JPH11139871A - Porous carbon material and its production - Google Patents

Porous carbon material and its production

Info

Publication number
JPH11139871A
JPH11139871A JP9317632A JP31763297A JPH11139871A JP H11139871 A JPH11139871 A JP H11139871A JP 9317632 A JP9317632 A JP 9317632A JP 31763297 A JP31763297 A JP 31763297A JP H11139871 A JPH11139871 A JP H11139871A
Authority
JP
Japan
Prior art keywords
porous carbon
carbon material
pitch
strength
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9317632A
Other languages
Japanese (ja)
Inventor
Mitsuo Enomoto
三男 榎本
Jiyousei Nagamatsu
丈青 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP9317632A priority Critical patent/JPH11139871A/en
Publication of JPH11139871A publication Critical patent/JPH11139871A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors

Abstract

PROBLEM TO BE SOLVED: To produce a porous carbon material suitable for use as various industrial filters, an electrode material for a cell, an adsorbent, a heat insulator, etc., and excellent in pore properties and strength characteristics. SOLUTION: A thermosetting resin soln. having 5-50 wt.% concn. of the resin is impregnated into a porous carbon substrate consisting of coke granules and carbide of pitch as a binder, drying and hardening are carried out and the resin is carbonized by firing in a nonoxidizing atmosphere. The skeleton surface of the porous carbon substrate is coated with the resultant glassy carbon and the objective porous carbon material is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大きな気孔径を有
するとともに圧縮強度や曲げ強度が高く、優れた気孔性
状と強度特性を備えた多孔質炭素材とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous carbon material having a large pore diameter, high compressive strength and high bending strength, and excellent porous properties and strength characteristics, and a method for producing the same.

【0002】[0002]

【従来の技術】多孔質炭素材は、軽量な上に耐熱性、耐
蝕性、導電性などに優れ、工業用のフィルター、電池用
電極、吸着材および断熱材等の用途分野で有用されてい
る。この多孔質炭素材として炭素繊維を骨格に利用する
ものが知られており、例えば特開昭50−25808号
公報には炭素繊維をパルプおよびバインダー成分ととも
に抄紙して得られる炭素繊維混合シートに熱硬化性樹脂
液を含浸させたのち焼成炭化する多孔質炭素材の製造技
術が開示されている。
2. Description of the Related Art Porous carbon materials are lightweight and excellent in heat resistance, corrosion resistance, conductivity and the like, and are useful in application fields such as industrial filters, battery electrodes, adsorbents and heat insulating materials. . As the porous carbon material, a material utilizing carbon fiber as a skeleton is known. For example, Japanese Patent Application Laid-Open No. 25808/1972 discloses a method in which a carbon fiber mixed sheet obtained by making carbon fiber together with pulp and a binder component is heated. A technique for producing a porous carbon material that is impregnated with a curable resin liquid and then calcined and carbonized is disclosed.

【0003】また、高価な炭素繊維に代えてその原料と
なる有機繊維を使用し、これにパルプ、炭素質粉末など
を配合して抄紙したシートに有機高分子物質あるいは炭
素質粉末を懸濁させた有機高分子物質を含浸したのち焼
成する方法(特開昭61−236664号公報、同61−236665号
公報)が提案されている。しかし、この方法は組織内に
局部的に閉塞された空隙部分が多く形成されるため、均
質で制御された気孔構造を得ることが難しく、また炭素
繊維を使用する場合には炭素繊維の剛性が大きいので形
成される気孔径が大きくなる難点がある。更に、これら
の多孔質炭素材の気孔性状は炭素繊維や炭素繊維製造用
有機繊維が絡み合った構造からなるため複雑であり、例
えばフィルターなどの用途に用いると圧損が大きくな
り、場合によっては気孔を閉塞する事態も生じる欠点が
ある。
[0003] Further, instead of expensive carbon fiber, organic fiber as a raw material is used, and pulp, carbonaceous powder and the like are blended into the sheet, and an organic polymer substance or carbonaceous powder is suspended in a sheet made of paper. (Japanese Patent Application Laid-Open Nos. 61-236664 and 61-236665) have been proposed. However, this method has difficulty in obtaining a uniform and controlled pore structure because many locally closed voids are formed in the tissue, and when carbon fibers are used, the rigidity of the carbon fibers is reduced. There is a drawback that the pore size formed is large because it is large. Furthermore, the porosity of these porous carbon materials is complex because they have a structure in which carbon fibers and organic fibers for producing carbon fibers are entangled.For example, when used for a filter or the like, the pressure loss increases, and in some cases, the pores may be reduced. There is a drawback that a blockage may occur.

【0004】また、本出願人は炭素繊維や炭素繊維製造
用有機繊維に代えて に安価な紙類原料を用い低コスト
で多孔質炭素材を製造する技術として、平均気孔径50〜
150μm 、気孔率50%以上の性状を有する紙を所定の厚
さに積層し、これに残炭率40%以上の熱硬化性樹脂溶液
を含浸して加熱硬化したのち、非酸化性雰囲気下に1000
℃以上の温度で焼成炭化処理する製造方法を開発、提案
(特開平1−320279号公報)した。
In addition, the present applicant has proposed a technique for producing a porous carbon material at a low cost by using inexpensive paper raw materials instead of carbon fibers or organic fibers for producing carbon fibers.
Paper with properties of 150μm and porosity of 50% or more is laminated to a predetermined thickness, impregnated with a thermosetting resin solution with a residual carbon ratio of 40% or more, heat-cured, and then placed in a non-oxidizing atmosphere. 1000
A production method in which the carbonization treatment is carried out at a temperature of not less than ℃ has been developed and proposed (JP-A-1-320279).

【0005】しかしながら、これらの方法は骨格を形成
する炭素繊維、有機繊維あるいは紙類が抄紙面に配向し
て主に2次元方向に配列しているために、積層体の層間
における強度が充分でないという欠点がある。特に、高
気孔率で大きな気孔径を有する多孔質炭素材を製造する
場合には成形圧を低く設定する必要があるために、層間
強度や強度特性の低下が著しくなる。また、積層面に対
して垂直方向の物性、例えばガス透過率や熱伝導率など
が不均一化する問題点もある。
However, in these methods, the strength between the layers of the laminate is not sufficient because the carbon fibers, organic fibers or papers forming the skeleton are oriented on the papermaking surface and are mainly arranged in a two-dimensional direction. There is a disadvantage that. In particular, in the case of producing a porous carbon material having a high porosity and a large pore diameter, it is necessary to set a low molding pressure, so that the interlayer strength and strength characteristics are significantly reduced. There is also a problem that physical properties in the direction perpendicular to the lamination surface, such as gas permeability and thermal conductivity, become non-uniform.

【0006】一方、多孔質炭素材の製造技術としては、
コークス粒を石炭系や石油系ピッチのような炭化収率の
高いバインダーとともに混練したのち、成形及び焼成炭
化する方法が古くから知られている。この多孔質炭素材
はコークス粒子をピッチの炭化物で結合したものであ
り、粒子結合型の組織構造を呈している。
[0006] On the other hand, techniques for producing porous carbon materials include:
A method of kneading coke grains with a binder having a high carbonization yield, such as coal-based or petroleum-based pitch, followed by molding and calcining has been known for a long time. This porous carbon material is obtained by binding coke particles with pitch carbides, and has a particle-bonded structure.

【0007】[0007]

【発明が解決しようとする課題】この粒子結合型多孔質
炭素材は、その組織構造から連通した開気孔を多くもつ
材料が得られやすいが材質強度が充分でないという欠点
がある。また、骨材となるコークス粒子の粒度調整によ
り気孔径ならびに気孔量の調節を行うことができるが、
均質かつ充分な気孔性状と機械的特性を満足するための
条件設定が難しい難点がある。更に、気孔径の大きな多
孔質炭素材を得るために粒子径の大きなコークス粒子を
用いると、単位体積当たりの結合点数が減少するために
多孔質炭素材の強度が低くなり、使用中に例えば角部の
骨材粒子が脱落する問題もある。
The particle-bonded porous carbon material has a drawback that a material having many open pores communicating with each other is easily obtained from the structure thereof, but the material strength is not sufficient. In addition, the pore diameter and the amount of pores can be adjusted by adjusting the particle size of the coke particles serving as the aggregate,
It is difficult to set conditions for satisfying uniform and sufficient pore properties and mechanical properties. Furthermore, when coke particles having a large particle diameter are used to obtain a porous carbon material having a large pore diameter, the number of bonding points per unit volume decreases, so that the strength of the porous carbon material decreases. There is also a problem that the aggregate particles of the part fall off.

【0008】このように、粒子結合型の多孔質炭素材で
は気孔性状と材質強度との調整が難しく、気孔径が大き
く、気孔率の高い多孔質炭素材では強度特性が低下し、
また圧縮強度や曲げ強度などの強度特性の優れた多孔質
炭素材では気孔率が低く、気孔径も小さいという問題点
がある。
As described above, it is difficult to adjust the porosity and material strength of the particle-bonded porous carbon material, and the strength characteristics of the porous carbon material having a large pore diameter and a high porosity deteriorate.
Further, a porous carbon material having excellent strength characteristics such as compressive strength and bending strength has a problem that the porosity is low and the pore diameter is small.

【0009】本発明者らは、上記の問題点を解消するた
めに鋭意研究を進めた結果、多孔質炭素材の骨材粒子の
表面にガラス状カーボンの被覆層を形成した複合組織と
すると、大きな気孔径を備えるとともに材質強度に優れ
た多孔質炭素材が得られることを見出した。
The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, assuming that the composite structure has a glassy carbon coating layer formed on the surface of aggregate particles of a porous carbon material, It has been found that a porous carbon material having a large pore diameter and excellent material strength can be obtained.

【0010】本発明はこの知見に基づいて開発されたも
のであり、その目的とする解決課題は粒子結合型多孔質
炭素材を対象にして、工業用の各種フィルターをはじめ
として、燃料電池や二次電池用の電極材、吸着材、断熱
材、触媒担体等の広い用途分野で好適に使用することの
できる、気孔径が大きく、気孔率の高い気孔性状を備
え、圧縮強度や曲げ強度などの強度特性の優れた多孔質
炭素材とその製造方法を提供することにある。
The present invention has been developed on the basis of this finding. The object of the present invention is to solve the problem of various types of filters for industrial use, such as fuel cells and secondary batteries, for particle-bonded porous carbon materials. It has a large pore size and high porosity, which can be suitably used in a wide range of application fields such as electrode materials for secondary batteries, adsorbents, heat insulating materials, and catalyst carriers. An object of the present invention is to provide a porous carbon material having excellent strength characteristics and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めの本発明による多孔質炭素材は、コークス粒とピッチ
の炭化物を結合材とする多孔質炭素基材の骨格表面に、
ガラス状カーボンが被覆されてなることを構成上の特徴
とする。
Means for Solving the Problems The porous carbon material according to the present invention for solving the above-mentioned problems is provided on a skeleton surface of a porous carbon substrate using coke particles and pitch carbide as a binder.
It is characterized in that it is coated with glassy carbon.

【0012】また、本発明の多孔質炭素材の製造方法
は、コークス粒とピッチの炭化物を結合材とする多孔質
炭素基材に、樹脂濃度が5〜50重量%の熱硬化性樹脂
溶液を浸透させて乾燥硬化したのち、非酸化性雰囲気中
で焼成炭化することを構成上の特徴とする。
Further, the method for producing a porous carbon material of the present invention is characterized in that a thermosetting resin solution having a resin concentration of 5 to 50% by weight is added to a porous carbon base material containing a coke particle and a carbide of pitch as a binder. The composition is characterized in that it is permeated, dried and cured, and then calcined and carbonized in a non-oxidizing atmosphere.

【0013】[0013]

【発明の実施の形態】本発明の多孔質炭素材は、粒子結
合型の多孔質炭素材の気孔を形成する炭素基材の骨格表
面に、緻密で硬質なガラス状カーボンが被覆された複合
組織構造からなる点に特徴がある。この複合組織により
多孔質炭素材の強度特性は大幅に改善され、多孔質炭素
基材の気孔性状を損なうことなく、圧縮強度や曲げ強度
を向上することが可能となる。なお、ガラス状カーボン
の被覆量は多孔質炭素基材に対して1〜10重量%程度
であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The porous carbon material of the present invention has a composite structure in which a dense and hard glassy carbon is coated on a skeleton surface of a carbon substrate forming pores of a particle-bonded porous carbon material. It is characterized by its structure. With this composite structure, the strength characteristics of the porous carbon material are significantly improved, and the compressive strength and the bending strength can be improved without impairing the porosity of the porous carbon substrate. In addition, it is preferable that the coating amount of glassy carbon is about 1 to 10% by weight based on the porous carbon substrate.

【0014】この多孔質炭素材の製造は、まず原料とな
るコークス粒とピッチとを所定の割合で混合して充分に
混練する。混合比は目的とする気孔性状や強度特性によ
り適宜に設定されるが、通常コークス粒100重量部当
たりピッチを20〜40重量部の割合で混合し、ニーダ
ーなどの混練機により充分に混練する。コークス粒には
石炭系あるいは石油系のコークスやピッチコークスが、
またバインダーには石炭系や石油系のピッチが用いられ
る。なお、気孔径分布をシャープ化し、気孔径を調整す
るためには、粒度分布が狭いコークス粒を原料として使
用する。
In the production of the porous carbon material, first, coke particles as a raw material and pitch are mixed at a predetermined ratio and sufficiently kneaded. The mixing ratio is appropriately set depending on the desired porosity and strength characteristics, but usually the pitch is mixed at a ratio of 20 to 40 parts by weight per 100 parts by weight of coke grains and sufficiently kneaded by a kneading machine such as a kneader. Coal or petroleum-based coke or pitch coke is contained in the coke grains.
Coal or petroleum pitch is used as the binder. In order to sharpen the pore size distribution and adjust the pore size, coke particles having a narrow particle size distribution are used as a raw material.

【0015】コークス粒とピッチとの混練物は、ピッチ
の軟化点以上の温度においては成形型を用いてモールド
成形または押し出し成形を行って成形体とし、またピッ
チの軟化点以下の温度では解砕機により解砕し所望の粒
度の解砕粒に篩分けした後、成形型に均等に注入充填す
る。解砕機には例えばヘンシェル型ミキサーなどが用い
られる。ピッチの添加割合は、コークス粒100重量部
当たり20重量部を下回る場合には得られる多孔質炭素
材の強度が著しく低下し、40重量部を超える場合には
気孔量が低下する。
The kneaded product of coke grains and pitch is molded or extruded using a molding tool at a temperature equal to or higher than the softening point of the pitch to form a compact, and a crusher is used at a temperature equal to or lower than the softening point of the pitch. And sieved into crushed granules having a desired particle size, and then uniformly poured into a molding die. For the crusher, for example, a Henschel mixer is used. If the proportion of the pitch is less than 20 parts by weight per 100 parts by weight of coke grains, the strength of the obtained porous carbon material is significantly reduced, and if it exceeds 40 parts by weight, the amount of pores is reduced.

【0016】上記した成形体または解砕粒を充填した成
形型を焼成炭化することによりコークス粒とピッチの炭
化物を結合材とする多孔質炭素基材が得られる。焼成炭
化は非酸化性雰囲気中で800℃以上の温度に熱処理す
ることにより行われる。このように所定の粒度範囲に調
整されたコークス粒により形成された所望の大きさの空
隙をもつ均一な気孔性状を有する多孔質炭素基材を得る
ことができる。
By baking and carbonizing the above-mentioned compact or the mold filled with the crushed granules, a porous carbon substrate using a coke grain and a carbide of pitch as a binder is obtained. The calcined carbonization is performed by performing a heat treatment at a temperature of 800 ° C. or more in a non-oxidizing atmosphere. As described above, a porous carbon substrate having uniform pore properties and having pores of a desired size formed by coke particles adjusted to a predetermined particle size range can be obtained.

【0017】次いで、この多孔質炭素基材に熱硬化性樹
脂溶液を浸透させ、加熱して乾燥、硬化後、非酸化性雰
囲気中800℃以上の温度で焼成炭化することにより、
多孔質炭素基材の骨格表面がガラス状カーボンで被覆さ
れた多孔質炭素材を製造することができる。
Next, a thermosetting resin solution is infiltrated into the porous carbon substrate, dried by heating, cured, and calcined at a temperature of 800 ° C. or more in a non-oxidizing atmosphere to obtain a carbonized material.
A porous carbon material in which the skeleton surface of the porous carbon substrate is coated with glassy carbon can be produced.

【0018】熱硬化性樹脂としては炭化率40%以上の
フェノール系樹脂、フラン系樹脂、ポリイミド系樹脂な
どが好ましく用いられ、メタノール、エタノール、アセ
トン、メチルエチルケトンのような低粘度で浸透性が高
く、容易に熱揮散する性質の有機溶媒に溶解して熱硬化
性樹脂溶液が調製される。溶液中の樹脂濃度は5〜50
重量%の範囲が好ましく、5重量%未満であると強度特
性が減退し、50重量%を越すと粘度が増大して含浸性
を損ねるうえ、気孔の閉塞を生じて気孔率、気孔径の調
節が困難となる。
As the thermosetting resin, a phenol resin, a furan resin, a polyimide resin or the like having a carbonization ratio of 40% or more is preferably used, and has low viscosity and high permeability such as methanol, ethanol, acetone and methyl ethyl ketone. A thermosetting resin solution is prepared by dissolving in an organic solvent having a property of easily evaporating heat. Resin concentration in solution is 5-50
If the amount is less than 5% by weight, the strength characteristics decrease. If the amount exceeds 50% by weight, the viscosity increases to impair the impregnating property, and pores are blocked to control porosity and pore diameter. Becomes difficult.

【0019】この熱硬化性樹脂溶液中に多孔質炭素基材
を浸漬し、引上げたのち余剰の樹脂溶液を除去し、乾燥
して水分などの未反応物や反応生成物を有機溶媒ととも
に揮散除去した後、加熱硬化する。次いで、アルゴンガ
スや窒素ガス等の非酸化性雰囲気中で800℃以上の温
度に加熱して、基材骨格部に被着した熱硬化性樹脂成分
を焼成炭化することによりガラス状カーボンに転化させ
る。このようにして、多孔質炭素基材の骨格表面にガラ
ス状カーボンが被覆した組織構造を備えた本発明の多孔
質炭素材を製造することができる。なお、焼成炭化温度
を高くすることにより多孔質炭素材の耐蝕性を向上させ
ることができ、例えばフィルター等の高耐蝕性が要求さ
れる場合には2000℃以上の温度に設定する。また、
ガラス状カーボンの被覆量は多孔質炭素基材に対して1
〜10重量%であることが好ましい。被覆量が1重量%
未満では強度特性の向上が充分でなく、10重量%を越
えると気孔の閉塞が生じて気孔性状の劣化を招くためで
ある。
The porous carbon substrate is immersed in the thermosetting resin solution, pulled up, and then the excess resin solution is removed, and dried to volatilize unreacted substances such as moisture and reaction products together with the organic solvent. After that, it is cured by heating. Next, by heating to a temperature of 800 ° C. or more in a non-oxidizing atmosphere such as an argon gas or a nitrogen gas, the thermosetting resin component adhered to the substrate skeleton is converted to glassy carbon by firing and carbonizing. . In this manner, the porous carbon material of the present invention having a tissue structure in which the skeleton surface of the porous carbon substrate is coated with glassy carbon can be produced. The corrosion resistance of the porous carbon material can be improved by increasing the firing carbonization temperature. For example, when high corrosion resistance of a filter or the like is required, the temperature is set to 2000 ° C. or higher. Also,
The coating amount of the glassy carbon is 1 to the porous carbon substrate.
It is preferably from 10 to 10% by weight. 1% by weight coating
If it is less than 10%, the strength characteristics are not sufficiently improved.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0021】実施例1〜6 目開き35、60、100、150メッシュの篩を用い
て粒度調整したコークス粒子100重量部に石炭ピッチ
30重量部を加えて130℃の温度で充分に混練した。
混練物を常温に冷却して固化したのち、ヘンシェル型ミ
キサーで解砕した。解砕粒を直径300mm、高さ500
mmの円筒状の成形型(SUS製)に均一に充填し、窒素ガス
雰囲気中800℃の温度で焼成炭化した。得られた炭素
材を直径200mm、厚さ10mmの円板状に加工して多孔
質炭素基材を作製した。
Examples 1 to 6 30 parts by weight of coal pitch were added to 100 parts by weight of coke particles whose particle size had been adjusted using a sieve having openings of 35, 60, 100 and 150 mesh, and kneaded sufficiently at a temperature of 130 ° C.
The kneaded material was cooled to room temperature and solidified, and then pulverized with a Henschel mixer. Crushed granules are 300mm in diameter and 500 in height
mm was uniformly filled in a cylindrical mold (made of SUS), and calcined and carbonized at a temperature of 800 ° C. in a nitrogen gas atmosphere. The obtained carbon material was processed into a disk shape having a diameter of 200 mm and a thickness of 10 mm to prepare a porous carbon substrate.

【0022】炭化率45%のフェノール樹脂〔住友デュ
レズ(株)製“スミライトレジンPR940 ”〕をアセトン
に溶解して濃度の異なるフェノール樹脂溶液を調製し、
この溶液中に上記の多孔質炭素基材を10分間浸漬して
引上げ、余剰のフェノール樹脂溶液を濾紙で吸い取り、
風乾したのち180℃の温度で加熱硬化した。このよう
にして異なる量比でフェノール樹脂を被着し、アルゴン
ガス雰囲気中で2000℃の温度で焼成炭化してフェノ
ール樹脂をガラス状カーボンに転化した。なお実施例6
は、アルゴンガス雰囲気中の焼成炭化温度を2500℃
としたほかは実施例2と同一の条件で多孔質炭素材を作
製した。このようにして、多孔質炭素基材の骨格表面に
ガラス状カーボンが被覆された多孔質炭素材を製造し、
その製造条件を対比して表1に示した。
A phenol resin having a carbonization rate of 45% (“Sumilite Resin PR940” manufactured by Sumitomo Durez Co., Ltd.) is dissolved in acetone to prepare phenol resin solutions having different concentrations.
The porous carbon substrate is immersed in the solution for 10 minutes and pulled up, and the excess phenol resin solution is absorbed with a filter paper,
After air-drying, it was cured by heating at a temperature of 180 ° C. In this manner, the phenol resin was applied in different ratios and calcined and carbonized at a temperature of 2000 ° C. in an argon gas atmosphere to convert the phenol resin into glassy carbon. Example 6
Sets the firing carbonization temperature in an argon gas atmosphere to 2500 ° C.
A porous carbon material was produced under the same conditions as in Example 2 except for the above. In this way, to produce a porous carbon material in which the glassy carbon is coated on the skeleton surface of the porous carbon substrate,
The production conditions are shown in Table 1 in comparison.

【0023】比較例1〜3 実施例1〜6と同様に粒度調整したコークス粒子を用い
て、実施例1〜6と同一の方法及び条件により多孔質炭
素基材を作製した。この多孔質炭素基材にフェノール樹
脂等の熱硬化性樹脂溶液を浸透することなく、そのまま
アルゴンガス雰囲気中で2000℃の温度で焼成炭化し
て多孔質炭素材を製造し、製造条件を対比して表1に併
載した。
Comparative Examples 1 to 3 Porous carbon substrates were prepared by the same method and under the same conditions as in Examples 1 to 6, using coke particles whose particle size was adjusted in the same manner as in Examples 1 to 6. Without infiltrating a thermosetting resin solution such as a phenolic resin into the porous carbon substrate, it is calcined and calcined at a temperature of 2000 ° C. in an argon gas atmosphere to produce a porous carbon material. Are shown in Table 1.

【0024】また、図1に比較例1で作製した多孔質炭
素基材の組織の粒子構造を示したSEM写真(拡大倍率
200倍)を、図2にこの多孔質炭素基材の骨格表面に
ガラス状カーボンを被覆した実施例3の多孔質炭素材の
組織の粒子構造のSEM写真(拡大倍率200倍)を示
した。
FIG. 1 shows an SEM photograph (magnification: 200 times) showing the particle structure of the structure of the porous carbon substrate prepared in Comparative Example 1, and FIG. 2 shows the skeleton surface of the porous carbon substrate. The SEM photograph (magnification: 200 times) of the particle structure of the structure of the porous carbon material of Example 3 coated with glassy carbon was shown.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例4 10デニール×5mmのレーヨンパルプを針葉樹パルプ、
抄紙バインダーとともに抄紙して坪量70g/m2のシート
を作製し、このシートに40重量%のフェノール樹脂溶
液を不揮発分が60g/m2となるように塗布含浸して乾燥
した。樹脂含浸シート110枚を積層して後、圧縮して
25mmの厚さに熱圧成形したのち、この成形体をアルゴ
ンガス中で加熱して温度2000℃で焼成炭化して多孔
質炭素材を作製した。
Comparative Example 4 Rayon pulp of 10 denier × 5 mm was converted into softwood pulp.
A sheet having a basis weight of 70 g / m 2 was prepared by papermaking with a papermaking binder, and a 40% by weight phenol resin solution was applied and impregnated with the phenol resin solution to a non-volatile content of 60 g / m 2 and dried. After laminating 110 resin-impregnated sheets, compression and hot-press molding to a thickness of 25 mm, this molded body is heated in argon gas and calcined and carbonized at a temperature of 2000 ° C. to produce a porous carbon material. did.

【0027】得られた各多孔質炭素材について、気孔特
性、強度特性、固有抵抗等を測定してその結果を表2に
示した。また、温度18℃の水を15リットル/分の流
速で流下させた時の圧力損失ならびに多孔質炭素材の表
面および角の粒子脱落状態を観察し、得られた結果を表
3に示した。
For each of the obtained porous carbon materials, pore characteristics, strength characteristics, specific resistance, etc. were measured, and the results are shown in Table 2. Further, the pressure loss when water at a temperature of 18 ° C. was caused to flow at a flow rate of 15 liters / minute and the state of particles falling off the surface and corners of the porous carbon material were observed. The results obtained are shown in Table 3.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表1〜3の結果から、コークス粒子にピッ
チを加えて混練し、混練物を解砕した解砕粒を成形型に
自然充填して成形し、焼成炭化した多孔質炭素基材の骨
格表面にガラス状カーボンを被覆した実施例の多孔質炭
素材は、比較例の多孔質炭素材に比べて、優れた気孔性
状を維持しつつ曲げ強度や圧縮強度等の強度特性が高い
ことが判る。したがって、通水試験においても圧力損失
が少なく、また粒子の欠落も認められない。
From the results shown in Tables 1 to 3, the skeleton of the porous carbon substrate obtained by adding the pitch to the coke particles, kneading the mixture, crushing the kneaded material, naturally filling the crushed particles into a molding die, molding and calcining and carbonizing. It can be seen that the porous carbon material of the example in which the surface is coated with glassy carbon has higher strength properties such as bending strength and compressive strength while maintaining excellent porosity as compared with the porous carbon material of the comparative example. . Therefore, even in the water flow test, the pressure loss is small, and no particles are missing.

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば、粒子結
合型多孔質炭素基材の骨格表面に緻密で硬質なガラス状
カーボンが被覆された複合組織構造により、気孔径が大
きく、圧縮強度や曲げ強度などの強度特性の優れた多孔
質炭素材とその製造方法が提供される。したがって、本
発明は工業用の各種フィルターをはじめとして、燃料電
池や二次電池用の電極材、吸着材、断熱材、触媒担体等
の広い用途分野で好適に使用することのできる多孔質炭
素材とその製造方法として極めて有用である。
As described above, according to the present invention, the composite structure in which the skeleton surface of the particle-bonded porous carbon base material is coated with dense and hard glassy carbon has a large pore diameter and a high compressive strength. Provided is a porous carbon material having excellent strength characteristics such as bending strength and bending strength, and a method for producing the same. Accordingly, the present invention provides a porous carbon material that can be suitably used in a wide range of application fields such as various filters for industrial use, an electrode material for fuel cells and secondary batteries, an adsorbent, a heat insulating material, and a catalyst carrier. And extremely useful as a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】比較例1の多孔質炭素基材組織の粒子構造を示
したSEM写真(拡大倍率200倍)である。
FIG. 1 is an SEM photograph (magnification: 200 times) showing the particle structure of a porous carbon substrate structure of Comparative Example 1.

【図2】図1に示した多孔質炭素基材の骨格表面にガラ
ス状カーボンを被覆した実施例3の多孔質炭素材組織の
粒子構造を示したSEM写真(拡大倍率200倍)であ
る。
FIG. 2 is an SEM photograph (magnification: 200 times) showing a particle structure of a porous carbon material structure of Example 3 in which glassy carbon is coated on a skeleton surface of the porous carbon substrate shown in FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コークス粒とピッチの炭化物を結合材と
する多孔質炭素基材の骨格表面に、ガラス状カーボンが
被覆されてなることを特徴とする多孔質炭素材。
1. A porous carbon material comprising glassy carbon coated on a skeleton surface of a porous carbon substrate using a coke particle and a carbide of pitch as a binder.
【請求項2】 コークス粒とピッチの炭化物を結合材と
する多孔質炭素基材に、樹脂濃度が5〜50重量%の熱
硬化性樹脂溶液を浸透させて乾燥硬化したのち、非酸化
性雰囲気中で焼成炭化することを特徴とする多孔質炭素
材の製造方法。
2. A non-oxidizing atmosphere after permeating a thermosetting resin solution having a resin concentration of 5 to 50% by weight into a porous carbon base material containing a coke particle and a carbide of pitch as a binder, and drying and hardening the same. A method for producing a porous carbon material, characterized by calcining and carbonizing inside.
JP9317632A 1997-11-04 1997-11-04 Porous carbon material and its production Pending JPH11139871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9317632A JPH11139871A (en) 1997-11-04 1997-11-04 Porous carbon material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317632A JPH11139871A (en) 1997-11-04 1997-11-04 Porous carbon material and its production

Publications (1)

Publication Number Publication Date
JPH11139871A true JPH11139871A (en) 1999-05-25

Family

ID=18090334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317632A Pending JPH11139871A (en) 1997-11-04 1997-11-04 Porous carbon material and its production

Country Status (1)

Country Link
JP (1) JPH11139871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512719B2 (en) 2000-07-05 2003-01-28 Hitachi, Ltd. Semiconductor memory device capable of outputting and inputting data at high speed
KR101291018B1 (en) * 2012-02-14 2013-07-30 이창호 Method for making carbon fiber heat insulator
JP2020040851A (en) * 2018-09-07 2020-03-19 株式会社ノリタケカンパニーリミテド Glass coating solution, method for manufacturing ceramic article, and ceramic article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512719B2 (en) 2000-07-05 2003-01-28 Hitachi, Ltd. Semiconductor memory device capable of outputting and inputting data at high speed
KR101291018B1 (en) * 2012-02-14 2013-07-30 이창호 Method for making carbon fiber heat insulator
JP2020040851A (en) * 2018-09-07 2020-03-19 株式会社ノリタケカンパニーリミテド Glass coating solution, method for manufacturing ceramic article, and ceramic article

Similar Documents

Publication Publication Date Title
JPH06315630A (en) Complex having inorganic substrate coated with carbon
GB2117746A (en) Fuel cell electrode substrates
GB2095656A (en) Shaped articles of porous carbon
JP5094712B2 (en) Macroporous carbon material and mesoporous carbon material made of wood as raw material and method for producing the same, and porous metal carbon material and method for producing the same
US4080413A (en) Porous carbon fuel cell substrates and method of manufacture
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
JPH0449747B2 (en)
JP2006522733A (en) Molded porous material
JP2008230909A (en) Porous composite and its production method
JP4941922B2 (en) Porous clay film and method for producing the same
JPH11139871A (en) Porous carbon material and its production
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JPS61236665A (en) Manufacture of porous carbon sheet
JP3739819B2 (en) Method for producing porous carbon material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH06206780A (en) Production of active porous carbonaceous structure
JP3131911B2 (en) Method for producing thick porous carbon material
JP2004358431A (en) Porous structure body, filter, and production method of porous structure body
JPH06135770A (en) Carbonaceous preformed body, its production and production of electrode substrate
JPH02199010A (en) Production of thin sheetlike carbon material
EP1464634B1 (en) Carbonaceous ceramic material
JP3183681B2 (en) Method for producing highly conductive porous carbon material
JP2008044822A (en) Method of manufacturing porous glassy carbon material and porous glassy carbon material
JPS6059171B2 (en) Method for manufacturing carbon products with dense and dense structure
JP3342508B2 (en) Method for producing impermeable carbonaceous plate