doped n-type AlGaN layer 4 ... Si-doped n-type In 0.05 Ga 0.95 N layer 5 ... Non-doped In 0.2 Ga 0.8 N active layer 6... Mg doped p type Al 0.15 Ga 0.85 N layer 7... Mg doped p type Al 0.3 Ga 0.7 N layer 8... P type GaN layer 10. .... Positive electrode

Claims (3)

SiC基板上に、窒化物半導体層を有する発光デバイスであって、  A light-emitting device having a nitride semiconductor layer on a SiC substrate,
前記窒化物半導体層は、少なくとも前記SiC基板より離れるに従ってX値が順次小さくなるように組成傾斜した1μm以上5μm以下のAl  The nitride semiconductor layer is Al having a composition gradient of 1 μm or more and 5 μm or less so that the X value gradually decreases with increasing distance from the SiC substrate. X GaGa 1−X1-X N層(0≦X≦1)と、その上に活性層とを有し、前記AlAn N layer (0 ≦ X ≦ 1) and an active layer thereon, the Al layer X GaGa 1−X1-X N層(0≦X≦1)はX線ロッキングカーブの半値幅(FWHM)が2分以下でかつ移動度が800cmThe N layer (0 ≦ X ≦ 1) has an X-ray rocking curve half-width (FWHM) of 2 minutes or less and a mobility of 800 cm. 2 ・V/sec以上であることを特徴とする発光デバイス。A light emitting device characterized by V / sec or more.
前記Al  Al X GaGa 1−X1-X N層(0≦X≦1)の最上層はX値が0.3以下である請求項1に記載の発光デバイス。2. The light emitting device according to claim 1, wherein the uppermost layer of the N layer (0 ≦ X ≦ 1) has an X value of 0.3 or less. 前記Al  Al X GaGa 1−X1-X N層(0≦X≦1)には、Siがドープされてなる請求項1または2に記載の発光デバイス。The light emitting device according to claim 1, wherein the N layer (0 ≦ X ≦ 1) is doped with Si.
JP2002244428A 2002-08-26 2002-08-26 Light emitting device Expired - Fee Related JP3767534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244428A JP3767534B2 (en) 2002-08-26 2002-08-26 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244428A JP3767534B2 (en) 2002-08-26 2002-08-26 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23750195A Division JP3604205B2 (en) 1995-09-18 1995-09-18 Method for growing nitride semiconductor

Publications (2)

Publication Number Publication Date
JP2003078163A JP2003078163A (en) 2003-03-14
JP3767534B2 true JP3767534B2 (en) 2006-04-19

Family

ID=19196506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244428A Expired - Fee Related JP3767534B2 (en) 2002-08-26 2002-08-26 Light emitting device

Country Status (1)

Country Link
JP (1) JP3767534B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997621B2 (en) * 2005-09-05 2012-08-08 パナソニック株式会社 Semiconductor light emitting device and lighting device using the same

Also Published As

Publication number Publication date
JP2003078163A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
JP3604205B2 (en) Method for growing nitride semiconductor
US6630692B2 (en) III-Nitride light emitting devices with low driving voltage
JP3656456B2 (en) Nitride semiconductor device
JP3909811B2 (en) Nitride semiconductor device and manufacturing method thereof
JP3760997B2 (en) Semiconductor substrate
US7550368B2 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
JP5048236B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP5145617B2 (en) N-type nitride semiconductor laminate and semiconductor device using the same
US20110220867A1 (en) Superlattice free ultraviolet emitter
JP2001160627A5 (en)
JP4131101B2 (en) Method of manufacturing nitride semiconductor device
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JP5279006B2 (en) Nitride semiconductor light emitting device
JP2001135892A (en) Light emitting device of nitride semiconductor
WO2015146069A1 (en) Light emitting diode element
JP5334501B2 (en) Nitride semiconductor device
JP6453542B2 (en) Semiconductor device and manufacturing method thereof
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP7318603B2 (en) Method for manufacturing group III nitride semiconductor device
JP2002289914A (en) Nitride semiconductor element
JP3767534B2 (en) Light emitting device
JP2007324421A (en) Nitride semiconductor element
JP2005251922A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees