JPH0859255A - Method for forming optical element and apparatus therefor - Google Patents

Method for forming optical element and apparatus therefor

Info

Publication number
JPH0859255A
JPH0859255A JP20068794A JP20068794A JPH0859255A JP H0859255 A JPH0859255 A JP H0859255A JP 20068794 A JP20068794 A JP 20068794A JP 20068794 A JP20068794 A JP 20068794A JP H0859255 A JPH0859255 A JP H0859255A
Authority
JP
Japan
Prior art keywords
glass
adsorption
molding
optical element
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20068794A
Other languages
Japanese (ja)
Inventor
Masayuki Tomita
昌之 冨田
Isamu Shigyo
勇 執行
Hiroyuki Kubo
裕之 久保
Tamakazu Yogo
瑞和 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20068794A priority Critical patent/JPH0859255A/en
Publication of JPH0859255A publication Critical patent/JPH0859255A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/005Transporting hot solid glass products other than sheets or rods, e.g. lenses, prisms, by suction or floatation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Abstract

PURPOSE: To provide a method for forming an optical element by which a glass gob in a softened state at a high temperature is sucked onto a suction part of a suction conveyor without applying a large deformation causing a defect in the optical element obtained by press forming to the glass gob to thereby shorten the forming time and further reduce both the working and the production costs as a whole. CONSTITUTION: This method for producing an optical element is to control a suction conveyor 14 capable of sucking a glass gob 5 in a softened state onto the tip of a suction part by reducing the pressure of the suction part, according to a suction method for increasing the suction pressure in the initial suction and reducing the suction pressure thereafter so as to continuously or stepwise change the suction pressure of the suction part in the suction conveyor 14 in its state sucking the glass gob 5 in the softened state onto the tip of the suction part in several stages, suck the softened glass gob and convey the glass gob to a forming mold, in the method for forming the optical element comprising sucking the glass gob 5 in the softened state at a high temperature onto the suction part of the suction conveyor 14, conveying the sucked glass gob 5 to the forming mold comprising a pair of a top and a bottom force members 8 and 9, press forming the glass gob 5 arranged between the top and bottom force members 8 and 9 and providing the optical element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟化状態のガラスを、
上下一対の型部材よりなる成形型でプレス成形して、レ
ンズ等の光学素子を得る成形方法に関し、特に、高温軟
化状態のガラスを吸着搬送装置を用いて成形型に搬送
し、プレス成形する光学素子の成形方法及び装置に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a softened glass,
The present invention relates to a molding method for obtaining an optical element such as a lens by press molding with a molding die composed of a pair of upper and lower mold members, and in particular, an optical system in which glass in a high temperature softened state is conveyed to a molding die using an adsorption conveyance device and press-molded. TECHNICAL FIELD The present invention relates to an element molding method and apparatus.

【0002】[0002]

【従来の技術】近年、軟化状態のガラスを成形型でプレ
ス成形して、レンズ等の光学素子を得る方法が、レンズ
の製造方法、特に、非球面レンズを安価に生産する方法
として注目され、その開発が進んでいる。このプレス成
形による光学素子の生産において、生産コストを下げる
ために、成形サイクル時間を短縮する方法が開発されて
きた。
2. Description of the Related Art In recent years, a method of press-molding softened glass with a molding die to obtain an optical element such as a lens has attracted attention as a method for manufacturing a lens, particularly as a method for inexpensively producing an aspherical lens. Its development is in progress. In the production of optical elements by this press molding, a method of shortening the molding cycle time has been developed in order to reduce the production cost.

【0003】当初の成形方法は、室温において、上下一
対の型部材からなる成形型の中にガラス素材を入れ、窒
素雰囲気の加熱炉の中で、成形温度まで加熱し、プレス
成形し、その後、冷却してから成形型を炉外へ取り出
し、成形された光学素子を成形型から取り出す手順で成
形する方法であった。
The initial molding method is as follows. At room temperature, a glass material is placed in a mold composed of a pair of upper and lower mold members, heated to a molding temperature in a heating furnace under a nitrogen atmosphere, and press-molded. In this method, the mold is taken out of the furnace after cooling, and the molded optical element is taken out from the mold.

【0004】次に、成形サイクル時間を短縮するため
に、窒素雰囲気中において、ガラス転移点温度付近の温
度に保たれた成形型の中にガラス素材を搬入し、成形型
の温度をプレス温度まで上げることにより、ガラス素材
をプレス成形可能な温度にし、プレス成形し、その後、
冷却して、ガラス転移点温度付近の温度で型開きし、成
形された光学素子を成形型から搬出する成形方法が開発
された。
Next, in order to shorten the molding cycle time, the glass material is carried into a molding die kept at a temperature near the glass transition temperature in a nitrogen atmosphere, and the temperature of the molding die is raised to the pressing temperature. By raising the temperature to a temperature at which the glass material can be press-molded, press-molding, and then
A molding method has been developed in which the molded optical element is cooled and opened at a temperature near the glass transition temperature, and the molded optical element is carried out from the molding die.

【0005】この成形方法では、ガラス素材を成形型へ
搬入し、また、成形された光学素子を成形型から搬出す
る手段として、搬送装置が必要となるが、これには、装
置の構成が簡便であることから、真空吸着の手法によ
り、ガラス素材または成形された光学素子を吸着部に吸
着した状態で搬送する真空吸着搬送装置が使用されてい
る。例えば、特開昭63−297229号には、真空吸
着搬送装置により、成形された光学素子を成形型から搬
出する方法が開示されている。また、この成形方法で
は、成形型の中に搬入されるガラス素材の温度が比較的
低いため、成形された光学素子の搬出に用いる真空吸着
装置を、あるいは、これと同様の装置を用いて、成形型
へのガラス素材の搬入が可能である。
In this molding method, a conveying device is required as a means for carrying the glass material into the molding die and unloading the molded optical element from the molding die, which requires a simple device configuration. Therefore, there is used a vacuum adsorption / conveyance device that conveys a glass material or a molded optical element in a state in which it is adsorbed to an adsorption portion by a vacuum adsorption method. For example, Japanese Patent Application Laid-Open No. 63-297229 discloses a method of unloading a molded optical element from a molding die by a vacuum suction transfer device. Further, in this molding method, since the temperature of the glass material carried into the molding die is relatively low, a vacuum suction device used for carrying out the molded optical element, or a device similar to this, is used. It is possible to carry the glass material into the mold.

【0006】さらに、成形サイクル時間を短縮するため
に、プレス成形可能な温度のガラス素材を成形型の中に
搬入し、ただちにプレス成形する成形方法が開発され
た。この成形方法では、成形型の中に搬入されるガラス
素材の温度が高く、ガラス素材が軟化状態にあるため、
従来と同様に、真空吸着装置の吸着部の圧力を真空状態
にして、ガラス素材を吸着した場合、吸引力によりガラ
ス素材が変形してしまう虞がある。
Further, in order to shorten the molding cycle time, a molding method has been developed in which a glass material having a temperature capable of press molding is carried into a molding die and immediately pressed. In this molding method, the temperature of the glass material carried into the mold is high and the glass material is in a softened state,
Similarly to the conventional case, when the pressure of the suction portion of the vacuum suction device is set to a vacuum state to suck the glass material, the glass material may be deformed by the suction force.

【0007】このような高温で軟化状態のガラス素材
を、吸引力による変形を回避した状態で真空吸着するよ
うにした吸着装置が、特開平1−183428号に開示
されている。この吸着装置では、その吸着部が、中心部
と周辺部とに分割されており、吸着時には周辺部の圧力
を中心部の圧力より低下させた状態で、高温で軟化状態
のガラス素材を吸着することにより、ガラス素材の中心
部の変形が少ない状況においてガラス素材の吸着搬送が
可能になる。
Japanese Unexamined Patent Publication No. 1-183428 discloses a suction device for vacuum-sucking such a glass material softened at a high temperature while avoiding deformation due to a suction force. In this adsorption device, the adsorption part is divided into a central part and a peripheral part, and when adsorbing, the glass material in a softened state at a high temperature is adsorbed while the pressure in the peripheral part is lower than the pressure in the central part. As a result, the glass material can be sucked and conveyed in a situation where the deformation of the central portion of the glass material is small.

【0008】図10は、特開平1−183428号に開
示されている、真空吸着装置の概念的な構成を説明する
断面図である。同図において、吸着部は外側の円環52
および内側の円環53から成り、各円環の間の空間によ
って、周辺部54が、内側の円環53によって、中心部
55が各々構成されている。高温で軟化状態のガラス素
材5を吸着している時、円環52および53の先端は、
ガラス素材5に接触している。その際、周辺部54の圧
力を中心部55の圧力より低下させた(中心部55の圧
力を比較的高くする)状況に置くことで、高温で軟化状
態のガラス素材5を確実に吸着し、ガラス素材5の変形
を防止する。
FIG. 10 is a sectional view for explaining the conceptual structure of the vacuum suction device disclosed in Japanese Patent Laid-Open No. 1-183428. In the figure, the suction part is the outer ring 52.
And the inner ring 53, the space between the rings forms a peripheral portion 54, and the inner ring 53 forms a central portion 55. When adsorbing the glass material 5 in a softened state at high temperature, the tips of the rings 52 and 53 are
It is in contact with the glass material 5. At that time, by placing the pressure of the peripheral portion 54 lower than the pressure of the central portion 55 (making the pressure of the central portion 55 relatively high), the glass material 5 in a softened state at high temperature is surely adsorbed, The deformation of the glass material 5 is prevented.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来例である、特開平1−183428号で開示されてい
る吸着装置により、高温で軟化状態のガラスを吸着した
場合、以下に示すような問題点があった。即ち、この従
来例において、ガラス素材5の温度が高い場合に吸着時
間を長くすると、図11に示すように、吸着箇所の周辺
部54に対応するガラス素材5の部分が盛り上がること
があるので、この周辺の盛り上がり部をレンズの光学有
効面の外に位置するように、ガラス素材5および円環5
2、53の形状を選択していた。このようにすること
で、ガラス素材5の周辺の盛り上がり部が、プレス成形
後のレンズの光学有効面へ影響することを防止してい
た。
However, when the softening glass at a high temperature is adsorbed by the adsorbing device disclosed in JP-A-1-183428, which is the above-mentioned conventional example, the following problems occur. was there. That is, in this conventional example, if the adsorption time is lengthened when the temperature of the glass material 5 is high, the portion of the glass material 5 corresponding to the peripheral portion 54 of the adsorption site may rise as shown in FIG. The glass material 5 and the circular ring 5 are placed so that the peripheral raised portion is located outside the optically effective surface of the lens.
2, 53 shapes were selected. By doing so, the raised portion around the glass material 5 was prevented from affecting the optically effective surface of the lens after press molding.

【0010】しかし、この方法で成形すると、ガラス素
材5の直径は、レンズの光学有効径よりもかなり大きく
する必要があり、ガラス素材5をプレス成形した結果、
得られたレンズは、光学性能に寄与しない無駄な部分
を、光学有効径の外側に大きく残すことになる。勿論、
レンズの外周は、心取り加工することにより、外側の無
駄な部分を研削除去した後、レンズ鏡筒に組み込んでい
るが、上述の成形方法でプレス成形されたレンズは、そ
の直径が光学有効径よりかなり大きいから、心取り加工
によって研削除去する部分が増大し、心取り加工に時間
がかかり、生産コストが高くなる欠点がある。
However, when molded by this method, the diameter of the glass material 5 needs to be considerably larger than the optically effective diameter of the lens. As a result of press molding the glass material 5,
In the obtained lens, a useless portion that does not contribute to the optical performance is left largely outside the optically effective diameter. Of course,
The outer circumference of the lens is centered to remove the unnecessary part outside and then incorporated into the lens barrel.However, the diameter of the lens press-molded by the above-mentioned molding method is the optical effective diameter. Since it is considerably larger, the portion to be ground and removed by the centering process is increased, and the centering process takes time and the production cost is increased.

【0011】[0011]

【発明の目的】本発明の目的は、上記の従来例における
課題を解決するために、以下の目的を達成する光学素子
の成形方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for molding an optical element which achieves the following objects in order to solve the problems in the above-mentioned conventional examples.

【0012】すなわち、本発明の第1の目的は、高温軟
化状態のガラス塊を吸着搬送装置に吸着し、上下一対の
型部材からなる成形型へ搬送し、上下型部材の間に配置
したガラス塊をプレス成形して、光学素子を得る成形方
法において、ただちにプレス成形できる程度に高温で軟
化状態のガラス塊を、吸着装置の吸着部に吸着した状態
で成形型内へ搬送する際に、そのプレス成形で得た光学
素子に欠陥が発生するような、大きな変形を上記ガラス
塊に与えることなく、上記吸着部に吸着することで、成
形時間を短縮した上で、しかも、材料無駄や後加工コス
トを低減し、全体として生産コストを安くするようにし
た、光学素子の成形方法を提供することである。
That is, a first object of the present invention is to adsorb a glass lump in a high temperature softened state to an adsorbing and conveying device, convey it to a forming die composed of a pair of upper and lower die members, and place the glass placed between the upper and lower die members. In a molding method of press-molding a lump to obtain an optical element, a glass lump in a softened state at a temperature high enough to be immediately press-molded, when conveyed into a molding die in a state of being adsorbed by an adsorption section of an adsorption device, By adsorbing to the adsorbing part without giving a large deformation to the glass gob such that a defect occurs in the optical element obtained by press molding, the molding time can be shortened, and further, material waste and post-processing can be performed. It is an object of the present invention to provide a method for molding an optical element, which reduces the cost and the production cost as a whole.

【0013】また、本発明の第2の目的は、高温軟化状
態のガラス塊を吸着搬送装置に吸着し、上下一対の型部
材からなる成形型へ搬送し、上下型部材の間に配置した
ガラス塊をプレス成形して、光学素子を得る成形装置に
おいて、ただちにプレス成形できる程度に高温で軟化状
態のガラス塊を、吸着装置の吸着部に吸着した状態で成
形型内へ搬送する際に、そのプレス成形で得た光学素子
に欠陥が発生するような、大きな変形を上記ガラス塊に
与えることなく、上記吸着部に吸着することができるよ
うに構成した、光学素子の成形装置を提供することであ
る。
A second object of the present invention is to adsorb a glass lump in a high temperature softened state to an adsorbing and conveying device, convey it to a molding die composed of a pair of upper and lower mold members, and arrange the glass between the upper and lower mold members. In a molding apparatus for press-molding a lump to obtain an optical element, a glass lump in a softened state at a temperature high enough to be immediately press-molded, when conveyed into a molding die in a state of being adsorbed by an adsorption section of an adsorption device, By providing a molding device for an optical element, which is configured so that it can be adsorbed to the adsorption portion without giving a large deformation to the glass gob such that a defect occurs in the optical element obtained by press molding. is there.

【0014】この場合、高温軟化状態のガラス塊を、よ
り確実に吸着でき、かつ、吸着中の高温軟化状態のガラ
ス塊の変形を、より少なくすることは重要である。
In this case, it is important to more reliably adsorb the glass gob in the high temperature softened state and to reduce the deformation of the glass gob in the high temperature softened state during the adsorption.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、光学素子を得る成形方法において、吸
着部の圧力を低下させることで吸着部の先端に軟化状態
のガラス塊を吸着させる吸着搬送装置が、ガラス塊を吸
着した状態で、吸着圧力を数段階に連続的・段階的に変
化するように、吸着初期の吸着圧力を強く、それ以降の
吸着圧力を弱くする吸着方法で制御され、軟化ガラス塊
を吸着し、成形型へ搬送することを特徴とする。
In order to achieve the above object, in the present invention, in a molding method for obtaining an optical element, the pressure of the adsorption portion is lowered to adsorb a glass lump in a softened state to the tip of the adsorption portion. The adsorption conveyance device controls the adsorption pressure by increasing the adsorption pressure in the initial stage of adsorption and weakening the subsequent adsorption pressure so that the adsorption pressure changes continuously and stepwise in several steps while adsorbing the glass lump. Then, the softened glass block is adsorbed and conveyed to a molding die.

【0016】また、本発明では、光学素子を得る成形装
置において、吸着部の圧力を低下させることで吸着部の
先端に軟化状態のガラス塊を吸着させる吸着搬送装置
が、ガラス塊を吸着した状態で、吸着圧力を数段階に連
続的・段階的に変化するように制御する制御手段を具備
することを特徴とする。
Further, according to the present invention, in the molding apparatus for obtaining the optical element, the suction conveyance device for adsorbing the softened glass gob to the tip of the adsorbing section by lowering the pressure of the adsorbing section adsorbs the glass gob. In addition, it is characterized by comprising a control means for controlling the adsorption pressure so as to change continuously or stepwise in several steps.

【0017】[0017]

【作用】通常、光学素子を成形する方法においては、例
えば、受け型などの治具の上に載せられた高温軟化状態
のガラス塊に、吸着搬送装置の吸着部を上方から接近さ
せ、ガラス塊に近接した状態にし、その状態で、吸着部
の圧力を低下させることにより、高温軟化状態のガラス
塊を吸着搬送装置の吸着部に吸着させ、ガラス塊を吸着
した状態で、下型部材の上方に吸着搬送装置の吸着部を
移動させ、その位置で、吸着部の圧力を大気圧または正
圧になるまで増加し、吸着部に吸着していた高温軟化状
態のガラス塊を下型部材の上に落下させる。その後、吸
着搬送装置を下型部材の上から退去させた後、ただち
に、上型部材を下降させて、ガラス塊をプレス成形し、
その結果、光学素子を得る。
In general, in a method of molding an optical element, for example, a glass block in a high temperature softened state placed on a jig such as a receiving mold is made to approach the suction section of the suction transport device from above to make the glass block. The glass block in the high temperature softened state is adsorbed to the adsorption part of the adsorption conveyance device by lowering the pressure of the adsorption part in that state, and the glass block is adsorbed to the upper part of the lower mold member. Move the adsorption part of the adsorption conveyance device to the position where the pressure of the adsorption part is increased to atmospheric pressure or positive pressure, and the glass block in the high temperature softened state adsorbed to the adsorption part is placed on the lower mold member. Drop it on. After that, after the suction conveyance device is withdrawn from above the lower mold member, immediately the upper mold member is lowered to press-mold the glass gob,
As a result, an optical element is obtained.

【0018】しかして、本発明においては、高温軟化状
態のガラス塊を吸着した状態で、吸着部の圧力を数段階
に連続的・段階的に変化できるから、吸着初期の吸着圧
力を強く、それ以降の吸着圧力を弱くする吸着の制御
で、軟化ガラス塊を吸着し、成形型へ搬送するので、プ
レス成形して得た光学素子に欠陥が発生するような、大
きな変形を上記ガラス塊に与えることがない。
In the present invention, however, the pressure of the adsorption portion can be continuously and stepwise changed in several steps while adsorbing the glass lump in the high temperature softened state. After that, the softened glass block is adsorbed by the control of suction to weaken the suction pressure, and the softened glass block is conveyed to the molding die, so that the glass block undergoes a large deformation such that a defect occurs in the optical element obtained by press molding. Never.

【0019】なぜならば、このような、直ちにプレス成
形できる高温軟化状態のガラスの変形挙動は、粘性変形
によるもので、粘性変形における変形量は、粘性物体に
加えられた力の大きさと時間に比例して大きくなるから
である。すなわち、変形量を小さくするためには、加え
る力を小さくするか、力を加える時間を短くすれば良い
のである。換言すれば、本発明では、高温軟化状態のガ
ラス塊を吸着部に吸着した後、吸着圧力を弱くすること
で、ガラスに加わる力を小さくし、吸着中のガラス塊の
変形を小さくしているのである。
This is because the deformation behavior of such glass in a high temperature softened state that can be immediately press-formed is due to viscous deformation, and the amount of deformation in viscous deformation is proportional to the magnitude of the force applied to the viscous body and time. Because it will grow. That is, in order to reduce the amount of deformation, the force to be applied may be reduced or the time for applying the force may be shortened. In other words, in the present invention, after adsorbing the glass lump in the high temperature softened state to the adsorption portion, the adsorption pressure is weakened to reduce the force applied to the glass and reduce the deformation of the glass lump during adsorption. Of.

【0020】一方、吸着開始時の吸着部の吸着圧力を弱
くすると、ガラス塊を吸着部に吸着できない場合があ
る。そこで、吸着開始時の吸着部の吸着圧力は強くし、
ガラス塊を吸着部に確実に吸着した後、ただちに、吸着
圧力を弱くするような制御がなされる。このようにする
ことで、ガラスに大きな力が加わる時間を短くし、吸着
中のガラス塊の変形を小さくしているのである。
On the other hand, if the adsorption pressure in the adsorption section at the start of adsorption is weakened, the glass gob may not be adsorbed in the adsorption section. Therefore, the adsorption pressure of the adsorption part at the start of adsorption is increased,
Immediately after surely adsorbing the glass gob to the adsorbing part, the adsorbing pressure is controlled to be weakened immediately. By doing so, the time during which a large force is applied to the glass is shortened, and the deformation of the glass gob during adsorption is reduced.

【0021】また、本発明では、高温軟化状態のガラス
塊を吸着搬送装置の吸着部に吸着し、上下一対の型部材
からなる成形型へ搬送し、上下型部材の間に配置したガ
ラス塊をプレス成形して、光学素子を得る成形装置とし
て、吸着部の圧力を低下させることにより、吸着部の先
端に軟化状態のガラス塊を吸着させる際、ガラス塊を吸
着した状態で、吸着圧力を数段階に連続的・段階的に変
化するように制御する制御手段を備えたことを特徴とす
る光学素子の成形装置を提供する。
Further, in the present invention, the glass lump in the high temperature softened state is adsorbed by the adsorption part of the adsorption conveyance device and conveyed to the forming die composed of a pair of upper and lower die members, and the glass lump placed between the upper and lower die members is moved. As a molding device that obtains an optical element by press molding, by lowering the pressure of the adsorption part, when adsorbing a glass block in a softened state to the tip of the adsorption part, the adsorption pressure is several Provided is a molding device of an optical element, which is provided with a control means for controlling the step to be changed continuously or step by step.

【0022】なお、これら本発明の構成において、高温
軟化状態のガラス塊が、溶融るつぼ内部で溶融した光学
ガラスをノズルから流出し、所定量の溶融ガラスを受け
型に受けて得た高温軟化状態のガラス塊である場合に
は、次のような過程で、光学素子の成形がなされる。
In the constitution of the present invention, the glass lump in the high temperature softened state is obtained by flowing out the optical glass melted in the melting crucible from the nozzle and receiving a predetermined amount of the molten glass in the receiving mold. In the case of the glass lump, the optical element is molded in the following process.

【0023】即ち、溶融るつぼ内部に入れられたガラス
材料は、ヒータによりガラスの溶融温度以上に加熱さ
れ、溶融るつぼ内で溶融ガラスとなる。この溶融ガラス
は、溶融るつぼの壁部に設置された流出ノズルを通って
流出する。この溶融流出ガラスを受け型に受け、受け型
に受けたガラス重量が所定の重量になった時、流出ガラ
ス流から切断し、受け型の上に所定重量の高温軟化状態
のガラス塊を得る。この受け型の上の高温軟化状態のガ
ラス塊を吸着搬送装置の吸着部に吸着し、成形型の中に
搬送する。このようにして、下型部材の上に置かれた高
温軟化状態のガラス塊を、直ちにプレス成形して光学素
子を得るのである。ここでは、ガラス塊の吸着時におい
て、吸着初期の吸着圧力を強く、それ以降の吸着圧力を
弱くしている。
That is, the glass material put in the melting crucible is heated to a temperature higher than the melting temperature of the glass by the heater, and becomes molten glass in the melting crucible. The molten glass flows out through an outflow nozzle installed on the wall of the melting crucible. The molten outflowing glass is received by the receiving mold, and when the weight of the glass received by the receiving mold reaches a predetermined weight, the glass is cut from the outflowing glass flow to obtain a predetermined weight of glass lump in a high temperature softened state on the receiving mold. The glass lump in the high temperature softened state on the receiving die is adsorbed by the adsorbing portion of the adsorbing and conveying device and conveyed into the forming die. In this manner, the glass lump in the high temperature softened state placed on the lower mold member is immediately press-molded to obtain an optical element. Here, at the time of adsorption of the glass gob, the adsorption pressure at the initial stage of adsorption is strong and the subsequent adsorption pressure is weak.

【0024】この場合には、光学素子の材料となるガラ
ス塊を、溶融流出ガラス流から直接に得ているので、材
料コスト、すなわち、ガラス塊の生産コストを大幅に下
げることができる。また、溶融流出ガラス流から得られ
たガラス塊は、表面が滑らかなので、研磨加工を行わず
に、直ちに光学素子の成形素材とすることができるの
で、この点からも、材料コスト、すなわち、ガラス塊の
生産コストを下げることができる。また、光学素子の材
料として、溶融流出ガラス流から得たガラス塊を使うこ
とにより、一連の成形プロセス中において、プレス成形
前にガラス塊をプレス可能な温度まで再加熱する必要が
無いから、この点で生産コストを安くすることができ
る。
In this case, since the glass gob serving as the material of the optical element is obtained directly from the molten outflowing glass stream, the material cost, that is, the production cost of the glass gob can be significantly reduced. Further, since the glass gob obtained from the molten outflowing glass flow has a smooth surface, it can be immediately used as a molding material for an optical element without polishing, and from this point as well, the material cost, that is, the glass The production cost of lumps can be reduced. Further, by using the glass gob obtained from the molten outflowing glass flow as the material of the optical element, it is not necessary to reheat the glass gob to a pressable temperature before press molding during a series of molding processes. In that respect, the production cost can be reduced.

【0025】また、本発明の成形において、高温で軟化
状態のガラス塊が、所定量の光学ガラス塊を、適宜な加
熱装置を用いて加熱軟化させて得たガラス塊である場
合、所定量の光学ガラス塊、例えば、所望の光学素子に
近似した形状に研磨されたガラスブランク、ボール形状
に研磨されたガラスブランク、または、溶融ガラス流か
ら得られたガラス塊として準備されるが、この所定量の
光学ガラス塊を加熱用の治具の上に置き、加熱用の治具
の上に置かれた光学ガラス塊を加熱装置を用いて加熱軟
化させ、この加熱された高温軟化状態のガラス塊を、吸
着搬送装置の吸着部に吸着し、成形型の中に搬送する。
このようにして、下型部材の上に置かれた高温軟化状態
のガラス塊を、直ちにプレス成形して光学素子を得る。
なお、ガラス塊の吸着時において、吸着初期の吸着圧力
を強く、それ以降の吸着圧力を弱くしている。
Further, in the molding of the present invention, when the glass gob softened at a high temperature is a glass gob obtained by heating and softening a predetermined amount of an optical glass gob with a suitable heating device, An optical glass block, for example, a glass blank polished into a shape similar to a desired optical element, a glass blank polished into a ball shape, or a glass block obtained from a molten glass flow, which is prepared in a predetermined amount The optical glass gob of is placed on a heating jig, the optical glass gob placed on the heating jig is heated and softened by using a heating device, and the heated glass gob in a high temperature softened state is heated. Then, it is adsorbed to the adsorption section of the adsorption conveyance device and conveyed into the molding die.
In this way, the glass lump in the high temperature softened state placed on the lower mold member is immediately press-molded to obtain an optical element.
During the adsorption of the glass gob, the adsorption pressure at the initial stage of adsorption is strong and the subsequent adsorption pressure is weak.

【0026】ここでは、成形型の中に搬送されたガラス
塊の温度は、プレス成形可能な温度であり、成形型の中
に搬送されたガラス塊を、従来のように、プレス温度ま
で再加熱する必要がないので、成形時間を短くすること
ができ、生産コストを安くすることができる。
Here, the temperature of the glass gob transferred into the mold is a temperature at which press molding is possible, and the glass gob transferred into the mold is reheated to the press temperature as in the conventional case. Therefore, the molding time can be shortened and the production cost can be reduced.

【0027】なお、上述の本発明の態様として、吸着を
開始する時点で、高温軟化状態のガラス塊の粘度が10
5 dPa・s以上109 dPa・s以下の範囲であり、
搬送に伴う吸着が終了する時点で、ガラス塊の粘度が1
6 dPa・s以上1010dPa・s以下の範囲にある
ことが望ましい。この場合、そのガラス塊の粘度は、プ
レス成形可能な範囲なので、そのガラス塊を下型部材の
上に置いた後、ただちにプレス成形することができるの
で、成形時間を短くすることができる。
As an aspect of the present invention described above, the viscosity of the glass lump in the high temperature softened state is 10 at the time of starting the adsorption.
The range is 5 dPa · s or more and 10 9 dPa · s or less,
The viscosity of the glass gob is 1 when the adsorption accompanying the transportation is completed.
It is desirable to be in the range of 0 6 dPa · s or more and 10 10 dPa · s or less. In this case, since the viscosity of the glass gob is within a range capable of being press-formed, the glass gob can be immediately press-formed after being placed on the lower mold member, so that the molding time can be shortened.

【0028】因みに、搬送に伴う吸着が終了する時点
で、ガラス塊の粘度が106 dPa・sより小さい場
合、ガラス温度が高いので、このガラス塊をただちにプ
レス成形するとガラスが成形型に融着してしまうことが
あるが、一方、搬送に伴う吸着が終了する時点で、ガラ
ス塊の粘度が1010dPa・sより大きい場合、ガラス
温度が低いので、このガラス塊をただちにプレス成形す
るとガラスが破砕してしまうことがある。したがって、
この場合、プレスを成形する際に、下型部材の上に置か
れたガラス塊を、プレス成形可能な温度まで再加熱する
必要がある。
By the way, when the viscosity of the glass gob is less than 10 6 dPa · s at the time when the adsorption accompanying the transportation is completed, the glass temperature is high. Therefore, when this glass gob is immediately press-molded, the glass is fused to the forming die. On the other hand, when the viscosity of the glass gob is greater than 10 10 dPa · s at the time when the adsorption accompanying the transportation is finished, the glass temperature is low, and therefore the glass is immediately pressed when the glass gob is formed. It may be crushed. Therefore,
In this case, when molding the press, it is necessary to reheat the glass gob placed on the lower mold member to a temperature at which press molding is possible.

【0029】そこで、搬送に伴う吸着が終了する時点で
ガラス塊の粘度が106 dPa・s以上1010dPa・
s以下の範囲にあるためには、吸着を開始する時点で、
高温軟化状態のガラス塊の粘度が105 dPa・s以上
109 dPa・s以下の範囲である必要がある。すなわ
ち、吸着を開始する時点で、高温軟化状態のガラスの塊
の粘度が105 dPa・sより小さい場合、ガラスの粘
度が小さいため、本発明による成形方法で、このガラス
塊を吸着した場合でも、大きな変形が発生してしまうこ
とがある。一方、吸着を開始する時点で高温軟化状態の
ガラス塊の粘度が109 dPa・sより大きい場合、温
度が低いので、吸着搬送装置に吸着して成形型へ搬送す
る間に、ガラス塊の温度が下がり、プレス成形する際
に、下型部材の上に置かれたガラス塊を、プレス成形可
能な温度まで再加熱する必要がある。
Therefore, the viscosity of the glass gob is 10 6 dPa · s or more and 10 10 dPa
In order to be in the range of s or less, at the time of starting adsorption,
The viscosity of the glass lump in the high temperature softened state needs to be in the range of 10 5 dPa · s or more and 10 9 dPa · s or less. That is, when the viscosity of the glass lump in the high temperature softened state is smaller than 10 5 dPa · s at the time of starting the adsorption, the viscosity of the glass is small, and thus even when the glass lump is adsorbed by the molding method according to the present invention. , Large deformation may occur. On the other hand, when the viscosity of the glass lump in the high temperature softened state is higher than 10 9 dPa · s at the time of starting the adsorption, the temperature is low, and therefore, the temperature of the glass lump is adsorbed by the adsorption conveyance device and conveyed to the molding die. When pressing, the glass gob placed on the lower mold member needs to be reheated to a temperature at which press molding is possible.

【0030】また、本発明の態様として、高温軟化状態
のガラス塊を吸着する時の初期の吸着力が、絶対圧力で
60000Pa以下であり、初期の吸着圧力により、高
温軟化状態のガラスを吸着している時間が、10秒以下
であることが望ましい。この場合、高温軟化状態のガラ
ス塊の形状が不均一な場合でも、このガラス塊を吸着部
に確実に吸着することができる。一方、この強い吸着圧
力で高温軟化状態のガラス塊を吸着している時間は、1
0秒以下であり、この時間内に搬送吸着装置の吸着部の
吸着圧力は弱くなり、弱い吸着圧力で、ガラス塊を吸着
搬送装置の吸着部に吸着した状態において成形型内へガ
ラス塊を搬送すると、強い吸着圧力で高温軟化状態のガ
ラス塊を吸着している時間が短いので、吸着中のガラス
塊の変形を少なくすることができる。
As an aspect of the present invention, the initial adsorption force when adsorbing a glass mass in a high temperature softened state is 60000 Pa or less in absolute pressure, and the glass in a high temperature softened state is adsorbed by the initial adsorption pressure. It is desirable that the period of time is 10 seconds or less. In this case, even if the shape of the glass lump in the high temperature softened state is not uniform, the glass lump can be surely adsorbed to the adsorption portion. On the other hand, the time for adsorbing the glass lump in the high temperature softened state with this strong adsorption pressure is 1
It is 0 seconds or less, and within this time, the suction pressure of the suction part of the transfer suction device becomes weak, and the glass block is transferred into the molding die in a state where the glass block is sucked by the suction part of the suction transfer device with a weak suction pressure. Then, since the time during which the glass lump in the high temperature softened state is adsorbed by the strong adsorption pressure is short, it is possible to reduce the deformation of the glass lump during the adsorption.

【0031】因みに、初期吸着圧力が、絶対圧力で60
000Paより大きく吸着圧力が弱い場合、ガラス塊の
形状が不均一な場合やガラス塊の温度が高い場合にガラ
ス塊を吸着できない場合がある。また、強い吸着圧力に
より高温軟化状態のガラス塊を吸着している時間が10
秒より長い場合、ガラス塊の変形量が大きくなり、この
ガラス塊をプレス成形した光学素子に欠陥が残ることが
ある。
Incidentally, the initial adsorption pressure is 60 in absolute pressure.
If the adsorption pressure is higher than 000 Pa and the adsorption pressure is weak, the shape of the glass gob is not uniform, or the temperature of the glass gob is high, the glass gob may not be adsorbed. Moreover, the time during which the glass lump in the high temperature softened state is adsorbed by the strong adsorption pressure is 10
If it is longer than a second, the amount of deformation of the glass gob becomes large, and defects may remain in the optical element obtained by press molding the glass gob.

【0032】なお、初期吸着圧力の値および初期吸着圧
力で吸着する時間の最適値は、吸着時のガラス塊の温
度、形状、重量などを考慮して、実験的に求められる。
また、吸着圧力を弱くした後の、弱い吸着圧力の値の最
適値も、ガラス塊の温度、重量などを考慮して、実験的
に求められる。
The value of the initial adsorption pressure and the optimum value of the adsorption time at the initial adsorption pressure are experimentally determined in consideration of the temperature, shape, weight and the like of the glass gob at the time of adsorption.
Further, the optimum value of the weak adsorption pressure after weakening the adsorption pressure is also experimentally obtained in consideration of the temperature and weight of the glass gob.

【0033】[0033]

【実施例】【Example】

(第1の実施例)図1は、本発明の第1の実施例を説明
するための、装置断面の概略図である。同図において、
1は白金溶融るつぼ、2は白金溶融るつぼ1の内部で溶
融されている溶融光学ガラス、3は白金溶融るつぼ1の
周囲に設置されたるつぼ加熱用ヒータ、4は白金溶融る
つぼ1内で溶融された溶融光学ガラス2を流出するため
の流出ノズル、5は流出ノズル4から流出した溶融光学
ガラス2から得られた高温軟化状態のガラス塊、6は高
温軟化状態のガラス塊5を受けるための受け型、7は受
け型を昇降するための昇降棒である。
(First Embodiment) FIG. 1 is a schematic view of a cross section of an apparatus for explaining a first embodiment of the present invention. In the figure,
1 is a platinum melting crucible, 2 is molten optical glass melted inside the platinum melting crucible 1, 3 is a crucible heating heater installed around the platinum melting crucible 1, 4 is melted in the platinum melting crucible 1. An outflow nozzle for outflowing the molten optical glass 2, 5 is a glass lump in a high temperature softened state obtained from the molten optical glass 2 outflowed from an outflow nozzle 4, and 6 is a receiver for receiving the glass lump 5 in a high temperature softened state. A mold, 7 is an elevating rod for elevating the receiving mold.

【0034】また、8は光学素子成形用成形型の上型部
材、9は光学素子成形用成形型の下型部材、10は上型
部材8および下型部材9を同心上に擦動案内するスリー
ブ状の胴型、11はプレス成形用の油圧シリンダ、12
は上型部材8と油圧シリンダ11とを連結するプレス
軸、13はガラス塊5を上型部材8と下型部材9とでプ
レス成形することによって得られる光学素子、14はガ
ラス塊5を下型部材9の上に搬入するための吸着圧力を
数段階に連続的・段階的に変化できるようにした吸着搬
送装置、15は上型部材8と下型部材9とでプレス成形
して得られた成形光学素子13を搬出するための搬送装
置である。
Further, 8 is an upper die member of the optical element forming die, 9 is a lower die member of the optical element forming die, and 10 is an upper die member 8 and a lower die member 9 which are concentrically guided by rubbing. Sleeve-shaped body, 11 is a hydraulic cylinder for press molding, 12
Is a press shaft that connects the upper die member 8 and the hydraulic cylinder 11, 13 is an optical element obtained by press-molding the glass gob 5 with the upper die member 8 and the lower die member 9, and 14 is the glass gob 5 An adsorption / conveyance device capable of continuously and stepwise changing the adsorption pressure for loading onto the mold member 9 is obtained by press molding the upper mold member 8 and the lower mold member 9 with each other. It is a carrying device for carrying out the molded optical element 13.

【0035】更に、16は上型部材8と下型部材9から
なる一対の上記成形型を非酸化性雰囲気に保つための成
形室、17はガラス塊5が置かれる雰囲気を大気雰囲気
から非酸化性雰囲気へ置換するために成形室16に隣接
して設置された置換室、18は成形された光学素子13
が置かれる雰囲気を非酸化性雰囲気から大気雰囲気へ置
換するために成形室16に隣接して設置された置換室、
また、19は置換室17と大気とを連絡する開閉口、2
0は置換室17と成形室16とを連絡する開閉口、21
は置換室18と成形室16とを連絡する開閉口、22は
置換室18と大気とを連絡する開閉口である。
Further, 16 is a molding chamber for maintaining a pair of the above-mentioned molding dies including the upper mold member 8 and the lower mold member 9 in a non-oxidizing atmosphere, and 17 is a non-oxidizing atmosphere in which the glass gob 5 is placed from the atmospheric atmosphere. A replacement chamber installed adjacent to the molding chamber 16 for replacing the optical element 13 with the molded optical element 13.
A replacement chamber installed adjacent to the molding chamber 16 to replace the non-oxidizing atmosphere with the atmospheric atmosphere in which
Further, 19 is an opening / closing port for connecting the replacement chamber 17 and the atmosphere, 2
0 is an opening / closing port that connects the replacement chamber 17 and the molding chamber 16, 21
Is an opening / closing port that connects the replacement chamber 18 and the molding chamber 16, and 22 is an opening / closing port that connects the replacement chamber 18 and the atmosphere.

【0036】また、図2には、本実施例における吸着搬
送装置の吸着圧力を変化するための、配管回路が示させ
ている。図2において、30は吸着搬送装置の吸着部で
あり、31は吸着用の負圧を発生するためのロータリー
式の真空ポンプであり、32は真空ポンプ31で発生し
た負圧を吸着搬送装置の吸着部30に供給するための開
閉弁であり、33は吸着部内の圧力を増加させるための
窒素ガスの供給部であり、34は窒素ガスの供給部33
から供給された窒素ガスを吸着搬送装置の吸着部30に
供給するための開閉弁であり、35は吸着搬送装置の吸
着部30の吸着圧力を読むための圧力計である。
Further, FIG. 2 shows a piping circuit for changing the adsorption pressure of the adsorption / conveyance apparatus in this embodiment. In FIG. 2, 30 is an adsorption unit of the adsorption conveyance device, 31 is a rotary type vacuum pump for generating a negative pressure for adsorption, and 32 is a negative pressure generated by the vacuum pump 31 of the adsorption conveyance device. An on-off valve for supplying to the adsorption unit 30, 33 is a nitrogen gas supply unit for increasing the pressure in the adsorption unit, and 34 is a nitrogen gas supply unit 33.
An open / close valve for supplying the nitrogen gas supplied from the adsorption unit 30 to the adsorption unit 30 of the adsorption conveyance device, and a pressure gauge 35 for reading the adsorption pressure of the adsorption unit 30 of the adsorption conveyance device.

【0037】上記構成の光学素子の成形装置を用いて、
次にその光学素子の成形方法を以下説明する。ここで
は、先ず、ガラス材料を白金溶融るつぼ1の中に投入
し、白金溶融るつぼ1の周囲に配置されたるつぼ加熱用
ヒータ3を用いて加熱し、ガラス材料を溶融し溶融光学
ガラス2を得る。溶融光学ガラス2は、白金溶融るつぼ
1の下方に設置された流出ノルズ4の先端から液滴状に
なって流出する。
Using the optical element molding apparatus having the above structure,
Next, a method for molding the optical element will be described below. Here, first, a glass material is put into a platinum melting crucible 1 and heated using a crucible heating heater 3 arranged around the platinum melting crucible 1, and the glass material is melted to obtain a molten optical glass 2. . The molten optical glass 2 flows out in the form of droplets from the tip of the outflow nord 4 installed below the platinum melting crucible 1.

【0038】この場合、予め、受け型6を流出ノズル4
の直下に待機させた状態で、流出ノズル4の先端から液
滴状になって流出する溶融光学ガラス2を、上述の受け
型6に受け、受け型6に受けた溶融光学ガラス2の重量
が所望の重さに達した時、受け型6を支持している昇降
棒7を下方に移動させ、受け型6を下降することによ
り、溶融光学ガラス2をくびれさせることにより切断
し、シャーマークの無い高温で軟化状態のガラス塊5を
得る。高温軟化状態のガラス塊5を載せた受け型6は、
更に、置換室17に隣接する位置まで下降する。
In this case, the receiving die 6 is previously attached to the outflow nozzle 4
The molten optical glass 2 flowing in the form of droplets from the tip of the outflow nozzle 4 is received by the receiving mold 6 in a state of standing by immediately below the receiving nozzle 6, and the weight of the molten optical glass 2 received by the receiving mold 6 is When the desired weight is reached, the elevating rod 7 supporting the receiving mold 6 is moved downward, and the receiving mold 6 is lowered to cut the molten optical glass 2 by constricting it to cut the shear mark. A glass lump 5 in a softened state at a high temperature is obtained. The receiving mold 6 on which the glass gob 5 in a high temperature softened state is placed,
Furthermore, it descends to a position adjacent to the replacement chamber 17.

【0039】次いで、置換室17の開閉口19を開け、
置換室17の内部を大気雰囲気にする。高温で軟化状態
のガラス塊5を載せた受け型6を、適宜な搬送装置(図
示せず)を用いて、置換室内に搬送し、置換室内の所要
箇所に載置する。この搬送装置は、その後、置換室17
の外へ退出し、開閉口19が閉じられ、置換室17は気
密に保たれる。そして、置換室17内の雰囲気を非酸化
性ガス雰囲気へ置換する。
Next, the opening / closing port 19 of the substitution chamber 17 is opened,
The inside of the substitution chamber 17 is set to the atmosphere. The receiving mold 6 on which the glass lump 5 in a softened state at high temperature is placed is transported into the replacement chamber by using an appropriate transport device (not shown) and placed at a required position in the replacement chamber. This transfer device is then replaced by the replacement chamber 17
, The opening / closing port 19 is closed, and the replacement chamber 17 is kept airtight. Then, the atmosphere in the replacement chamber 17 is replaced with a non-oxidizing gas atmosphere.

【0040】大気雰囲気から非酸化性ガス雰囲気へと置
換された状態で、高温軟化状態のガラス塊5は、成形室
16内に設置された吸着搬送装置14の吸着部に吸着さ
れて、その状態で、置換室17内の受け型6の上から持
ち上げられ、成形室16内の下型9の上へと搬送され
る。すなわち、受け型6の上に載せられた高温軟化状態
のガラス塊5に、吸着搬送装置14の吸着部を上方から
接近させ、ガラス塊5に近接した状態にする。その状態
で、吸着部の圧力を低下させることにより、高温軟化状
態のガラス塊5を吸着搬送装置14の吸着部に吸着す
る。
The glass lump 5 in the high temperature softened state in the state where the atmosphere atmosphere is replaced with the non-oxidizing gas atmosphere is adsorbed by the adsorbing portion of the adsorbing and conveying device 14 installed in the molding chamber 16, and the state is maintained. Then, it is lifted from above the receiving mold 6 in the substitution chamber 17 and conveyed to above the lower mold 9 in the molding chamber 16. That is, the glass lump 5 in the high temperature softened state placed on the receiving mold 6 is brought close to the glass lump 5 by bringing the suction portion of the suction conveyance device 14 closer from above. In this state, the pressure of the adsorption section is reduced to adsorb the glass gob 5 in the high temperature softened state to the adsorption section of the adsorption conveyance device 14.

【0041】高温軟化状態のガラス塊5を吸着部に吸着
した後、吸着圧力を弱くする。ガラス塊で吸着部が塞が
れた状態では、弱い吸着圧力でも、ガラス塊5を吸着し
た状態が維持されるから、ガラス塊に変形を与えること
なく、下型部材9の上方に吸着搬送装置14の吸着部を
移動させることができる。その位置で、吸着部の圧力を
正圧になるまで加圧し、吸着部に吸着していた高温軟化
状態のガラス塊5を下型部材9の上に落下させる。
After the glass lump 5 in the high temperature softened state is adsorbed on the adsorbing portion, the adsorbing pressure is weakened. In the state where the suction portion is blocked by the glass gob, the state in which the glass gob 5 is sucked is maintained even with a weak suction pressure. Therefore, the suction conveyance device is provided above the lower mold member 9 without deforming the glass gob. The 14 suction parts can be moved. At that position, the pressure of the suction portion is increased to a positive pressure, and the glass lump 5 in the high temperature softened state that has been suctioned on the suction portion is dropped onto the lower mold member 9.

【0042】なお、ガラス塊5を下型部材9の上に搬送
した後、直ちに、開閉口20が閉じられ、次に、開閉口
19が開けられ、置換室17内が大気雰囲気となる。そ
して、置換室17の中に載置されている受け型6は、搬
送装置(図示せず)により外部大気中へと搬出される。
Immediately after the glass gob 5 is conveyed onto the lower mold member 9, the opening / closing port 20 is closed, then the opening / closing port 19 is opened, and the inside of the substitution chamber 17 is set to the atmosphere. Then, the receiving mold 6 placed in the substitution chamber 17 is carried out to the outside atmosphere by a carrying device (not shown).

【0043】その後、下型部材9の上に載置された軟化
状態のガラス塊5を、直ちに、上型部材8でプレス成形
することにより、所要形状に成形された光学素子13を
得ることができる。この成形された光学素子13は、搬
送装置15を用いて、下型部材9の上から搬出される。
Thereafter, the softened glass gob 5 placed on the lower mold member 9 is immediately press-molded by the upper mold member 8 to obtain an optical element 13 molded into a desired shape. it can. The molded optical element 13 is carried out from above the lower mold member 9 by using the carrying device 15.

【0044】この時、置換室18の内部は、真空置換法
により、予め、非酸化性雰囲気に置換されており、開閉
口21は開けられている。下型部材9の上から搬出され
た成形済みの光学素子13は、開閉口21を通って置換
室18へと搬送され、置換室18の中に載置される。そ
の後、置換室18の開閉口21が閉じられ、続いて、開
閉口22が開けられ、置換室18内は大気雰囲気にな
る。そして、搬送装置(図示せず)を用いて、置換室1
8内に載置された光学素子13を、開閉口22を通って
大気中へと搬出するのである。
At this time, the inside of the replacement chamber 18 is previously replaced with a non-oxidizing atmosphere by the vacuum replacement method, and the opening / closing port 21 is opened. The molded optical element 13 carried out from the lower mold member 9 is conveyed to the replacement chamber 18 through the opening / closing port 21, and placed in the replacement chamber 18. After that, the opening / closing port 21 of the replacement chamber 18 is closed, the opening / closing port 22 is subsequently opened, and the inside of the replacement chamber 18 becomes an atmosphere. Then, using the transfer device (not shown), the replacement chamber 1
The optical element 13 placed in the unit 8 is carried out into the atmosphere through the opening / closing port 22.

【0045】なお、成形された光学素子13を外部大気
中へと搬出した後、直ちに、開閉口22を閉じ、排気口
(図示せず)から置換室18の内部の大気を排気し、真
空状態にまで減圧した後、排気を終了し、非酸化性ガス
供給口(図示せず)から非酸化性ガスを成形室18の中
に供給し、成形室18を非酸化性雰囲気へ置換する。こ
の発明での光学素子の成形は、実際には連続的に行われ
る。
Immediately after the molded optical element 13 is carried into the outside atmosphere, the opening / closing port 22 is immediately closed, and the atmosphere inside the substitution chamber 18 is exhausted from the exhaust port (not shown) to obtain a vacuum state. After the pressure is reduced to 1, the evacuation is completed, and a non-oxidizing gas is supplied into the molding chamber 18 from a non-oxidizing gas supply port (not shown) to replace the molding chamber 18 with the non-oxidizing atmosphere. The molding of the optical element according to the present invention is actually performed continuously.

【0046】続いて、本発明に係わる光学素子の成形方
法を、より具体的な実施例で説明する。本発明で用いた
光学ガラスは、屈折率nd =1.58、アッベ数νd
60の光学特性を持つガラスであり、この光学ガラスの
ガラス転移点温度は500℃である。また、本実施例で
得た光学素子は、直径:14mm、中心肉厚:5.5m
m、光学面の曲率半径:10mmおよび13mmの両凸
形状レンズであり、その重量は1.5gである。
Next, a method for molding an optical element according to the present invention will be described in more concrete examples. The optical glass used in the present invention has a refractive index n d = 1.58 and an Abbe number ν d =
It is a glass having 60 optical characteristics, and the glass transition temperature of this optical glass is 500 ° C. The optical element obtained in this example has a diameter of 14 mm and a central wall thickness of 5.5 m.
m, the radius of curvature of the optical surface: a biconvex lens of 10 mm and 13 mm, and its weight is 1.5 g.

【0047】白金溶融るつぼ1内の溶融ガラス2は、る
つぼ加熱用ヒータ3により1200℃に加熱されてい
る。そして、流出ノズル4の温度を1050℃に保持す
ることにより、流出ノズル4から溶融ガラス2を液滴状
に流出することができる。この液滴状に流出した溶融ガ
ラス2の温度は1000℃であった。
The molten glass 2 in the platinum melting crucible 1 is heated to 1200 ° C. by the crucible heating heater 3. Then, by maintaining the temperature of the outflow nozzle 4 at 1050 ° C., the molten glass 2 can be outflowed from the outflow nozzle 4 in the form of droplets. The temperature of the molten glass 2 flowing out in the form of droplets was 1000 ° C.

【0048】受け型6は、カーボン系の材料により作ら
れており、ガラス受け面は凹形状で、半径:10mmの
球面に加工されている。また、溶融ガラス2を受ける前
に、受け型6はヒータ(図示せず)により600℃に加
熱されている。
The receiving die 6 is made of a carbon-based material, and the glass receiving surface has a concave shape and is processed into a spherical surface having a radius of 10 mm. Before receiving the molten glass 2, the receiving mold 6 is heated to 600 ° C. by a heater (not shown).

【0049】流出ノズル4から液滴状に流出する溶融ガ
ラス2を、事前に600℃に加熱された受け型6で受
け、溶融ガラス2の重量が1.5gに達した後、直ち
に、受け型6を下方に下降させ、溶融ガラス2を引き伸
ばすことにより切断し、シャーマークの無い高温軟化状
態のガラス塊5を得た。この高温軟化状態のガラス塊5
を載せた受け型6を、直ちに、置換室17の中へ搬入し
た。なお、以上説明した、ガラスを溶融する工程、ガラ
スを流出する工程、ガラス塊を受ける工程は、全て大気
中で行われた。
The molten glass 2 flowing out in a droplet form from the outflow nozzle 4 is received by a receiving mold 6 which is heated to 600 ° C. in advance, and immediately after the weight of the molten glass 2 reaches 1.5 g, the receiving mold is immediately received. 6 was moved downward and the molten glass 2 was stretched and cut to obtain a glass gob 5 in a high temperature softened state without shear marks. This glass lump 5 in a high temperature softened state
The receiving mold 6 on which was placed was immediately carried into the substitution chamber 17. The steps of melting the glass, the step of flowing out the glass, and the step of receiving the glass lump described above were all performed in the atmosphere.

【0050】続いて、置換室17において、大気雰囲気
から非酸化性雰囲気への置換が行われる。なお、本実施
例では、非酸化性雰囲気として窒素雰囲気が使われた。
置換工程が終了した時点における、ガラス塊5の温度は
680℃であった。
Subsequently, in the replacement chamber 17, the atmosphere is replaced with a non-oxidizing atmosphere. In this example, a nitrogen atmosphere was used as the non-oxidizing atmosphere.
The temperature of the glass gob 5 at the time when the replacement step was completed was 680 ° C.

【0051】置換室17の置換が終了した後、ただちに
開閉口20が開き、成形室16の内部に待機していた吸
着搬送装置14が、開閉口20を通って置換室17の内
部に入ってくる。置換室17の内部に入った吸着搬送装
置14は下降し、置換室17の内部に置かれた受け型6
の上方に到り、吸着搬送装置14の吸着部30は、その
受け型の上に載せられた高温軟化状態のガラス塊5の上
方0.3mmの位置で停止した。この吸着直前の状態に
おいて、ガラス塊5の温度は660℃であり、この状態
のガラスの粘度は106.6 dPa・sであった。一方、
この時、吸着部30は、その内部に設置されたヒータ
(不図示)により550℃に加熱されている。
Immediately after the replacement of the replacement chamber 17, the opening / closing port 20 is opened, and the suction conveyance device 14 waiting inside the molding chamber 16 enters the inside of the replacement chamber 17 through the opening / closing port 20. come. The adsorption / conveyance device 14 that has entered the substitution chamber 17 descends and the receiving mold 6 placed inside the substitution chamber 17
As a result, the suction unit 30 of the suction conveyance device 14 stopped at a position 0.3 mm above the glass gob 5 in the high temperature softened state placed on the receiving mold. In the state immediately before the adsorption, the temperature of the glass gob 5 was 660 ° C., and the viscosity of the glass in this state was 10 6.6 dPa · s. on the other hand,
At this time, the adsorption unit 30 is heated to 550 ° C. by a heater (not shown) installed inside the adsorption unit 30.

【0052】この状態で、負圧供給用の開閉弁32を開
け、吸着部30の内部を減圧状態にし、ガラス塊5を吸
着部30に吸着させた。図3は、ガラス塊5を吸着した
状態の吸着部30を説明する図であり、36は吸着部3
0を構成する円環部材である。ガラス塊5を吸着部30
に吸着した状態において、ガラス塊5の温度が高く、粘
度が低いので、ガラス塊5と円環部材36が密着した状
態で接触し、吸着部30の内部および図2で説明した配
管系の内部は、気密状態に保たれる。
In this state, the on-off valve 32 for negative pressure supply was opened, the inside of the adsorption section 30 was depressurized, and the glass gob 5 was adsorbed to the adsorption section 30. FIG. 3 is a diagram for explaining the suction unit 30 in a state where the glass gob 5 is sucked, and 36 is the suction unit 3.
It is an annular member that constitutes 0. Adhesive part 30 for glass lump 5
Since the glass gob 5 has a high temperature and a low viscosity in a state where it is adsorbed on the glass gob, the glass gob 5 and the annular member 36 come into close contact with each other, and the inside of the adsorbing part 30 and the inside of the piping system described in FIG. Are kept airtight.

【0053】ガラス塊5を吸着部30に吸着し、吸着部
30の内部の吸着圧力が絶対圧力で20000Paまで
減少した後、負圧供給用の開閉弁32を閉じた。この状
態においても、吸着部30の内部は気密に保たれている
ので、吸着部30の内部の吸着圧力が絶対圧力で200
00Paに保たれている。吸着開始から1秒経過するま
で、この状態のまま保持した後、窒素ガス供給開閉弁3
4を開け、吸着部30の内部に窒素ガスを供給し、吸着
部30の内部の圧力を高め、窒素ガス供給開始から2秒
後に、吸着部30の内部の圧力が絶対圧力で80000
Paまで上昇した時点で、窒素ガス供給開閉弁34を閉
じ、その後、吸着部30の内部の圧力が絶対圧力で80
000Paに保った状態で、ガラス塊5を吸着部30に
吸着し続けた。
After the glass gob 5 was adsorbed to the adsorption section 30 and the adsorption pressure inside the adsorption section 30 was reduced to 20000 Pa in absolute pressure, the on-off valve 32 for negative pressure supply was closed. Even in this state, since the inside of the adsorption unit 30 is kept airtight, the adsorption pressure inside the adsorption unit 30 is 200 in absolute pressure.
It is kept at 00 Pa. After maintaining this state for 1 second from the start of adsorption, the nitrogen gas supply opening / closing valve 3
4 is opened, nitrogen gas is supplied to the inside of the adsorption unit 30, the pressure inside the adsorption unit 30 is increased, and two seconds after the start of the nitrogen gas supply, the pressure inside the adsorption unit 30 is 80000 in absolute pressure.
When the pressure rises to Pa, the nitrogen gas supply on-off valve 34 is closed, and thereafter, the pressure inside the adsorption unit 30 becomes 80 in absolute pressure.
The glass gob 5 was continuously adsorbed to the adsorption part 30 while being maintained at 000 Pa.

【0054】一方、吸着搬送装置14は、ガラス塊5を
吸着して1秒経過した時点から、ガラス塊5を吸着部3
0に吸着した状態で、置換室17の内部の受け型6の上
から、成形室16の内部の下型部材9の上へと移動を開
始し、移動開始後から5秒後に、下型部材9の上方1m
mの位置にガラス塊5を吸着した吸着部30が到着し
た。
On the other hand, the adsorbing and conveying device 14 adsorbs the glass gob 5 and starts adsorbing the glass gob 5 to the adsorbing section 3 from the time 1 second has elapsed
In the state of being adsorbed to 0, it starts moving from above the receiving mold 6 inside the substitution chamber 17 to above the lower mold member 9 inside the molding chamber 16, and 5 seconds after the start of movement, the lower mold member 1m above 9
The adsorption unit 30 adsorbing the glass gob 5 has arrived at the position m.

【0055】下型部材9の上方に吸着部30が到着し、
1秒が経過した後、窒素ガス供給開閉弁34を開け、吸
着部30の内部の圧力を上昇した。吸着部30の内部の
圧力が120000Paに達した時、吸着部30に吸着
していた高温軟化状態のガラス塊5は、吸着部30から
落下し、下型部材9の上に載せられた。この時のガラス
塊5の温度は645℃であり、この状態のガラスの粘度
は107.0 dPa・sであった。
The suction portion 30 arrives above the lower mold member 9,
After 1 second had elapsed, the nitrogen gas supply opening / closing valve 34 was opened, and the pressure inside the adsorption unit 30 was increased. When the pressure inside the adsorption unit 30 reached 120,000 Pa, the glass lump 5 in the high temperature softened state adsorbed to the adsorption unit 30 dropped from the adsorption unit 30 and was placed on the lower mold member 9. At this time, the temperature of the glass gob 5 was 645 ° C., and the viscosity of the glass in this state was 10 7.0 dPa · s.

【0056】本実施例における高温軟化状態のガラス塊
5を吸着した状態における、吸着部30の内部の吸着圧
力の変化および負圧供給用の開閉弁32の開閉タイミン
グおよび窒素ガス供給用の開閉弁34の開閉タイミング
は、図4に示されている。ここでは、成形室16の内部
の圧力は、絶対圧力で110000Paに保たれてい
る。
In the present embodiment, when the glass lump 5 in the high temperature softened state is adsorbed, the adsorption pressure inside the adsorbing portion 30 is changed, the opening / closing timing of the opening / closing valve 32 for supplying the negative pressure, and the opening / closing valve for supplying the nitrogen gas. The opening / closing timing of 34 is shown in FIG. Here, the pressure inside the molding chamber 16 is maintained at 110000 Pa in absolute pressure.

【0057】図5は、本実施例による吸着搬送が終了
し、下型部材の上に載せられたガラス塊5の形状を説明
する図であり、ガラス塊5の上面の最外周部に、吸着部
30を構成する円環部材36との接触により発生した僅
かの凹みがあるのみであり、プレス成形して得た光学素
子に欠陥が発生するような大きな変形をガラス塊5に発
生していないことがわかる。
FIG. 5 is a view for explaining the shape of the glass gob 5 placed on the lower mold member after the suction conveyance according to this embodiment is completed. There is only a slight dent caused by the contact with the annular member 36 forming the portion 30, and the glass gob 5 is not greatly deformed such that a defect is caused in the optical element obtained by press molding. I understand.

【0058】このようにして、高温軟化状態のガラス塊
5は、上下一対の型部材からなる成形型の、その下型部
材9の上に置かれた。なお、ここで、上型部材8および
下型部材9の材質は超硬合金であり、光学面成形面は凹
形状に、上型部材8は半径:10mm、下型部材9は半
径:13mmに、それぞれ研磨されており、その表面に
はダイヤモンド状カーボン膜がコーティングされてい
る。
In this way, the glass gob 5 in the high temperature softened state was placed on the lower mold member 9 of the molding die consisting of a pair of upper and lower mold members. Here, the material of the upper mold member 8 and the lower mold member 9 is cemented carbide, the optical surface molding surface is concave, the upper mold member 8 has a radius of 10 mm, and the lower mold member 9 has a radius of 13 mm. , Each of which is polished, and the surface thereof is coated with a diamond-like carbon film.

【0059】これら上型部材8および下型部材9は、5
30℃に加熱保持されている。また、下型部材9の上に
載せられたガラス塊5のプレス成形直前の温度は640
℃であった。そして、2000Nの力でガラス塊5をプ
レス成形したところ、5秒でプレス成形は終了し、所要
の光学素子13が得られた。その後、20秒間、光学素
子13を上型部材8と下型部材9に密着させた状態で保
持し、光学素子13内の温度分布にバラツキが無くなっ
た後、上型部材8を上昇し、型開きした。次いで、成形
された光学素子13を置換室18へ搬送し、開閉口22
から大気中へ搬出した。
The upper mold member 8 and the lower mold member 9 are 5
It is kept heated at 30 ° C. The temperature of the glass gob 5 placed on the lower mold member 9 immediately before press molding is 640.
° C. When the glass gob 5 was press-molded with a force of 2000 N, the press-molding was completed in 5 seconds, and the required optical element 13 was obtained. After that, the optical element 13 is held in a state of being in close contact with the upper mold member 8 and the lower mold member 9 for 20 seconds, and after there is no variation in the temperature distribution inside the optical element 13, the upper mold member 8 is raised and Opened Then, the molded optical element 13 is conveyed to the substitution chamber 18, and the opening / closing port 22
It was carried into the atmosphere from.

【0060】上述の実施例による光学素子の成形は、6
0秒タクトで連続的に行われる。そして、得られた光学
素子は、外観上の欠陥も無く、光学面の面精度も優れた
ものであった。このような本実施例に特有の効果として
は、溶融ガラスから光学素子を得るのに連続性が保た
れ、一貫生産であるから、材料コストを安くできる点、
ガラス塊を加熱するプロセスが無いので、加熱に要する
コストを削減できる点、プレスできる高温のガラス塊
を、直接、成形型に供給することができるので、成形タ
クトタイムが短くなり、生産コストを安くできる点、高
温軟化状態のガラス塊を、吸着による変形をもたらすこ
となく、しかも、確実に吸着できる点、および、成形し
て得られた光学素子には外観上の欠陥が無い点、などが
挙げられる。 (第2の実施例)図6は、本発明の第2の実施例を説明
するための、装置の概略断面図である。同図において、
5はガラス塊、8は光学素子成形用の上型部材、9は光
学素子成形用の下型部材、10は上型部材8および下型
部材9を、同心上に擦動案内するスリーブ状の胴型、1
1はプレス成形用の油圧シリンダ、12は上型部材8と
油圧シリンダ11を連結するプレス軸、13はガラス塊
5を上型部材8と下型部材9によりプレス成形すること
で、得られる光学素子、14はガラス塊5を下型部材9
の上に搬入するための、吸着圧力を数段階に連続的・段
階的に変化できる吸着搬送装置、15は上型部材8と下
型部材9によりプレス成形して得られた光学素子13を
搬出するための搬送装置である。
The molding of the optical element according to the above-described embodiment is 6
It is performed continuously with 0 second tact. The obtained optical element had no defect in appearance and had excellent surface accuracy of the optical surface. As the effect peculiar to this embodiment, the continuity is maintained to obtain the optical element from the molten glass, and the integrated production is performed, so that the material cost can be reduced,
Since there is no process to heat the glass gob, the cost required for heating can be reduced, and the high-temperature glass gob that can be pressed can be directly supplied to the molding die, which shortens the molding takt time and reduces the production cost. It is possible that the glass lump in the high temperature softened state can be securely adsorbed without being deformed by adsorption, and that the optical element obtained by molding has no defect in appearance. To be (Second Embodiment) FIG. 6 is a schematic sectional view of an apparatus for explaining a second embodiment of the present invention. In the figure,
5 is a glass lump, 8 is an upper mold member for molding an optical element, 9 is a lower mold member for molding an optical element, 10 is a sleeve-shaped member for concentrically guiding the upper mold member 8 and the lower mold member 9. Body type, 1
1 is a hydraulic cylinder for press molding, 12 is a press shaft connecting the upper mold member 8 and the hydraulic cylinder 11, 13 is an optical obtained by press molding the glass gob 5 with the upper mold member 8 and the lower mold member 9. The element 14 is the glass block 5 and the lower mold member 9
An adsorption / conveyance device capable of continuously and stepwise changing the adsorption pressure in several steps for carrying in, and 15 carries out an optical element 13 obtained by press molding with an upper mold member 8 and a lower mold member 9. It is a carrying device for doing.

【0061】また、16は上型部材8と下型部材9とか
らなる一対の成形型を、非酸化性雰囲気に保つための成
形室、17はガラス塊5の置かれる雰囲気を、大気雰囲
気から非酸化性雰囲気へ置換するために、成形室16に
隣接して設置された置換室、18は成形された光学素子
13の置かれる雰囲気を、非酸化性雰囲気から大気雰囲
気へ置換するために、成形室16に隣接して設置された
置換室である。
Further, 16 is a molding chamber for maintaining a pair of molding dies composed of the upper mold member 8 and the lower mold member 9 in a non-oxidizing atmosphere, and 17 is an atmosphere in which the glass gob 5 is placed from the atmospheric atmosphere. In order to replace the non-oxidizing atmosphere with a molding chamber 16, a replacement chamber is provided adjacent to the molding chamber 16. In order to replace the atmosphere in which the molded optical element 13 is placed with the non-oxidizing atmosphere with the atmosphere, It is a replacement chamber installed adjacent to the molding chamber 16.

【0062】なお、19は置換室17と大気とを連絡す
る開閉口、20は置換室17と成形室16とを連絡する
開閉口、21は置換室18と成形室16とを連絡する開
閉口、22は置換室18と大気とを連絡する開閉口であ
る。
Reference numeral 19 is an opening / closing port that connects the replacement chamber 17 and the atmosphere, 20 is an opening / closing port that connects the replacement chamber 17 and the molding chamber 16, and 21 is an opening / closing port that connects the replacement chamber 18 and the molding chamber 16. , 22 are opening / closing ports that connect the replacement chamber 18 and the atmosphere.

【0063】また、41は置換室17内に置かれたガラ
ス塊5を成形室16内に搬送するための吸着搬送装置、
42は成形室16内に搬送されたガラス塊5をプレス成
形可能な温度まで加熱する工程中に置くための加熱台、
43は成形室16内に搬送されたガラス塊5をプレス成
形可能な温度まで加熱するための加熱装置である。
Further, 41 is an adsorption and conveyance device for conveying the glass gob 5 placed in the substitution chamber 17 into the molding chamber 16,
42 is a heating table for placing the glass gob 5 conveyed into the molding chamber 16 in a step of heating the glass gob 5 to a temperature at which press molding can be performed,
43 is a heating device for heating the glass gob 5 conveyed into the molding chamber 16 to a temperature at which press molding can be performed.

【0064】図7には、本実施例における吸着搬送装置
14の吸着圧力を変化するための、配管回路が示されて
おり、ここで、30は吸着搬送装置14の吸着部、31
は吸着用の負圧を発生するためのロータリー式の真空ポ
ンプ、32は真空ポンプ31で発生した負圧を吸着搬送
装置14の吸着部30に供給するための開閉弁、37は
吸着部30の内部を排気するための排気ポンプであり、
この排気ポンプ37の排気量は真空ポンプ31の排気量
に比べて小さい。
FIG. 7 shows a piping circuit for changing the adsorption pressure of the adsorption / conveyance device 14 in the present embodiment, where 30 is the adsorption part of the adsorption / conveyance device 14 and 31 is a suction circuit.
Is a rotary vacuum pump for generating a negative pressure for adsorption, 32 is an opening / closing valve for supplying the negative pressure generated by the vacuum pump 31 to the adsorption unit 30 of the adsorption conveyance device 14, and 37 is an adsorption unit 30. It is an exhaust pump for exhausting the inside,
The exhaust amount of the exhaust pump 37 is smaller than the exhaust amount of the vacuum pump 31.

【0065】また、38は排気ポンプ37と吸着部30
を連絡するための開閉弁、33は吸着部内の圧力を増加
させるための窒素ガスの供給部、34は供給部33から
供給された窒素ガスを吸着部30に供給するための開閉
弁、35は吸着部30の吸着圧力を読むための圧力計で
ある。
Further, 38 is the exhaust pump 37 and the adsorption section 30.
An on-off valve for connecting the adsorbing section 33, a nitrogen gas supply section 33 for increasing the pressure in the adsorption section, 34 an on-off valve for supplying the nitrogen gas supplied from the supply section 33 to the adsorption section 30, and 35 It is a pressure gauge for reading the adsorption pressure of the adsorption unit 30.

【0066】上記構成の光学素子成形装置を用いて実施
した本発明の光学素子の成形方法を以下に説明する。ま
ず、ガラス塊5を用意する。ガラス塊5としては、溶融
ガラス流をシャーマークを発生することなく切断して得
た、外観上の欠陥の無いガラスゴブを採用することが、
コストの点から最も望ましいが、生産する光学素子の数
量が少ない場合には、予備成形されたガラス塊を研削研
磨して得たものでも良い。この常温のガラス塊5を、置
換室17の開閉口19に隣接する位置に置く。
A method for molding an optical element of the present invention, which is carried out by using the optical element molding apparatus having the above-mentioned structure, will be described below. First, the glass gob 5 is prepared. As the glass gob 5, it is possible to employ a glass gob obtained by cutting a molten glass flow without generating a shear mark, and having no appearance defect.
Although most desirable in terms of cost, if the number of optical elements to be produced is small, it may be obtained by grinding and polishing a preformed glass gob. The glass gob 5 at room temperature is placed at a position adjacent to the opening / closing port 19 of the substitution chamber 17.

【0067】そして、置換室17の開閉口19を開け、
置換室17の内部を大気雰囲気にする。吸着搬送装置
(図示せず)を用いて、常温のガラス塊5を置換室17
内に搬送し、置換室17内の所要箇所に載置する。次
に、上記吸着搬送装置は、置換室17の外へ退出し、開
閉口19が閉じられ、置換室17は気密に保たれる。
Then, the opening / closing port 19 of the substitution chamber 17 is opened,
The inside of the substitution chamber 17 is set to the atmosphere. Using a suction conveyance device (not shown), the glass gob 5 at room temperature is replaced in the replacement chamber 17
It is transported inside and placed at a required location in the replacement chamber 17. Next, the adsorption / conveyance device is moved out of the replacement chamber 17, the opening / closing port 19 is closed, and the replacement chamber 17 is kept airtight.

【0068】置換室17内の雰囲気を非酸化性ガス雰囲
気へ置換した後、開閉口20を開ける。そして、大気雰
囲気から非酸化性ガス雰囲気へと置換された置換室での
常温のガラス塊5は、成形室16内に設置された吸着搬
送装置41により、その吸着部に吸着された状態で、置
換室17内から、成形室16内の加熱台42へ搬送され
る。
After replacing the atmosphere in the substitution chamber 17 with a non-oxidizing gas atmosphere, the opening / closing port 20 is opened. Then, the glass lump 5 at room temperature in the replacement chamber, which has been replaced from the air atmosphere to the non-oxidizing gas atmosphere, is adsorbed to the adsorption section by the adsorption conveyance device 41 installed in the molding chamber 16, It is conveyed from the substitution chamber 17 to the heating table 42 in the molding chamber 16.

【0069】加熱台42の上に置かれた常温のガラス塊
5は、加熱台42の上方に設置された加熱装置43によ
って、プレス成形可能な温度まで加熱される。加熱台4
2の上で加熱された軟化状態のガラス塊5は、成形室1
6内に設置された吸着搬送装置14の吸着部に吸着され
た状態で、成形室16内の加熱台42の上から下型9の
上に搬送される。
The glass gob 5 at room temperature placed on the heating table 42 is heated to a temperature at which press molding can be performed by the heating device 43 installed above the heating table 42. Heating table 4
The glass gob 5 in the softened state heated above
In a state of being adsorbed by the adsorbing part of the adsorbing and conveying device 14 installed in the inside 6, the sheet is conveyed from above the heating table 42 in the molding chamber 16 to above the lower mold 9.

【0070】ここでは、加熱台42の上に載せられた高
温軟化状態のガラス塊5に、吸着搬送装置14の吸着部
を上方から接近させ、ガラス塊5に近接した状態にし
て、その状態で、吸着部の圧力を低下させることによ
り、高温軟化状態のガラス塊5を吸着搬送装置14の吸
着部に吸着する。そして、高温軟化状態のガラス塊5を
吸着部に吸着した後、吸着圧力を弱くする。弱い吸着圧
力でガラス塊5を吸着した状態で、上下一対の型部材か
らなる成形型の、その下型部材9の上方に吸着搬送装置
14の吸着部を移動させる。その位置で、吸着部の圧力
を正圧になるまで加圧し、吸着部に吸着していた高温軟
化状態のガラス塊5を下型部材9の上に落下させる。
Here, the adsorbing portion of the adsorbing and conveying device 14 is brought close to the glass gob 5 placed on the heating table 42 in a high temperature softened state from above, and the glass gob 5 is brought into a state of being in that state. By lowering the pressure of the adsorption unit, the glass lump 5 in the high temperature softened state is adsorbed to the adsorption unit of the adsorption conveyance device 14. Then, after the glass lump 5 in the high temperature softened state is adsorbed to the adsorption portion, the adsorption pressure is weakened. In a state where the glass gob 5 is sucked with a weak suction pressure, the suction section of the suction conveyance device 14 is moved above the lower mold member 9 of the molding die including a pair of upper and lower mold members. At that position, the pressure of the suction portion is increased to a positive pressure, and the glass lump 5 in the high temperature softened state that has been suctioned on the suction portion is dropped onto the lower mold member 9.

【0071】その後、下型部材9の上に載置された軟化
状態のガラス塊5を、直ちに、上型部材8でプレス成形
することにより、所要形状に成形された光学素子13を
得る。そして、光学素子13は、搬送装置15により、
下型部材9の上から搬出される。この時、置換室18の
内部は、真空置換法により、予め、非酸化性雰囲気に置
換されており、開閉口21は開けられている。下型部材
9の上から搬出された光学素子13は、開閉口21を通
って置換室18へと搬送され、置換室18の中に載置さ
れる。その後、置換室18の開閉口21は閉じられ、続
いて、開閉口22が開けられ、置換室18内は大気雰囲
気になる。そして、搬送装置(図示せず)を用いて、置
換室18内に載置された成形光学素子13を、開閉口2
2を通して、大気中へと搬出する。
Then, the softened glass gob 5 placed on the lower mold member 9 is immediately press-molded by the upper mold member 8 to obtain the optical element 13 molded into a desired shape. Then, the optical element 13 is moved by the carrier device 15.
It is carried out from above the lower mold member 9. At this time, the inside of the replacement chamber 18 is previously replaced with a non-oxidizing atmosphere by the vacuum replacement method, and the opening / closing port 21 is opened. The optical element 13 carried out from the lower mold member 9 is conveyed to the replacement chamber 18 through the opening / closing port 21, and is placed in the replacement chamber 18. After that, the opening / closing port 21 of the replacement chamber 18 is closed, the opening / closing port 22 is subsequently opened, and the inside of the replacement chamber 18 becomes an atmosphere. Then, the molding optical element 13 placed in the substitution chamber 18 is moved to the opening / closing port 2 by using a transfer device (not shown).
It is carried out through 2 into the atmosphere.

【0072】なお、成形された光学素子13を大気へと
搬出した後は、直ちに、開閉口22を閉じ、排気口(図
示せず)から置換室18の内部の大気を排気し、真空状
態にまで減圧した後、排気を終了し、非酸化性ガス供給
口(図示せず)から非酸化性ガスを成形室18の中に供
給し、成形室18を非酸化性雰囲気へ置換する。なお、
ここで説明した光学素子の成形は、実際には連続的に行
われる。
Immediately after the molded optical element 13 is carried out to the atmosphere, the opening / closing port 22 is immediately closed, and the atmosphere inside the substitution chamber 18 is evacuated from the exhaust port (not shown) to be in a vacuum state. After the pressure is reduced to, the exhaust is terminated, and a non-oxidizing gas is supplied into the molding chamber 18 through a non-oxidizing gas supply port (not shown) to replace the molding chamber 18 with the non-oxidizing atmosphere. In addition,
The molding of the optical element described here is actually performed continuously.

【0073】続いて、本実施例における光学素子の成形
方法を、以下に、より具体的に説明する。なお、本実施
例で用いた光学ガラスの種類およびレンズの形状は、第
1の実施例と同じである。また、ガラス塊5には、レン
ズ形状に近似した形状に研削研磨して得られたものを用
いた。
Next, the method for molding the optical element in this example will be described more specifically below. The type of optical glass and the shape of the lens used in this example are the same as in the first example. Further, as the glass gob 5, one obtained by grinding and polishing into a shape similar to a lens shape was used.

【0074】常温のガラス塊5は、大気中から置換室1
7へと搬送され、置換室17で大気雰囲気から非酸化性
雰囲気へと置換される。本実施例では、非酸化性雰囲気
として窒素雰囲気が使われた。置換工程終了後、開閉口
20が開き、置換室17内に置かれていたガラス塊5
は、吸着搬送装置41に吸着された状態で、加熱台42
へと搬送される。この工程までのガラス塊5の温度は常
温であるから、これらの吸着方法は、通常の吸着方法で
採用される、真空状態まで減圧して吸着する方法を用い
た。
The glass gob 5 at room temperature is removed from the atmosphere by the substitution chamber 1
7 and the atmosphere is replaced with a non-oxidizing atmosphere in the replacement chamber 17. In this example, a nitrogen atmosphere was used as the non-oxidizing atmosphere. After the replacement step is completed, the opening / closing port 20 opens and the glass block 5 placed in the replacement chamber 17
Is in a state of being adsorbed by the adsorbing and conveying device 41,
Transported to Since the temperature of the glass gob 5 up to this step is room temperature, these adsorption methods used are methods that are adopted in a normal adsorption method and are depressurized to a vacuum state to adsorb.

【0075】加熱台42の上に置かれたガラス塊5は、
加熱台42の上方に設置された加熱装置43によって、
プレス成形可能な温度まで加熱される。本実施例では、
加熱台42は、カーボン系の材料により作られており、
内蔵するヒータにより、常時550℃に加熱保持されて
いる。加熱装置43は、ハロゲンランプの周囲に回転楕
円体形状の反射鏡を有する構造をしており、ハロゲンラ
ンプから発光された赤外光をガラス塊5に集光すること
ができる。本実施例では、ハロゲンランプの出力は50
0Wであり、550℃に保持されている加熱台42の上
に載せられた常温のガラス塊5は、加熱装置43のハロ
ゲンランプにより加熱され、加熱開始から40秒後に6
20℃に達した。
The glass gob 5 placed on the heating table 42 is
By the heating device 43 installed above the heating table 42,
It is heated to a temperature at which press molding is possible. In this embodiment,
The heating table 42 is made of a carbon-based material,
The built-in heater constantly heats and holds at 550 ° C. The heating device 43 has a structure having a spheroidal reflecting mirror around the halogen lamp, and can focus infrared light emitted from the halogen lamp on the glass gob 5. In this embodiment, the output of the halogen lamp is 50.
The glass lump 5 at room temperature, which is 0 W and placed on the heating table 42 which is maintained at 550 ° C., is heated by the halogen lamp of the heating device 43, and 6 seconds after starting heating, 6
Reached 20 ° C.

【0076】ガラス塊5の温度が620℃に達した時点
で、加熱装置43による加熱を終了した。続いて、この
加熱台42の上で加熱軟化されたガラス塊5は、吸着圧
力を数段階に連続的・段階的に変化できる吸着搬送装置
14の吸着部30に吸着して、下型部材9の上に搬送さ
れる。
When the temperature of the glass gob 5 reached 620 ° C., the heating by the heating device 43 was completed. Subsequently, the glass gob 5 that has been softened by heating on the heating table 42 is adsorbed to the adsorbing section 30 of the adsorbing and conveying device 14 that can change the adsorbing pressure continuously and stepwise in several steps, and the lower mold member 9 Be transported on.

【0077】そして、吸着部30は、加熱台42の上
の、高温軟化状態のガラス塊5の上方0.3mmの位置
に停止した。この吸着直前の状態において、ガラス塊5
の温度は615℃であり、この状態のガラスの粘度は1
7.9 dPa・sであった。一方、この時、吸着部30
は、その内部に設置されたヒータ(図示せず)により、
550℃に加熱されている。この状態で、負圧供給用の
開閉弁32を開け、吸着部30の内部を減圧状態にし、
ガラス塊5を吸着部30に吸着させた。なお、本実施例
では、ガラス塊5を吸着部30に吸着した状態におい
て、ガラス塊5の粘度がやや高く、ガラス塊5と吸着部
30の間に微小な隙間が発生するので、吸着部30の内
部、および、図7で説明した配管系の内部は、気密状態
にならない。
Then, the adsorption section 30 was stopped on the heating table 42 at a position 0.3 mm above the glass lump 5 in the high temperature softened state. In the state immediately before this adsorption, the glass gob 5
Temperature is 615 ℃, the viscosity of the glass in this state is 1
It was 0 7.9 dPa · s. On the other hand, at this time, the suction unit 30
Is a heater (not shown) installed inside the
It is heated to 550 ° C. In this state, the opening / closing valve 32 for negative pressure supply is opened to reduce the pressure inside the adsorption unit 30,
The glass gob 5 was adsorbed to the adsorption unit 30. In the present embodiment, the viscosity of the glass gob 5 is slightly high in the state where the glass gob 5 is adsorbed to the adsorbing section 30, and a minute gap is generated between the glass gob 5 and the adsorbing section 30. And the inside of the piping system described in FIG. 7 are not airtight.

【0078】そして、ガラス塊5を吸着部30に吸着し
た状態を4秒間続けた。この間に、吸着部30の内部の
吸着圧力は絶対圧力で30000Paに達した。その
後、開閉弁38を開け、排気ポンプ37による吸着部3
0の排気を開始すると同時に、開閉弁32を閉じ、真空
ポンプ31による吸着部30の内部の減圧を終了した。
吸着部30の内部は気密状態に保たれておらず、かつ、
排気ポンプ37の排気に変わり、吸着部30の内部の排
気能力が落ちたため、吸着部30の内部の吸着圧力が徐
々に上り、排気ポンプ37による排気を開始してから4
秒後には、吸着部30の内部の吸着圧力が絶対圧力で8
0000Paまで上昇した。
Then, the state in which the glass gob 5 was adsorbed to the adsorption part 30 was continued for 4 seconds. During this time, the adsorption pressure inside the adsorption unit 30 reached 30000 Pa in absolute pressure. After that, the opening / closing valve 38 is opened, and the adsorption unit 3 by the exhaust pump 37 is opened.
At the same time when the exhaust of 0 was started, the on-off valve 32 was closed, and the pressure reduction inside the adsorption unit 30 by the vacuum pump 31 was completed.
The inside of the adsorption unit 30 is not kept airtight, and
In place of the exhaust of the exhaust pump 37, the exhaust capacity inside the adsorbing section 30 deteriorated, so the adsorbing pressure inside the adsorbing section 30 gradually rises, and 4
After a second, the suction pressure inside the suction unit 30 becomes 8 in absolute pressure.
It rose to 0000Pa.

【0079】一方、吸着搬送装置14は、ガラス塊5を
吸着して1秒経過した時点から、ガラス塊5を吸着部3
0に吸着した状態で、加熱台42の上から、光学素子成
形用の下型部材9の上へと移動を開始し、移動開始後か
ら6秒後に下型部材9の上方1mmの位置に、ガラス塊
5を吸着した吸着部30が到着した。
On the other hand, the adsorbing and conveying device 14 adsorbs the glass gob 5 to the adsorbing portion 3 of the glass gob 5 from the time 1 second has elapsed.
In a state where it is adsorbed on 0, it starts moving from above the heating table 42 to above the lower die member 9 for optical element molding, and 6 seconds after the start of movement, at a position 1 mm above the lower die member 9, The adsorption unit 30 that has adsorbed the glass gob 5 has arrived.

【0080】下型部材9の上方に吸着部30が到着し、
1秒が経過した後、窒素ガス供給開閉弁34を開け、吸
着部30の内部の圧力を上昇した。吸着部30の内部の
圧力が120000Paに達した時、吸着部30に吸着
していた高温軟化状態のガラス塊5は、吸着部30から
落下し、下型部材9の上に載せられた。この時のガラス
塊5の温度は608℃であり、この状態のガラスの粘度
は108.1 dPa・sであった。
The suction part 30 arrives above the lower mold member 9,
After 1 second had elapsed, the nitrogen gas supply opening / closing valve 34 was opened, and the pressure inside the adsorption unit 30 was increased. When the pressure inside the adsorption unit 30 reached 120,000 Pa, the glass lump 5 in the high temperature softened state adsorbed to the adsorption unit 30 dropped from the adsorption unit 30 and was placed on the lower mold member 9. At this time, the temperature of the glass gob 5 was 608 ° C., and the viscosity of the glass in this state was 10 8.1 dPa · s.

【0081】本実施例における高温軟化状態のガラス塊
5を吸着した状態における、吸着部30の内部の吸着圧
力の変化および負圧供給用の開閉弁32および開閉弁3
8の開閉タイミングおよび窒素ガス供給用の開閉弁34
の開閉タイミングは、図8に示されている。なお、成形
室16の内部の圧力は、絶対圧力で110000Paに
保たれている。
In the present embodiment, the open / close valve 32 and the open / close valve 3 for changing the adsorption pressure inside the adsorption portion 30 and for supplying the negative pressure in the state where the glass lump 5 in the high temperature softened state is adsorbed.
8 opening / closing timing and opening / closing valve 34 for supplying nitrogen gas
The open / close timing of is shown in FIG. The pressure inside the molding chamber 16 is maintained at 110000 Pa in absolute pressure.

【0082】このようにして、高温軟化状態のガラス塊
5は、上下一対の型部材からなる成形型の、その下型部
材9の上に置かれた。上型部材8および下型部材9の材
質は超硬合金であり、光学面成形面は凹形状に、上型部
材8は半径:10mm、下型部材9は半径:13mmに
研磨されており、その表面にはダイヤモンド状カーボン
膜がコーティングされている。
In this way, the glass lump 5 in the high temperature softened state was placed on the lower mold member 9 of the molding die composed of the pair of upper and lower mold members. The material of the upper mold member 8 and the lower mold member 9 is cemented carbide, the optical surface molding surface has a concave shape, the upper mold member 8 has a radius of 10 mm, and the lower mold member 9 has a radius of 13 mm. The surface is coated with a diamond-like carbon film.

【0083】これら上型部材8および下型部材9は、5
70℃に加熱保持されている。下型部材9の上に載せら
れたガラス塊5の、プレス成形直前の温度は600℃で
あった。そして、5000Nの力でガラス塊5をプレス
成形し、光学素子13を得た。その後、成形された光学
素子13を上型部材8と下型部材9に密着させた状態で
保持し、冷却した。上型部材8および下型部材9の温度
が520℃になった後、上型部材8を上昇し、型開きし
た。次いで、得られた光学素子13を置換室18へ搬送
し、開閉口22から大気中へ搬出した。
The upper mold member 8 and the lower mold member 9 are 5
It is heated and maintained at 70 ° C. The temperature of the glass gob 5 placed on the lower mold member 9 immediately before press molding was 600 ° C. Then, the glass gob 5 was press-molded with a force of 5000 N to obtain an optical element 13. Then, the molded optical element 13 was held in a state of being in close contact with the upper mold member 8 and the lower mold member 9 and cooled. After the temperature of the upper mold member 8 and the lower mold member 9 reached 520 ° C., the upper mold member 8 was raised and the mold was opened. Then, the obtained optical element 13 was conveyed to the substitution chamber 18, and was carried out to the atmosphere from the opening / closing port 22.

【0084】本実施例により得られた光学素子は、外観
上の欠陥も無く、光学面の面精度も優れたものであっ
た。なお、本実施例の特有の効果としては、短い時間で
プレスできる高温のガラス塊を成形型に供給することが
できるから成形タクトタイムが短くなり、生産コストを
安くできる点、高温軟化状態のガラス塊を、吸着による
変形が少ない状態で、確実に吸着できる点、成形して得
られた光学素子には外観上の欠陥が無い点、などが挙げ
られる。 (第3の実施例)図9は、本発明の第3の実施例を説明
するための、装置の概略断面図である。同図において、
1は白金溶融るつぼ、2は白金溶融るつぼ1の内部で溶
融されている溶融ガラス、3は白金溶融るつぼ1の周囲
に設置されたるつぼ加熱用ヒータ、4は白金溶融るつぼ
1内で溶融された溶融ガラス2を流出するための流出ノ
ズル、5は流出ノズル4から流出した溶融ガラス2から
得られた高温軟化状態のガラス塊、6は高温軟化状態の
ガラス塊5を受けるための受け型、7は受け型を昇降す
るための昇降棒である。8は光学素子成形用の上型部
材、9は光学素子成形用の下型部材、10は上型部材8
および下型部材9を同心上に擦動案内するスリーブ状の
胴型、11はプレス成形用の油圧シリンダ、12は上型
部材8と油圧シリンダ11を連結するプレス軸、13は
ガラス塊5を上型部材8と下型部材9とによりプレス成
形することで得られる成形光学素子、14はガラス塊5
を下型部材9の上に搬入するための、吸着圧力を数段階
に連続的・段階的に変化できる吸着搬送装置、15は上
型部材8と下型部材9によりプレス成形して得られた成
形光学素子13を搬出するための搬送装置である。な
お、本実施例では、一連の装置は大気中に設置されてい
る。
The optical element obtained in this example was free from defects in appearance and had excellent surface accuracy of the optical surface. Incidentally, as a unique effect of this example, since it is possible to supply a high temperature glass gob that can be pressed in a short time to the molding die, the molding tact time is shortened and the production cost can be reduced, and the glass in a high temperature softened state It is possible to surely adsorb a lump with a small amount of deformation due to adsorption, and the optical element obtained by molding has no defect in appearance. (Third Embodiment) FIG. 9 is a schematic sectional view of an apparatus for explaining a third embodiment of the present invention. In the figure,
1 is a platinum melting crucible, 2 is molten glass melted inside the platinum melting crucible 1, 3 is a crucible heating heater installed around the platinum melting crucible 1, 4 is melted in the platinum melting crucible 1. An outflow nozzle for flowing out the molten glass 2, 5 is a glass lump in a high temperature softened state obtained from the molten glass 2 flowing out from the outflow nozzle 4, 6 is a receiving mold for receiving the glass lump 5 in a high temperature softened state, 7 Is an elevating rod for elevating the receiving mold. 8 is an upper mold member for molding an optical element, 9 is a lower mold member for molding an optical element, 10 is an upper mold member 8
And a sleeve-shaped barrel die that guides the lower die member 9 concentrically by rubbing, 11 is a hydraulic cylinder for press forming, 12 is a press shaft that connects the upper die member 8 and the hydraulic cylinder 11, and 13 is the glass gob 5. A molded optical element obtained by press molding with the upper mold member 8 and the lower mold member 9, and 14 is a glass block 5.
Is carried on the lower mold member 9 and the suction pressure can be continuously and stepwise changed in several steps, and 15 is obtained by press molding the upper mold member 8 and the lower mold member 9. It is a carrying device for carrying out the molded optical element 13. In this embodiment, the series of devices are installed in the atmosphere.

【0085】また、本実施例における吸着搬送装置14
の吸着圧力を変化するための配管回路は、第1の実施例
で説明したものと同様であり、吸着部内の圧力を増加さ
せるために、第1の実施例の窒素ガスに代わり、圧縮空
気を用いている。
Further, the suction / conveyance device 14 in the present embodiment.
The piping circuit for changing the adsorption pressure of is similar to that described in the first embodiment, and in order to increase the pressure in the adsorption section, compressed air is used instead of the nitrogen gas of the first embodiment. I am using.

【0086】上記構成の光学素子の成形装置を用いて、
実施した光学素子の成形方法を以下に説明する。第1の
実施例で説明したのと同様の方法により、受け型6の上
にシャーマークの無い、高温軟化状態のガラス塊5を得
て後、、受け型6を下降する。そして、所定位置まで下
降した受け型6の上の高温軟化状態のガラス塊5は、吸
着圧力を数段階に連続的・段階的に変化できる吸着搬送
装置14の吸着部に吸着された状態で、受け型6の上か
ら、下型部材9の上に搬送される。
Using the optical element molding apparatus having the above structure,
The method of molding the optical element performed will be described below. By the same method as described in the first embodiment, after the glass gob 5 having no shear mark on the receiving die 6 in a high temperature softened state is obtained, the receiving die 6 is lowered. Then, the glass gob 5 in a high temperature softened state on the receiving mold 6 that has descended to a predetermined position is adsorbed by the adsorbing portion of the adsorbing and conveying device 14 capable of continuously and stepwise changing the adsorbing pressure in several steps, It is conveyed from above the receiving mold 6 to above the lower mold member 9.

【0087】この吸着中の吸着圧力の変化は、第1の実
施例で説明したのと同様である。そして、下型部材9の
上に置かれた高温軟化状態のガラス塊5を、ただちに、
上型部材8でプレス成形することにより、光学素子13
を得る。その後、成形された光学素子13は、搬送装置
15を用いて下型9の上から搬出される。なお、ここで
説明した光学素子の成形は、実際には連続的に行われ
る。
The change of the adsorption pressure during the adsorption is the same as that described in the first embodiment. Then, the glass lump 5 in the high temperature softened state placed on the lower mold member 9 is immediately
The optical element 13 is formed by press molding with the upper mold member 8.
To get Then, the molded optical element 13 is carried out from above the lower mold 9 by using the carrying device 15. The molding of the optical element described here is actually performed continuously.

【0088】続いて、本実施例における光学素子の成形
方法をより具体的に説明する。なお、本実施例で用いた
光学ガラスの種類およびレンズの形状は第1の実施例と
同じである。また、溶融ガラスを流出する工程は、第1
の実施例の場合と同じである。
Next, the method for molding the optical element in this embodiment will be described more specifically. The type of optical glass and the shape of the lens used in this example are the same as in the first example. In addition, the step of flowing out the molten glass is the first step.
This is the same as the case of the above embodiment.

【0089】受け型6は、カーボン系の材料で作られて
おり、ヒータ(図示せず)により、400℃に加熱され
ている。また、第1の実施例と同様の方法により、受け
型6の上に所定重量の、高温軟化状態のガラス塊5を得
た。この高温軟化状態のガラス塊5を載せた受け型6
は、所定の位置まで下降して停止した。この時のガラス
塊5の温度は700℃であった。
The receiving die 6 is made of a carbon material and is heated to 400 ° C. by a heater (not shown). Further, by the same method as in the first embodiment, a glass lump 5 in a high temperature softened state having a predetermined weight was obtained on the receiving die 6. The receiving mold 6 on which the glass lump 5 in the high temperature softened state is placed
Was lowered to a predetermined position and stopped. At this time, the temperature of the glass gob 5 was 700 ° C.

【0090】続いて、この受け型6の上の高温軟化状態
のガラス塊5を、吸着圧力を数段階に連続的に変化でき
る吸着搬送装置14の吸着部30に吸着して、下型部材
9の上に搬送する。なお、吸着搬送中の吸着圧力の変化
とそのタイミングおよび搬送のタイミクングは、第1の
実施例の場合と同様である。
Subsequently, the glass lump 5 in the high temperature softened state on the receiving die 6 is adsorbed to the adsorbing portion 30 of the adsorbing and conveying device 14 capable of continuously changing the adsorbing pressure in several steps, and the lower die member 9 is formed. To transport on. The change of the adsorption pressure during the adsorption conveyance, its timing, and the timing of the conveyance are the same as in the case of the first embodiment.

【0091】また、本実施例では、吸着搬送装置14の
吸着部30は、その内部に設けられたヒータ(図示せ
ず)により450℃に加熱されている。吸着直前の状態
において、ガラス塊5の温度は680℃であり、この状
態のガラスの粘度は106.1 dPa・sであった。ま
た、吸着搬送を終了して下型部材9の上に載せられたガ
ラス塊5の温度は630℃であり、この状態のガラスの
粘度は107.4 dPa・sであった。
Further, in the present embodiment, the suction section 30 of the suction conveyance device 14 is heated to 450 ° C. by the heater (not shown) provided therein. In the state immediately before adsorption, the temperature of the glass gob 5 was 680 ° C., and the viscosity of the glass in this state was 10 6.1 dPa · s. In addition, the temperature of the glass gob 5 placed on the lower mold member 9 after the suction conveyance was completed was 630 ° C., and the viscosity of the glass in this state was 10 7.4 dPa · s.

【0092】このようにして、高温軟化状態のガラス塊
5は、上下一対の型部材からなる成形型の、その下型部
材9の上に置かれた。なお、上型部材8および下型部材
9の材質は超硬合金であり、光学面成形面は凹形状に、
上型部材8は半径:10mm、下型部材9は半径:13
mmに研磨されており、その表面には白金系の膜がコー
ティングされている。これら上型部材8および下型部材
9は、540℃に加熱保持されている。下型部材9の上
に載せられたガラス塊5のプレス成形直前の温度は62
0℃であった。その後、2000Nの力でガラス塊5を
プレス成形したところ、10秒でプレス成形が終了し、
光学素子13が得られた。その後の20秒間、成形され
た光学素子13は上型部材8と下型部材9とに密着され
た状態で保持される。そして、光学素子13内の温度分
布のバラツキが無くなった後で、上型部材8を上昇し、
型開きした。このようにして、本実施例による光学素子
の成形は、60秒タクトで連続的に行われた。
In this way, the glass gob 5 in the high temperature softened state was placed on the lower die member 9 of the forming die consisting of a pair of upper and lower die members. The material of the upper mold member 8 and the lower mold member 9 is cemented carbide, and the optical surface molding surface has a concave shape.
The upper mold member 8 has a radius of 10 mm, and the lower mold member 9 has a radius of 13
It is ground to mm, and its surface is coated with a platinum-based film. The upper mold member 8 and the lower mold member 9 are heated and held at 540 ° C. The temperature of the glass gob 5 placed on the lower mold member 9 immediately before press molding is 62.
It was 0 ° C. After that, when the glass gob 5 was press-molded with a force of 2000 N, the press-molding was completed in 10 seconds,
The optical element 13 was obtained. During the subsequent 20 seconds, the molded optical element 13 is held in a state of being in close contact with the upper mold member 8 and the lower mold member 9. Then, after the variation in the temperature distribution in the optical element 13 is eliminated, the upper mold member 8 is raised,
I opened the mold. In this way, the molding of the optical element according to the present example was continuously performed with a tact of 60 seconds.

【0093】本実施例により得られた光学素子は、外観
上の欠陥も無く、光学面の面精度も優れたものであっ
た。なお、本実施例に特有の効果としては、溶融光学ガ
ラスから光学素子を得るまでを連続的に行う、一貫生産
であるから、材料コストを安くできる点、大気中で成形
を行うから成形室および置換室が不要で、装置コストが
安くなる点、ガラス塊を加熱するプロセスが無いので、
加熱に要するコストを削減できる点、プレスできる高温
のガラス塊を直接、成形型に供給することができるの
で、成形タクトタイムが短くなり、生産コストを安くで
きる点、高温軟化状態のガラス塊を、吸着による変形が
少ない状態で、確実に吸着できる点、および、成形して
得られた光学素子には外観上の欠陥が無い点、などが挙
げられる。
The optical element obtained in this example was free from defects in appearance and had excellent surface accuracy of the optical surface. Incidentally, as the effect peculiar to this embodiment, the process from obtaining the optical element from the molten optical glass is carried out continuously, since it is an integrated production, the material cost can be reduced, and since the molding is performed in the atmosphere, the molding chamber and Since no replacement chamber is required, the cost of the device is low, and there is no process for heating the glass gob,
Since the cost required for heating can be reduced, the high-temperature glass mass that can be pressed can be directly supplied to the molding die, the molding tact time can be shortened, and the production cost can be reduced. The points that can be surely adsorbed in a state where there is little deformation due to adsorption, and that the optical element obtained by molding has no defect in appearance are mentioned.

【0094】[0094]

【発明の効果】以上説明したように、本発明によれば、
高温軟化状態のガラス塊を吸着搬送装置の吸着部に吸着
し、上下一対の型部材からなる成形型へ搬送し、上下型
部材の間に配置したガラス塊をプレス成形し、光学素子
を得る成形方法において、ただちにプレス成形できる高
温軟化状態のガラス塊を吸着した状態で、成形型内へ搬
送する際に、プレス成形して得た光学素子に欠陥が発生
するような、大きな変形を高温軟化状態のガラス塊に与
えることなく吸着することにより、成形品の良品率を高
め、また、成形後に成形光学素子の外周部の欠陥を研削
除去する後工程を短縮することにより、生産コストを下
げることができる。
As described above, according to the present invention,
Adhesion of the glass lump in the high temperature softened state to the adsorption part of the adsorption conveyance device, conveying it to the molding die consisting of a pair of upper and lower mold members, and press-molding the glass lump placed between the upper and lower mold members to obtain an optical element In the method, when a glass lump in a high-temperature softened state that can be immediately press-molded is adsorbed, a large deformation such as a defect is generated in the optical element obtained by press-molding when the glass mass is conveyed into the molding die. By adsorbing without adhering to the glass lump, the good product rate of the molded product can be increased, and the production cost can be reduced by shortening the post-process of grinding and removing defects on the outer peripheral portion of the molded optical element after molding. it can.

【0095】また、本発明によれば、高温軟化状態のガ
ラス塊を吸着搬送装置の吸着部に吸着し、上下一対の型
部材からなる成形型へ搬送し、上下型部材の間に配置し
たガラス塊をプレス成形し、光学素子を得る成形装置に
おいて、ただちにプレス成形できる高温軟化状態のガラ
ス塊を吸着した状態で成形型内へ搬送する際に、プレス
成形して得た光学素子に欠陥が発生するような、大きな
変形を高温軟化状態のガラス塊に与えることなく吸着す
ることができるような制御手段を備えることで、上述の
成形方法を実現できる。
Further, according to the present invention, the glass lump in the high temperature softened state is adsorbed by the adsorbing portion of the adsorbing and conveying device and conveyed to the forming die composed of a pair of upper and lower die members, and the glass placed between the upper and lower die members. In a molding machine that press-molds a lump to obtain an optical element, a defect occurs in the optical element obtained by press-molding when the glass lump in a high-temperature softened state that can be immediately press-molded is conveyed to the mold with the glass lump absorbed. The above-described molding method can be realized by providing a control means capable of adsorbing such a large deformation without giving a large deformation to the glass lump in the high temperature softened state.

【0096】なお、本発明の実施の態様で明らかにした
ように、更に、材料コストを低減し、生産コストを下
げ、あるいは、成形時間を短くすることにより、さらに
生産コストを下げ、または、より確実にガラス塊を吸着
することにより、装置の稼働率を高め、また、吸着によ
るガラス塊の変形を、より少なくすることにより、更に
良品率を高めるなどの優れた効果が得られる。
As has been clarified in the embodiments of the present invention, the material cost is further reduced, the production cost is reduced, or the molding time is shortened to further reduce the production cost, or By reliably adsorbing the glass gobs, the operation rate of the apparatus is enhanced, and by further reducing the deformation of the glass gobs due to the adsorption, the excellent product rate is further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る光学素子成形方法
において用いる成形装置の構成を説明するための装置の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of an apparatus for explaining the configuration of a molding apparatus used in an optical element molding method according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る光学素子成形方法
において用いる吸着装置の配管を示す図である。
FIG. 2 is a diagram showing piping of an adsorption device used in the optical element molding method according to the first embodiment of the present invention.

【図3】本発明の第1の実施例に係る光学素子成形方法
における高温軟化状態のガラス塊を吸着している状態を
示す図である。
FIG. 3 is a diagram showing a state in which a glass gob in a high temperature softened state is adsorbed in the optical element molding method according to the first example of the present invention.

【図4】本発明の第1の実施例に係る光学素子成形方法
における吸着圧力の変化を説明する図である。
FIG. 4 is a diagram illustrating a change in adsorption pressure in the optical element molding method according to the first embodiment of the present invention.

【図5】本発明の第1の実施例に係る光学素子成形方法
において吸着搬送された高温軟化状態のガラス塊の断面
形状を示す図である。
FIG. 5 is a diagram showing a cross-sectional shape of a glass gob in a high temperature softened state that is sucked and conveyed in the optical element molding method according to the first example of the present invention.

【図6】本発明の第2の実施例に係る光学素子成形方法
において用いる成形装置の構成を説明するための装置の
概略断面図である。
FIG. 6 is a schematic cross-sectional view of an apparatus for explaining the configuration of a molding apparatus used in the optical element molding method according to the second embodiment of the present invention.

【図7】本発明の第2の実施例に係る光学素子成形方法
において用いる吸着装置の配管を示す図である。
FIG. 7 is a diagram showing piping of an adsorption device used in the optical element molding method according to the second embodiment of the present invention.

【図8】本発明の第2の実施例に係る光学素子成形方法
における吸着圧力の変化を示す図である。
FIG. 8 is a diagram showing changes in adsorption pressure in the optical element molding method according to the second embodiment of the present invention.

【図9】本発明の第3の実施例に係る光学素子成形方法
において用いる成形装置の構成を説明するための装置の
概略断面図である。
FIG. 9 is a schematic cross-sectional view of an apparatus for explaining the configuration of a molding apparatus used in the optical element molding method according to the third embodiment of the present invention.

【図10】従来例における高温軟化状態のガラス塊を吸
着している状態を示す図である。
FIG. 10 is a diagram showing a state where a glass lump in a high temperature softened state is adsorbed in a conventional example.

【図11】従来例における吸着された高温軟化状態のガ
ラス塊の断面形状を示す図である。
FIG. 11 is a view showing a cross-sectional shape of an adsorbed glass gob in a high temperature softened state in a conventional example.

【符号の説明】[Explanation of symbols]

1 白金溶融るつぼ 2 溶融ガラス 3 加熱用ヒータ 4 流出ノズル 5 ガラス塊 6 受け型 7 昇降棒 8 上型部材 9 下型部材 10 プレス軸 11 油圧シリンダ 12 プレス軸 13 光学素子 14 吸着搬送装置 15 搬送装置 16 成形室 17、18 置換室 19〜22 開閉口 30 吸着部 31 真空ポンプ 32 開閉弁 33 供給部 34 開閉弁 35 圧力計 37 排気ポンプ 38 開閉弁 41 吸着搬送装置 42 加熱台 43 加熱装置 DESCRIPTION OF SYMBOLS 1 Platinum melting crucible 2 Molten glass 3 Heating heater 4 Outflow nozzle 5 Glass lump 6 Receiving type 7 Elevating rod 8 Upper mold member 9 Lower mold member 10 Press shaft 11 Hydraulic cylinder 12 Press shaft 13 Optical element 14 Adsorption transfer device 15 Transfer device 16 Molding chamber 17, 18 Displacement chamber 19-22 Opening / closing port 30 Adsorption part 31 Vacuum pump 32 Opening / closing valve 33 Supply part 34 Opening / closing valve 35 Pressure gauge 37 Exhaust pump 38 Opening / closing valve 41 Adsorption transfer device 42 Heating table 43 Heating device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 余語 瑞和 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mizukazu 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高温軟化状態のガラス塊を吸着搬送装置
の吸着部に吸着し、上下一対の型部材からなる成形型へ
搬送し、上下型部材の間に配置した上記ガラス塊をプレ
ス成形し、光学素子を得る成形方法において、 吸着部の圧力を低下させることで吸着部の先端に軟化状
態のガラス塊を吸着させる吸着搬送装置が、ガラス塊を
吸着した状態で、吸着圧力を数段階に連続的・段階的に
変化するように、吸着初期の吸着圧力を強く、それ以降
の吸着圧力を弱くする吸着方法で制御され、軟化ガラス
塊を吸着し、成形型へ搬送することを特徴とする光学素
子の成形方法。
1. A glass gob in a high temperature softened state is adsorbed to an adsorbing portion of an adsorbing and conveying device and conveyed to a forming die composed of a pair of upper and lower die members, and the glass gob disposed between the upper and lower die members is press-formed. In a molding method for obtaining an optical element, an adsorption / conveyance device for adsorbing a glass block in a softened state to the tip of the adsorption part by lowering the pressure in the adsorption part, and the adsorption pressure in several stages while adsorbing the glass block. It is characterized in that it is controlled by an adsorption method in which the adsorption pressure at the initial stage of adsorption is made strong and the adsorption pressure is made weaker so that it changes continuously and stepwise, and it adsorbs a softened glass block and conveys it to a mold. Optical element molding method.
【請求項2】 高温軟化状態のガラス塊を吸着搬送装置
の吸着部に吸着し、上下一対の型部材からなる成形型へ
搬送し、上下型部材の間に配置した上記ガラス塊をプレ
ス成形し、光学素子を得る成形装置において、 吸着部の圧力を低下させることで吸着部の先端に軟化状
態のガラス塊を吸着させる吸着搬送装置が、ガラス塊を
吸着した状態で、吸着圧力を数段階に連続的・段階的に
変化するように制御する制御手段を具備することを特徴
とする光学素子の成形装置。
2. A glass lump in a high temperature softened state is adsorbed to an adsorption section of an adsorption conveyance device and conveyed to a molding die composed of a pair of upper and lower mold members, and the glass lump disposed between the upper and lower mold members is press-molded. In a molding device for obtaining an optical element, a suction conveyer device for adsorbing a softened glass lump to the tip of the suction part by lowering the pressure of the suction part has a suction pressure of several steps with the glass lump adsorbed. A molding device for an optical element, comprising a control means for controlling so as to change continuously and stepwise.
【請求項3】 上記の高温軟化状態のガラス塊は、溶融
るつぼ内部で溶融した光学ガラスをノズルから流出し、
所定量の溶融ガラスを受け型に受けて得た高温軟化状態
のガラス塊であることを特徴とする請求項1に記載の光
学素子の成形方法。
3. The above-mentioned glass gob in a high temperature softened state, the optical glass melted inside the melting crucible flows out from a nozzle,
The method for molding an optical element according to claim 1, wherein the glass mass is a glass lump in a high temperature softened state obtained by receiving a predetermined amount of molten glass in a receiving mold.
【請求項4】 上記の高温軟化状態のガラス塊は、所定
量の光学ガラス塊を加熱装置を用いて加熱軟化させて得
た高温軟化状態のガラス塊であることを特徴とする請求
項1に記載の光学素子の成形方法。
4. The glass lump in the high temperature softened state is a glass lump in the high temperature softened state obtained by heating and softening a predetermined amount of an optical glass lump with a heating device. A method for molding an optical element as described above.
【請求項5】 上記の高温軟化状態のガラス塊の粘度
は、吸着を開始する時点で、105 dPa・s以上10
9 dPa・s以下の範囲内にあり、搬送に伴う吸着が終
了する時点で、ガラス塊の粘度が106 dPa・s以上
1010dPa・s以下の範囲内にあることを特徴とする
請求項1に記載の光学素子の成形方法。
5. The viscosity of the glass lump in the high temperature softened state is 10 5 dPa · s or more at the time of starting adsorption.
It is in the range of 9 dPa · s or less, and the viscosity of the glass gob is in the range of 10 6 dPa · s or more and 10 10 dPa · s or less at the time when adsorption accompanying transportation is completed. 1. The method for molding an optical element according to 1.
【請求項6】 上記の高温軟化状態のガラス塊を吸着す
る時の初期の吸着力は、絶対圧力で60000Pa以下
であり、初期の吸着圧力で高温軟化状態のガラスを吸着
している時間は、10秒以下であることを特徴とする請
求項1に記載の光学素子の成形方法。
6. The initial adsorption force when adsorbing the glass lump in the high temperature softened state is 60000 Pa or less in absolute pressure, and the time for adsorbing the glass in the high temperature softened state at the initial adsorption pressure is: The method for molding an optical element according to claim 1, wherein the method is 10 seconds or less.
JP20068794A 1994-08-25 1994-08-25 Method for forming optical element and apparatus therefor Pending JPH0859255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20068794A JPH0859255A (en) 1994-08-25 1994-08-25 Method for forming optical element and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20068794A JPH0859255A (en) 1994-08-25 1994-08-25 Method for forming optical element and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0859255A true JPH0859255A (en) 1996-03-05

Family

ID=16428586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20068794A Pending JPH0859255A (en) 1994-08-25 1994-08-25 Method for forming optical element and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0859255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108609838A (en) * 2018-08-09 2018-10-02 湖北扬子江光电仪器有限公司 A kind of optical glass device precise compression molding softening furnace and optical glass device production system
US20220055938A1 (en) * 2018-12-28 2022-02-24 Füller Glastechnologie Vertriebs-Gmbh Device for holding a glass preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108609838A (en) * 2018-08-09 2018-10-02 湖北扬子江光电仪器有限公司 A kind of optical glass device precise compression molding softening furnace and optical glass device production system
CN108609838B (en) * 2018-08-09 2023-11-21 湖北扬子江光电仪器有限公司 Precise profiling softening furnace for optical glass element and optical glass element production system
US20220055938A1 (en) * 2018-12-28 2022-02-24 Füller Glastechnologie Vertriebs-Gmbh Device for holding a glass preform

Similar Documents

Publication Publication Date Title
JP3164404B2 (en) Molding apparatus and molding method for glass optical element
JPH0524857A (en) Press-forming of optical element
JP3974200B2 (en) Glass optical element molding method
JP2669476B2 (en) Optical element manufacturing method
JPH0859255A (en) Method for forming optical element and apparatus therefor
JP2986647B2 (en) Method for manufacturing optical glass element
JP4303404B2 (en) Manufacturing method and apparatus for press-molded body
JP3608768B2 (en) Glass optical element press molding apparatus and glass optical element molding method
JP3234871B2 (en) Method for manufacturing glass optical element
JP3596826B2 (en) Optical element molding method
JP2000001321A (en) Method for forming glass gob as glass optical element or blank for producing the same
JPH06144845A (en) Method for forming glass optical element
JP3216100B2 (en) Manufacturing method of precision glass products
JPH08245223A (en) Method for forming optical element
JP3524567B2 (en) Method and apparatus for molding glass optical element
JP2000233934A (en) Method for press-forming glass product and device therefor
JP2621956B2 (en) Optical element molding method
JPH05286728A (en) Production of glass lens
JP3753415B2 (en) Glass optical element molding method
JP3176222B2 (en) Optical element molding method and glass molding processing apparatus
JPH08169722A (en) Method and device for forming glass optical element
JPH0769653A (en) Method and apparatus for producing optical glass element
JP2636083B2 (en) Optical element molding method
JP3140259B2 (en) Method for producing optical glass lump and method for producing optical glass molded body
JP2579012B2 (en) Optical element manufacturing equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A02