JPH0855712A - Magnetic material and its manufacture - Google Patents

Magnetic material and its manufacture

Info

Publication number
JPH0855712A
JPH0855712A JP7121723A JP12172395A JPH0855712A JP H0855712 A JPH0855712 A JP H0855712A JP 7121723 A JP7121723 A JP 7121723A JP 12172395 A JP12172395 A JP 12172395A JP H0855712 A JPH0855712 A JP H0855712A
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
coercive force
atomic
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7121723A
Other languages
Japanese (ja)
Other versions
JP3560387B2 (en
Inventor
Nobuyoshi Imaoka
伸嘉 今岡
Sakae Ito
栄 伊東
Atsushi Okamoto
岡本  敦
Yasuhiko Iriyama
恭彦 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12172395A priority Critical patent/JP3560387B2/en
Publication of JPH0855712A publication Critical patent/JPH0855712A/en
Application granted granted Critical
Publication of JP3560387B2 publication Critical patent/JP3560387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PURPOSE:To provide a rare earth-transition metal-nitrogen magnetic material which is made of coarse particles, can exert a large coercive force, and has an excellent oxidation resistance and temperature characteristic. CONSTITUTION:A magnetic material is expressed by a general expression, RalphaFe(100-alpha-beta-gamma)MnbetaNgamma(where, R is at least one kind of rare-earth element and alpha, beta, and gamma represent atomic % and satisfy relations, 3<=alpha<=20, 0.5<=beta<=25, and 17<=gamma<=25) and the material has a rhombohedral or hexagonal crystal structure with a main phase composed at least of R, Fe, Mn, and N and an average particle diameter of>=10mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に小型モーター、ア
クチュエーターなどの用途に最適な、磁気特性、中でも
保磁力に優れた磁性材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material which is most suitable for applications such as small motors and actuators and which has excellent magnetic properties, and particularly excellent coercive force.

【0002】[0002]

【従来の技術】磁性材料は家庭電化製品、音響製品、自
動車部品やコンピューターの周辺端末機まで、幅広い分
野で使用されており、エレクトロニクス材料としての重
要性は年々増大しつつある。特に最近、各種電気・電子
機器の小型化、高効率化が要求されてきたため、より高
性能の磁性材料が求められている。このような要請に応
え、Sm−Co系(SmCo5系及びSm2Co17系)、
Nd−Fe−B系などの希土類磁性材料の需要が急激に
増大しているが、Sm−Co系は原料供給が不安定で原
料コストが高く、Nd−Fe−B系は耐熱性、耐食性等
に劣る問題点がある。
2. Description of the Related Art Magnetic materials are used in a wide range of fields such as home electric appliances, audio products, automobile parts and peripheral terminals of computers, and their importance as electronic materials is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, so that a magnetic material with higher performance is required. In response to such a demand, Sm-Co type (SmCo 5 type and Sm 2 Co 17 type),
Demand for rare earth magnetic materials such as Nd-Fe-B system is rapidly increasing, but Sm-Co system has unstable raw material supply and high raw material cost, and Nd-Fe-B system has heat resistance and corrosion resistance. There is a problem that is inferior to.

【0003】一方、新しい希土類系磁性材料として、希
土類−鉄−窒素系磁性材料が提案されている(例えば特
開平2−57663号公報)。この材料は、磁化、異方
性磁界、キュリー点が高く、Sm−Co系、Nd−Fe
−B系の欠点を補う磁性材料として期待されている。し
かしながら、前述の公報に開示された希土類−鉄−窒素
系材料は10μm以下に細かく粉砕して使用しなけれ
ば、高い保磁力が達成されないが、10μm以下に粉砕
すると表面が酸化されて保磁力が低下するという問題点
があった。さらに、これらの材料の保磁力の温度変化率
βも−0.45と実用物性を充分満足するものではなか
った。
On the other hand, as a new rare earth magnetic material, a rare earth-iron-nitrogen magnetic material has been proposed (for example, Japanese Patent Laid-Open No. 2-57663). This material has high magnetization, anisotropic magnetic field, and high Curie point, and is Sm-Co based, Nd-Fe
It is expected as a magnetic material that supplements the drawbacks of the -B type. However, the rare earth-iron-nitrogen-based material disclosed in the above-mentioned publication cannot achieve a high coercive force unless it is finely pulverized to 10 μm or less and used, but if pulverized to 10 μm or less, the surface is oxidized and the coercive force is reduced. There was a problem that it decreased. Further, the temperature change rate β of the coercive force of these materials was −0.45, which was not sufficient for practical physical properties.

【0004】この対策として、菱面体晶の結晶構造を有
した希土類−鉄−窒素系材料にM成分を含ませることに
より保磁力及び保磁力の安定性を向上させることが考え
られ、そのような材料は特開平3−16102号公報、
特開平6−96918号公報に開示されているが、保磁
力の安定性の抜本的な改善に至らず、特に保磁力の温度
変化率βはほとんど改善されていない。
As a countermeasure against this, it is considered that the coercive force and the stability of the coercive force are improved by including an M component in a rare earth-iron-nitrogen-based material having a rhombohedral crystal structure. The material is JP-A-3-16102,
Although it is disclosed in JP-A-6-96918, the stability of the coercive force has not been drastically improved, and the temperature change rate β of the coercive force is hardly improved.

【0005】なおここで保磁力の安定性とは、表面が酸
化されても保磁力が低下しない特性(保磁力の耐酸化性
能という)と温度変化率βの2つの特性を総称してい
う。以上の材料が、110℃を越える高温用途や偏平材
料用途など、より広い実用範囲で好ましく用いられるた
めには、保磁力の安定性がさらに改善された希土類−鉄
−窒素系材料とすることが望まれている。
Here, the stability of coercive force is a general term for two characteristics: coercive force does not decrease even if the surface is oxidized (coercive force oxidation resistance) and temperature change rate β. In order to preferably use the above materials in a wider practical range such as high temperature applications exceeding 110 ° C. and flat material applications, it is preferable to use a rare earth-iron-nitrogen-based material with further improved coercive force stability. Is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、菱面体晶又
は六方晶の結晶構造を有した希土類−鉄−窒素系材料に
金属元素Mnを共存させ、かつ、窒素量を高窒化領域に
限定することにより、10μm以上の大粒径においても
高い保磁力を有し、前述の保磁力の安定性などの問題点
を解決した希土類−鉄−Mn−窒素組成の磁性材料を提
供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, the metal element Mn is allowed to coexist in a rare earth-iron-nitrogen-based material having a rhombohedral or hexagonal crystal structure, and the amount of nitrogen is limited to a highly nitrided region. By doing so, it is an object of the present invention to provide a magnetic material having a rare earth-iron-Mn-nitrogen composition, which has a high coercive force even with a large particle size of 10 μm or more and solves the above-mentioned problems such as stability of the coercive force. And

【0007】[0007]

【課題を解決するための手段】高い保磁力と保磁力の安
定性を有する10μm以上の希土類−鉄−窒素系磁性材
料を得るために、母合金に種々の元素(M)を添加した
系について鋭意検討した結果、保磁力及び保磁力の安定
性が高くなる結晶構造および組成、さらに微構造を有し
た希土類(R)−鉄(Fe)−Mn−窒素(N)系磁性
材料とその製造法を見いだし、本発明を成すに至った。
[Means for Solving the Problems] In order to obtain a rare earth-iron-nitrogen based magnetic material of 10 μm or more having high coercive force and stability of coercive force, a system in which various elements (M) are added to a master alloy is used. As a result of diligent studies, a rare earth (R) -iron (Fe) -Mn-nitrogen (N) -based magnetic material having a crystal structure and a composition for increasing the coercive force and stability of the coercive force, and a microstructure, and a method for producing the same The present invention has been completed and the present invention has been completed.

【0008】即ち、本発明は(1)一般式RαFe
(100- α- β- γ) MnβNγで表わされる磁性材料で
あり、(但し、Rは希土類元素のうち少なくとも一種、
α、β、γは原子%で、下式を満たす) 3≦α≦20 0.5≦β≦25 17≦γ≦25 その主相が、少なくとも前記R、Fe、Mn及びNを成
分とする菱面体晶又は六方晶の結晶構造を有した相であ
るとともに、平均粒径が10μm以上であることを特徴
とする磁性材料、及び、(2)上記(1)に記載の磁性
材料の窒素濃度分布が微細な濃淡を有することを特徴と
する磁性材料、及び、(3)上記(1)または(2)に
記載の磁性材料の成分であるFeの0.01〜50原子
%をCoで置換した組成を有することを特徴とする磁性
材料、及び、(4)上記(1)〜(3)に記載の磁性材
料の成分であるRの50原子%以上がSmである組成を
有することを特徴とする磁性材料であり、(5)実質的
にR、Fe、Mnからなる合金を、アンモニアガスを含
む雰囲気下で、200〜650℃の範囲で熱処理するこ
とを特徴とする上記(1)〜(4)に記載の磁性材料の
製造法、及び、(6)実質的にR−Fe−Mnからなる
合金を、不活性ガス及び水素ガスのうち少なくとも一種
を含む雰囲気中、または真空中で、600〜1300℃
の範囲で熱処理したのち、上記(5)の方法で窒素を導
入することを特徴とする上記(1)〜(4)に記載の磁
性材料の製造法であって、さらに、(7)一般式RαF
(100- α- β- γ- δ- ε) MnβNγHδOεで表
わされる磁性材料であり、(但し、RはYを含む希土類
元素のうち少なくとも一種、α、β、γ、δ、εは原子
%で、下式を満たす) 3≦100α/(100−δ−ε)≦20 0.5≦100β/(100−δ−ε)≦25 17≦100γ/(100−δ−ε)≦25 0.01≦δ≦10 1≦ε≦10 ぞの主相が、少なくとも前記R、Fe、Mn及びNを成
分とする菱面体晶又は六方晶の結晶構造を有した相であ
るとともに、平均粒径が10μm以上であることを特徴
とする磁性材料、及び、(8)上記(7)に記載の磁性
材料の窒素濃度分布が微細な濃淡を有することを特徴と
する磁性材料、及び、(9)上記(7)または(8)に
記載の磁性材料の成分であるFeの0.01〜50原子
%をCoで置換した組成を有することを特徴とする磁性
材料、及び、(10)上記(7)〜(9)に記載の磁性
材料の成分であるRの50原子%以上がSmである組成
を有することを特徴とする磁性材料、及び、(11)上
記(1)〜(4)に記載の磁性材料を粉砕してなる平均
粒径10μm未満の磁性材料0.1〜50重量%と、上
記(1)〜(4)または(7)〜(10)に記載の磁性
材料50〜99.9重量%とを含有することを特徴とす
る磁性材料である。
That is, the present invention provides (1) the general formula RαFe
(100- α - β - γ ) is a magnetic material represented by MnβNγ (where R is at least one of rare earth elements,
α, β, and γ are atomic% and satisfy the following formulas) 3 ≦ α ≦ 20 0.5 ≦ β ≦ 25 17 ≦ γ ≦ 25 The main phase contains at least R, Fe, Mn, and N as components. A magnetic material which is a phase having a rhombohedral or hexagonal crystal structure and has an average particle size of 10 μm or more, and (2) the nitrogen concentration of the magnetic material according to (1) above. A magnetic material having a fine distribution, and (3) 0.01 to 50 atomic% of Fe, which is a component of the magnetic material described in (1) or (2) above, is replaced with Co. A magnetic material having the composition described above, and (4) having a composition in which 50 atom% or more of R, which is a component of the magnetic material described in (1) to (3) above, is Sm. And (5) an alloy consisting essentially of R, Fe, and Mn. The method for producing a magnetic material according to the above (1) to (4), characterized by performing heat treatment in the range of 200 to 650 ° C. in an atmosphere containing a gas, and (6) substantially R-Fe- 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and a hydrogen gas, or in a vacuum, using an alloy composed of Mn.
The method for producing a magnetic material according to any one of (1) to (4) above, wherein the nitrogen is introduced by the method of (5) after heat treatment in the range of (7). RαF
e (100- α - β - γ - δ - ε ) is a magnetic material represented by MnβNγHδOε (where R is at least one of rare earth elements including Y, α, β, γ, δ and ε are atomic%). Then, the following expression is satisfied) 3 ≦ 100α / (100−δ−ε) ≦ 20 0.5 ≦ 100β / (100−δ−ε) ≦ 25 17 ≦ 100γ / (100−δ−ε) ≦ 250. 01 ≦ δ ≦ 10 1 ≦ ε ≦ 10 The main phase is a phase having a rhombohedral or hexagonal crystal structure containing at least the above-mentioned R, Fe, Mn, and N, and has an average particle size of A magnetic material having a thickness of 10 μm or more; and (8) a magnetic material characterized in that the nitrogen concentration distribution of the magnetic material according to (7) above has a fine gradation, and (9) above. 0.01 to 50 atomic% of Fe, which is a component of the magnetic material described in (7) or (8), is Co. A magnetic material having a changed composition, and (10) a composition in which 50 atomic% or more of R, which is a component of the magnetic material described in (7) to (9) above, is Sm. (11) 0.1 to 50% by weight of a magnetic material having an average particle size of less than 10 μm, which is obtained by pulverizing the magnetic material described in (1) to (4) above, and (11) To (4) or (7) to (10), and a magnetic material of 50 to 99.9% by weight.

【0009】以下本発明について詳細に説明する。希土
類元素(R)としては、Y、La、Ce、Pr、Nd、
Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、YbおよびLuのうち少なくとも一種を含めば良
く、従って、ミッシュメタルやジジム等の二種以上の希
土類元素の混合物を用いても良いが、好ましい希土類と
しては、Y、Ce、Pr、Nd、Sm、Gd、Dy、E
rである。さらに好ましくは、Y、Ce、Pr、Nd、
Smである。特に、SmをR成分全体の50原子%以上
含むと、保磁力が際立って高い材料が得られる。特に、
Smを70原子%以上含むことが好ましい。
The present invention will be described in detail below. As the rare earth element (R), Y, La, Ce, Pr, Nd,
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
It suffices to include at least one of m, Yb and Lu. Therefore, a mixture of two or more kinds of rare earth elements such as misch metal and didymium may be used, but preferable rare earth elements are Y, Ce, Pr, Nd, Sm, Gd, Dy, E
r. More preferably, Y, Ce, Pr, Nd,
It is Sm. In particular, if Sm is contained in an amount of 50 atomic% or more of the entire R component, a material having a significantly high coercive force can be obtained. In particular,
It is preferable to contain Sm in an amount of 70 atomic% or more.

【0010】ここで用いる希土類元素は工業的生産によ
り入手可能な純度でよく、製造上混入が避けられない不
純物、例えばO、H、C、Al、Si、F、Na、M
g、Ca、Liなどが存在しているものであっても差し
支えない。本発明の磁性粉体中において、R成分は3〜
20原子%含有する。R成分が3原子%未満のとき、鉄
成分を多く含む軟磁性相が母合金鋳造・焼鈍後も許容量
を越えて分離し、このような種類の軟磁性相は窒化物の
保磁力に悪影響を及ぼすので実用的な永久磁石材料とし
て好ましくない。またR成分が20原子%を越えると、
残留磁束密度が低下して好ましくない。さらに好ましい
Rの組成範囲は6〜12原子%である。
The rare earth element used here may be of a purity which can be obtained by industrial production, and impurities such as O, H, C, Al, Si, F, Na and M which cannot be avoided in production are inevitable.
It does not matter even if g, Ca, Li, etc. are present. In the magnetic powder of the present invention, the R component is 3 to
Contains 20 atom%. When the R component is less than 3 atomic%, the soft magnetic phase containing a large amount of iron component separates beyond the allowable amount even after casting and annealing of the mother alloy, and such a soft magnetic phase adversely affects the coercive force of the nitride. Is not preferable as a practical permanent magnet material. If the R component exceeds 20 atom%,
The residual magnetic flux density is lowered, which is not preferable. A more preferable composition range of R is 6 to 12 atomic%.

【0011】鉄(Fe)は強磁性を担う本磁性材料の基
本組成であり、30原子%以上含有する。30原子%未
満であると、磁化が小さくなり、好ましくない。鉄成分
の組成範囲が50〜77原子%の領域にあれば、粗粉体
の保磁力と磁化のバランスが取れた材料となり、特に好
ましい。Feのうち0.01〜50原子%を、Coで置
換することができ、Coの導入により、キュリー点と磁
化とが上昇するとともに、耐酸化性も向上できる。以下
においては、”鉄成分”、”Fe成分”と表記した場
合、又は”R−Fe−M−N系”などの式の中でFeと
表記した場合、Feの0.01〜50原子%をCoで置
換したものを含むものとする。CoのFe置換量の好ま
しい範囲は1〜30原子%である。Coが30原子%を
越えると、原料コストが上昇する割りに上記の効果が小
さく磁気特性が不安定となり、逆に1原子%未満である
と、置換効果がほとんど見られない。CoのFe置換量
の、特に好ましい範囲は2〜20原子%である。
Iron (Fe) is a basic composition of the present magnetic material which is responsible for ferromagnetism, and is contained at 30 atomic% or more. If it is less than 30 atomic%, the magnetization tends to be small, which is not preferable. When the composition range of the iron component is in the range of 50 to 77 atomic%, a material in which the coercive force and the magnetization of the coarse powder are well balanced is particularly preferable. 0.01 to 50 atomic% of Fe can be replaced by Co, and the introduction of Co can raise the Curie point and the magnetization and also improve the oxidation resistance. In the following, when expressed as "iron component" or "Fe component" or expressed as Fe in the formula such as "R-Fe-MN system", 0.01 to 50 atomic% of Fe Are replaced by Co. The preferable range of the Fe substitution amount of Co is 1 to 30 atom%. When Co exceeds 30 atomic%, the above effect is small but the magnetic properties become unstable although the raw material cost rises. On the contrary, when Co is less than 1 atomic%, the substitution effect is hardly seen. A particularly preferable range of the Fe substitution amount of Co is 2 to 20 atom%.

【0012】本発明のおいてはさらにMnを含む。R−
Fe−N系磁性材料に対するMnの添加効果は、粗粉体
で大きな保磁力を発現させることである。Mn成分の含
有量は、0.5〜25原子%の範囲である。25原子%
を越えると飽和磁化が低下して好ましくなく、0.5原
子%未満の場合は粉体粒径10μm以上での保磁力が低
く(3.5kOe以下)、さらに保磁力の温度特性が改
善されなくて好ましくない。より好ましい範囲のMn含
有量は、1〜15原子%である。1原子%未満の場合は
粉体粒径10μm以上での保磁力が低くて好ましくな
い。
In the present invention, Mn is further included. R-
The effect of adding Mn to the Fe-N-based magnetic material is to develop a large coercive force in the coarse powder. The content of the Mn component is in the range of 0.5 to 25 atom%. 25 atom%
If it exceeds 0.5, the saturation magnetization is lowered, which is not preferable, and if it is less than 0.5 atom%, the coercive force at powder particle size of 10 μm or more is low (3.5 kOe or less), and the temperature characteristic of coercive force is not improved. Is not preferable. The Mn content in a more preferable range is 1 to 15 atom%. When the content is less than 1 atomic%, the coercive force is low when the powder particle size is 10 μm or more, which is not preferable.

【0013】Mn成分に加えて、Ga、Al、Zn、S
n、Cr、Ni、Ti、Zr、Hf、V、Nb、Ta、
Mo、W、Pd、C、Si、Geの元素のうち1種また
は2種以上(M成分)を添加しても良いが、これらの含
有量はMn含有量未満で、しかもMnとの合計量が0.
5〜25原子%の範囲にある様にしなければならない。
M成分のうちで、本発明の効果を発揮させるために共添
加する元素として好ましいのはCrである。(以下Mn
成分という場合は、その中に上記M成分を含有している
場合も含むこととする。) 前記の組成に導入される窒素(N)量は、17〜25原
子%にしなければならない。25原子%を越えると磁化
が低くなり、磁石材料用途としては実用性があまり高く
ない。17原子%未満では粗粉体の保磁力をあまり向上
させることができず、好ましくない。
In addition to the Mn component, Ga, Al, Zn, S
n, Cr, Ni, Ti, Zr, Hf, V, Nb, Ta,
One or more of the elements Mo, W, Pd, C, Si and Ge (M component) may be added, but their content is less than the Mn content and the total amount with Mn. Is 0.
It should be in the range of 5 to 25 atomic%.
Among the M components, Cr is preferable as an element to be co-added in order to exert the effect of the present invention. (Hereinafter Mn
The term “component” also includes the case where the component M is contained therein. ) The amount of nitrogen (N) introduced into the above composition must be 17 to 25 atomic%. If it exceeds 25 atomic%, the magnetization will be low, and it is not very practical as a magnet material application. If it is less than 17 atomic%, the coercive force of the coarse powder cannot be improved so much, which is not preferable.

【0014】窒素量の好ましい範囲は、目的とするR−
Fe−Mn−N系磁性材料のR−Fe−Mn組成比や副
相の量比さらに結晶構造などによって、最適な窒素量は
異なるので、その量によるが、例えば菱面体構造を有す
るSm10.5Fe76.1Co8.9Mn4.5 を原料合金として
選ぶと、17〜23原子%付近が最適な窒素量となる。
このときの最適な窒素量とは、目的に応じて異なるが材
料の耐酸化性及び磁気特性のうち少なくとも一特性が最
適となる窒素量であり、磁気特性が最適とは磁気異方性
比、減磁率及び保磁力の温度変化率の絶対値は極小、そ
の他は極大となることである。
The preferred range of nitrogen content is the desired R-
The optimum nitrogen amount differs depending on the R-Fe-Mn composition ratio of the Fe-Mn-N magnetic material, the amount ratio of the sub-phase, and the crystal structure. Therefore, depending on the amount, for example, Sm 10.5 Fe having a rhombohedral structure is used. When 76.1 Co 8.9 Mn 4.5 is selected as the raw material alloy, the optimum nitrogen content is around 17 to 23 atomic%.
The optimum nitrogen amount at this time is a nitrogen amount for which at least one of the oxidation resistance and magnetic properties of the material is optimum, although it varies depending on the purpose, and the optimum magnetic property is the magnetic anisotropy ratio, The absolute value of the temperature change rate of the demagnetization rate and the coercive force is minimum, and the others are maximum.

【0015】本発明におけるR−Fe−Mn−N系磁性
材料の各組成は、希土類成分が3〜20原子%、鉄成分
が30〜79.5原子%、Mn成分が0.5〜25原子
%、Nが17〜25原子%の範囲とし、これらを同時に
満たすものである。さらに、本発明で得られるR−Fe
−Mn−N系磁性材料には、水素(H)が0.01〜1
0原子%含まれてもよい。特に好ましい本発明のR−F
e−Mn−N系磁性材料の組成は、一般式RαFe
(100- α- β- γ- δ) MnβNγHδで表わしたと
き、α、β、γ、δは原子%で、 3≦α/(1−δ/100)≦20 0.5≦β/(1−δ/100)≦25 17≦γ/(1−δ/100)≦25 0.01≦δ≦10 の範囲である。但し、Fe成分は30原子%以上、およ
び上記4式とが同時に成り立つようにα、β、γ、δが
選ばれる。
In each composition of the R-Fe-Mn-N magnetic material in the present invention, the rare earth component is 3 to 20 atom%, the iron component is 30 to 79.5 atom%, and the Mn component is 0.5 to 25 atom. % And N are in the range of 17 to 25 atomic%, and these are simultaneously satisfied. Further, R-Fe obtained in the present invention
Hydrogen (H) is 0.01 to 1 in the —Mn—N magnetic material.
0 atom% may be contained. Particularly preferred R-F of the present invention
The composition of the e-Mn-N magnetic material is represented by the general formula RαFe.
(100- α - β - γ - δ ) MnβNγHδ, α, β, γ, and δ are atomic%, 3 ≦ α / (1-δ / 100) ≦ 20 0.5 ≦ β / (1 The range is −δ / 100) ≦ 25 17 ≦ γ / (1−δ / 100) ≦ 25 0.01 ≦ δ ≦ 10. However, α, β, γ, and δ are selected so that the Fe component is 30 atomic% or more, and the above four expressions are simultaneously established.

【0016】さらに製造法によっては、酸素(O)が1
〜10原子%含まれることがあり、この場合、磁石の成
形性、磁気特性の高い材料とすることができる。本発明
の磁性材料中には、菱面体晶又は六方晶の結晶構造を有
する相を含有することが必要である。本発明ではこれら
の結晶構造を作り、少なくともR、Fe、Mn、Nを含
む相を主相といい、該結晶構造を作らない、または他の
結晶構造を作るような組成を有する相を副相と呼ぶ。主
相にはR、Fe成分、Mn成分、Nに加え、HやOを含
むことがある。但し、O成分は主相に含まれていても、
極めて少量で0.01〜1原子%程度である。
Further, depending on the manufacturing method, oxygen (O) is 1
It may be contained in an amount of 10 atom% to 10 atom%, and in this case, a material having high magnet formability and magnetic properties can be obtained. The magnetic material of the present invention needs to contain a phase having a rhombohedral or hexagonal crystal structure. In the present invention, a phase that forms these crystal structures and that includes at least R, Fe, Mn, and N is referred to as a main phase, and a phase that does not form the crystal structure or has a composition that forms another crystal structure is a subphase. Call. The main phase may contain H and O in addition to R, Fe component, Mn component and N. However, even if the O component is contained in the main phase,
An extremely small amount is about 0.01 to 1 atomic%.

【0017】好ましい主相の結晶構造の例としては、T
2 Zn17などと同様な結晶構造を有する菱面体晶、ま
たは、Th2Ni17、TbCu7、CaZn5 などと同様
な結晶構造を有する六方晶が挙げられ、これらのうち少
なくとも1種を含むことが必要である。この中でTh2
Zn17などと同様な結晶構造を有する菱面体晶が最も好
ましい。
As an example of the crystal structure of the preferred main phase, T
Examples include rhombohedral crystals having the same crystal structure as h 2 Zn 17 or the like, or hexagonal crystals having the same crystal structure as Th 2 Ni 17 , TbCu 7 , CaZn 5, etc., and at least one of them is included. It is necessary. In this Th 2
The rhombohedral crystal having the same crystal structure as Zn 17 is most preferable.

【0018】例えば、磁性材料中に副相として、RFe
12-XXy相といった正方晶を取る磁性の高い窒化物相
を含んでいても良いが、本発明の効果を充分に発揮させ
るためには、その体積分率は主相の含有量より低く押さ
える必要があり、主相の含有量が75体積%を越えるこ
とが、実用上極めて好ましい。R−Fe−Mn−N系材
料の主相は、主原料相であるR−Fe−Mn合金の格子
間に窒素が侵入し、結晶格子が多くの場合膨張すること
によって得られるが、その結晶構造は、主原料相とほぼ
同じ対称性を有する。
For example, RFe as a subphase in the magnetic material
A high-magnetism nitride phase having a tetragonal structure such as a 12-X M X N y phase may be contained, but in order to fully exert the effect of the present invention, the volume fraction thereof is the content of the main phase. It is necessary to keep it lower, and it is extremely preferable in practice that the content of the main phase exceeds 75% by volume. The main phase of the R-Fe-Mn-N-based material is obtained by the intrusion of nitrogen between the lattices of the R-Fe-Mn alloy, which is the main raw material phase, and the crystal lattice often expands. The structure has almost the same symmetry as the main raw material phase.

【0019】ここにいう主原料相とは、少なくともR、
Fe、Mnを含みかつNを含まず、かつ菱面体晶又は六
方晶の結晶構造を有する相のことである。(なお、それ
以外の組成または結晶構造を有し、かつNの含まない相
を副原料相と呼ぶ。) 窒素の侵入による結晶格子の膨張に伴い、耐酸化性能ま
たは磁気特性の各項目のうち一項目以上が向上し、実用
上好適な磁性材料となる。なお、ここにいう磁気特性と
は、材料の飽和磁化(4πIs)、残留磁束密度(B
r)、磁気異方性磁界(Ha)、磁気異方性エネルギー
(Ea)、磁気異方性比、キュリー点(Tc)、固有保
磁力(iHc)、角形比(Br/4πIs)、最大エネ
ルギー積[(BH)max]、熱減磁率(α、磁化の可
逆温度係数と同義)、保磁力の温度変化率(β、保磁力
の可逆温度係数と同義)のうち少なくとも一つを言う。
但し、磁気異方性比とは、外部磁場を15kOe印加し
た時の困難磁化方向の磁化(a)と容易磁化方向の磁化
(b)の比(a/b)であり、磁気異方性比が小さいも
の程、磁気異方性エネルギーが高いと評価される。
The main raw material phase referred to here is at least R,
It is a phase containing Fe and Mn and not N and having a rhombohedral or hexagonal crystal structure. (Note that a phase having a composition or crystal structure other than that and not containing N is referred to as an auxiliary raw material phase.) Among the items of the oxidation resistance performance or the magnetic properties, the crystal lattice expansion caused by the penetration of nitrogen One or more items are improved, and the magnetic material is suitable for practical use. The magnetic properties referred to here are the saturation magnetization (4πIs) of the material and the residual magnetic flux density (B
r), magnetic anisotropy magnetic field (Ha), magnetic anisotropy energy (Ea), magnetic anisotropy ratio, Curie point (Tc), intrinsic coercive force (iHc), squareness ratio (Br / 4πIs), maximum energy At least one of the product [(BH) max], thermal demagnetization rate (α, synonymous with reversible temperature coefficient of magnetization), and temperature change rate of coercive force (β, synonymous with reversible temperature coefficient of coercive force).
However, the magnetic anisotropy ratio is the ratio (a / b) of the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. The smaller the value, the higher the magnetic anisotropy energy.

【0020】例えば、希土類−鉄成分−Mn母合金の主
原料相として、菱面体構造を有するSm10.5Fe85.0
4.5 を選んだ場合、窒素を導入することによって、結
晶磁気異方性が面内異方性から硬磁性材料として好適な
一軸異方性に変化し、磁気異方性エネルギーを初めとす
る磁気特性と耐酸化性が向上する。本発明の磁性材料は
平均粒径10μmを越える値の粗粉体であり、好ましく
は10〜200μmである。平均粒径10μm以下であ
ると、保磁力の低下や磁粉の凝集が著しくなり、本来材
料が持っている磁気特性を充分発揮しえないので好まし
くない。ここで平均粒径とは、特に断らない限り通常用
いられる粒子径分布測定装置で得られた体積相当径分布
曲線をもとにして求めたメジアン径のことをいう。
For example, as a main raw material phase of a rare earth-iron component-Mn master alloy, Sm 10.5 Fe 85.0 M having a rhombohedral structure is used.
When n 4.5 is selected, by introducing nitrogen, the crystal magnetic anisotropy changes from in-plane anisotropy to uniaxial anisotropy suitable for a hard magnetic material, and magnetic anisotropy energy and other magnetic properties Improves properties and oxidation resistance. The magnetic material of the present invention is a coarse powder having an average particle size of more than 10 μm, preferably 10 to 200 μm. If the average particle size is 10 μm or less, the coercive force is lowered and the magnetic particles are remarkably aggregated, and the magnetic properties originally possessed by the material cannot be sufficiently exhibited, which is not preferable. Here, the average particle diameter means a median diameter obtained based on a volume-equivalent diameter distribution curve obtained by a commonly used particle diameter distribution measuring device, unless otherwise specified.

【0021】本発明の材料のうち、菱面体晶を有するS
2 ([Fe,Co],Mn)17母合金を窒化した材料
を例にして以下に詳しく述べる。Sm2Fe17に窒素を
導入した場合、Sm2Fe17あたり窒素が3個であるS
2Fe173であると、磁気異方性エネルギー、磁化、
キュリー温度など多くの磁気特性が最適となる(例え
ば、IEEE Trans. Magn.,28,23
26(1992))ことが知られている。さらに、この
導入窒素量をSm2 Fe17あたり5〜5.5個程度まで
増やすと、粗粉体の状態での保磁力が最大となる。
Among the materials of the present invention, S having a rhombohedral crystal
m2([Fe, Co], Mn)17Material obtained by nitriding mother alloy
Will be described in detail below. Sm2Fe17Nitrogen
If introduced, Sm2Fe17S with 3 nitrogens per
m 2Fe17N3, Magnetic anisotropy energy, magnetization,
Many magnetic properties such as the Curie temperature are optimized (eg
For example, IEEE Trans. Magn. , 28, 23
26 (1992)). Furthermore, this
The amount of introduced nitrogen is Sm2Fe17About 5 to 5.5 per
When it is increased, the coercive force in the state of coarse powder becomes maximum.

【0022】しかし、NがSm2 ([Fe,Co],M
n)17あたり3個を越えて増加すると、Nは格子間に侵
入するため結晶格子が広がり、不安定な状態を経て、つ
いに、N濃度分布に濃淡が生じたり、結晶格子が崩れた
或いは崩れかけた部分が生じる。さらに、合金組成や窒
素量、窒化条件や窒化後の焼鈍条件によっては、菱面体
晶又は六方晶の結晶構造を有する強磁性相の周りをN濃
度の高い結晶格子の崩れた或いは崩れかけた部分が取り
囲む、セルのような構造(この構造を以降セル構造と呼
ぶ)が生じる場合もある。
However, N is Sm 2 ([Fe, Co], M
n) If the number exceeds 17 per 17, the crystal lattice expands because N penetrates into the interstitial lattice and becomes unstable, and finally, the N concentration distribution becomes shaded, or the crystal lattice collapses or collapses. The crossed part occurs. Further, depending on the alloy composition, the amount of nitrogen, the nitriding conditions and the annealing conditions after nitriding, the collapsed or nearly collapsed part of the crystal lattice with a high N concentration around the ferromagnetic phase having a rhombohedral or hexagonal crystal structure. In some cases, a cell-like structure (this structure is hereinafter referred to as a cell structure) that surrounds is generated.

【0023】セル構造が生じる一例として、Sm8.5
65.0Mn3.523.0材料の微構造をTEM(透過電子
顕微鏡)により観察した結果を図3に示した。10〜2
00nmの結晶粒子径を有したセル構造が生じているの
が判る。Sm−Fe−N3元系でも、NがSm2 Fe17
あたり3個を越えて4個まで増加すると、同様な微構造
を生じることが知られている(日本応用磁気学会誌、1
8巻、201ページ、1994年)。
As an example of the cell structure, Sm 8.5 F
The result of observing the microstructure of the e 65.0 Mn 3.5 N 23.0 material with a TEM (transmission electron microscope) is shown in FIG. 10-2
It can be seen that a cell structure having a crystal grain size of 00 nm is generated. Even in the Sm-Fe-N ternary system, N is Sm 2 Fe 17
It is known that a similar microstructure is produced when the number exceeds 3 and increases to 4 (Journal of the Japan Society for Applied Magnetics, 1
8 volumes, 201 pages, 1994).

【0024】このとき、Mnが共存した場合、高窒化領
域での保磁力が大きく増加する。例えば30μm程度の
粗粉体Sm−Fe−N3元系では、上述のように保磁力
の最大値が2kOe程度であるのに対して、Mnが共存
すると、保磁力は9〜12kOeまで増加する。Mnの
役割については不明であるが、N濃度の高い部分、また
は、結晶格子の崩れた或いは崩れかけた部分にMnが存
在することにより、磁化反転をくい止める効果が生じる
ものと考える。
At this time, when Mn coexists, the coercive force in the high nitriding region greatly increases. For example, in the coarse powder Sm-Fe-N ternary system of about 30 μm, the maximum value of coercive force is about 2 kOe as described above, whereas when Mn coexists, the coercive force increases to 9 to 12 kOe. Although the role of Mn is unknown, it is considered that the presence of Mn in a portion having a high N concentration or in a portion where the crystal lattice is collapsed or is about to collapse has an effect of suppressing magnetization reversal.

【0025】また、Mnの組成比にもよるが、Sm
2 ([Fe,Co],Mn)17あたりのNの数が4個か
ら6個程度までの本発明の材料について、磁気曲線の立
ち上がりや保磁力の着磁磁場依存性などを調べた結果、
この材料の磁化反転機構はピンニング型であることがわ
かった。この傾向はCoを含む、含まないにかかわらず
同様に見られる。
Further, depending on the composition ratio of Mn, Sm
2 ([Fe, Co], Mn) The number of N per 17 for the material of the present invention from four to six or so, as a result of investigating the like magnetizing field. Dependency of the rise and the coercive force of the magnetic curve,
It was found that the magnetization reversal mechanism of this material is a pinning type. This tendency is similarly observed with and without Co.

【0026】なお保磁力の着磁磁場依存性の例として、
Sm8.2(Fe0.89Co0.1165.9Mn3.522.4磁性材
料を0〜15kOeの範囲の静磁場及び79kOeのパ
ルス磁場で着磁した場合の着磁磁場と保磁力の相関を、
図4に示した。着磁磁場12kOe付近で急激に保磁力
の値が大きくなっていることが判る。この挙動はピンニ
ング型の磁性材料特有のものである。
As an example of the magnetic field dependence of the coercive force,
Sm 8.2 (Fe 0.89 Co 0.11 ) 65.9 Mn 3.5 N 22.4 The correlation between the magnetizing magnetic field and the coercive force when the magnetic material is magnetized with a static magnetic field in the range of 0 to 15 kOe and a pulse magnetic field of 79 kOe,
It is shown in FIG. It can be seen that the value of the coercive force rapidly increases near the magnetizing magnetic field of 12 kOe. This behavior is peculiar to the pinning type magnetic material.

【0027】磁粉体の表面付近が酸化劣化して、逆磁区
の芽となりうる軟磁性な部分が生じた場合を考える。ニ
ュークリエーション型の材料は磁壁の移動が容易に起こ
るため、逆磁区が発生すると容易に成長して、保磁力が
劣化する。このタイプの材料として前述のSm2Fe17
3材料が挙げられる。一方ピンニング型の材料は表面
付近に逆磁区が生じても磁壁の移動が起こりにくく高い
保磁力を維持する。さらに、保磁力の温度変化率βも磁
化反転の機構が異なることにより、大きく改善される可
能性がある。
Let us consider a case where the vicinity of the surface of the magnetic powder is oxidatively deteriorated to generate a soft magnetic portion which may be a bud of the reverse magnetic domain. Since the domain wall of the nucleation type material easily moves, it grows easily when the reverse magnetic domain occurs and the coercive force deteriorates. As a material of this type, the above-mentioned Sm 2 Fe 17
N 3 materials. On the other hand, the pinning type material does not easily move the magnetic domain wall even if a reverse magnetic domain occurs near the surface, and maintains a high coercive force. Furthermore, the temperature change rate β of the coercive force may be greatly improved due to the different mechanism of magnetization reversal.

【0028】ところで既存のSm2 Co17系材料は、セ
ル型の微構造を持った2相分離型磁石となるが、その製
造工程の中で、溶体化及び時効処理工程の制御が非常に
重要である。この材料の成分はSm、Co、Cuを必須
成分として、この外にFe、Zr、Ti、Hf、Ceな
どを含んでおり、これらの金属元素を溶解したのち、9
00〜1250℃程度の高温で熱処理する。以上の成分
を有するSm2Co17合金には、高温では均一に固溶し
ているが、室温付近の低温では相分離するような、固溶
限の広い高温安定相が主相として存在する。この高温で
安定な相を保ったまま室温まで冷却させるため、溶体化
ののち、一般的に水中や油中にクエンチしたり、ガスを
吹き付けて急冷処理を行う。この溶体化工程で得た合金
を、400〜900℃の温度で1段若しくは多段の時効
処理を行い、組成が均一な状態を保っていた合金主相内
にCuなどのM成分濃度が大きな相を微細に析出させ、
熱力学的に安定な方向である2相分離型の構造を調整す
る。この微細に析出したM成分濃度の大きな低磁性相が
ピニング点となり、既存のSm2 Co17系材料はピンニ
ング型の磁化反転機構を持つことになる。なお、以上の
溶体化−時効工程では、熱処理温度、時間、冷却速度の
精密な制御が極めて大切で、例えば溶体化ののち急冷す
るか、徐冷するかで最終的な保磁力の大きさは全く異な
ったものとなる。
By the way, the existing Sm 2 Co 17 system material is a two-phase separation type magnet having a cell type microstructure, and in the manufacturing process thereof, control of solution treatment and aging treatment process is very important. Is. The components of this material include Sm, Co, and Cu as essential components, and additionally Fe, Zr, Ti, Hf, Ce, and the like. After dissolving these metal elements, 9
Heat treatment is performed at a high temperature of about 00 to 1250 ° C. In the Sm 2 Co 17 alloy having the above components, a high-temperature stable phase having a wide solid solution limit exists as a main phase, which is solid-dissolved uniformly at high temperatures but phase-separates at low temperatures near room temperature. In order to cool to room temperature while maintaining a stable phase at this high temperature, after solution treatment, quenching is generally carried out in water or oil or by blowing gas. The alloy obtained in this solution heat treatment is subjected to a one-step or multi-step aging treatment at a temperature of 400 to 900 ° C., and a phase with a large M component concentration such as Cu is present in the alloy main phase that maintains a uniform composition. Finely deposited,
A two-phase separated structure, which is a thermodynamically stable direction, is prepared. This finely precipitated low magnetic phase having a large M component concentration serves as a pinning point, and the existing Sm 2 Co 17 system material has a pinning type magnetization reversal mechanism. In the solution treatment-aging step described above, precise control of heat treatment temperature, time, and cooling rate is extremely important. For example, the final coercive force depends on whether solution treatment is followed by rapid cooling or slow cooling. It will be completely different.

【0029】これに対し、本発明の範囲において、母合
金となるSm−Fe−Mn合金の主原料相の結晶構造は
常温で2−17組成を有した菱面体晶であり、高温にお
いても固溶限の低いほぼラインフェイズとなるため、F
e成分及びMnは主原料相中に均一に固溶していて、溶
体化や時効処理によってMnやMn化合物がFe成分主
体の主原料相中に微細析出することはない。従って、時
効処理は必要でなく、焼鈍後の冷却速度にも保磁力は依
存しない。この主原料相にNをSm2([Fe,C
o],Mn)17あたり約3個(約13.6原子%)とな
るよう導入した場合、全ての窒素が結晶格子間に入って
均一な微構造となり、前述のようなニュークリエーショ
ン型の磁性材料となる。NをSm2 ([Fe,Co],
Mn)17あたり4個(17.4原子%)を越えて導入し
た場合にはじめて、不均一な微構造が得られ充分なピン
ニング点となり得る窒素濃度の高い部分が主相内に生じ
る。この事実は、MnやMn化合物の析出によりピンニ
ング型微構造が誘導されるのではなく、微細なN濃度の
濃淡によりピンニング型微構造が得られるのであること
を示している。
On the other hand, within the scope of the present invention, the crystal structure of the main raw material phase of the Sm-Fe-Mn alloy, which is the mother alloy, is a rhombohedral crystal having a composition of 2-17 at room temperature and is solid even at high temperatures. Since it is almost a line phase with a low melting limit, F
The e component and Mn are uniformly solid-dissolved in the main raw material phase, and Mn and the Mn compound do not finely precipitate in the main raw material phase mainly composed of the Fe component due to solution treatment and aging treatment. Therefore, the aging treatment is not necessary, and the coercive force does not depend on the cooling rate after annealing. Sm 2 ([Fe, C
o], Mn) about 3 (about 13.6 atom%) per 17 atoms, all the nitrogen enters between the crystal lattices to form a uniform microstructure, which leads to the above-mentioned nucleation-type magnetic properties. It becomes a material. N to Sm 2 ([Fe, Co],
Only when 4 (17.4 atom%) per Mn) 17 is introduced, a non-uniform microstructure is obtained and a portion with a high nitrogen concentration, which can serve as a sufficient pinning point, is formed in the main phase. This fact indicates that the pinning type microstructure is not induced by the precipitation of Mn and the Mn compound, but the pinning type microstructure is obtained by the fine density of the N concentration.

【0030】微細なN濃度の不均一性、即ちN濃度の濃
淡の周期は、10〜200nm程度であることが、TE
M観察(図3など)により明かになっている。Cuなど
のM’成分(M’;Cu、Zr、Hf、Nb、Ta、
W、Mo、Ti、V、Cr、Mn)を希土類−鉄−窒素
系材料に添加して溶体化や時効処理を行い、M’成分や
M’化合物を主相中に微細析出させ粗粉体の保磁力を高
めるという試みが具体的に例示されている(特開平4−
216601号公報、特開平6−20813号公報)
が、これらの材料はNの含有量が13〜15原子%と低
い値に留まっているため、充分なピンニング点を発生さ
せるだけのN濃度分布の濃淡を生じさせることはできな
い。
The fine non-uniformity of the N concentration, that is, the period of the density of the N concentration is about 10 to 200 nm.
It is revealed by M observation (Fig. 3 etc.). M'component such as Cu (M '; Cu, Zr, Hf, Nb, Ta,
(W, Mo, Ti, V, Cr, Mn) is added to a rare earth-iron-nitrogen-based material for solution treatment and aging treatment, and M'component and M'compound are finely precipitated in the main phase to form a coarse powder. An attempt to increase the coercive force has been specifically exemplified (Japanese Patent Application Laid-Open No. Hei 4-
(216601, JP-A-6-20813)
However, since the N content of these materials is as low as 13 to 15 atom%, it is not possible to generate the density of the N concentration distribution enough to generate a sufficient pinning point.

【0031】従って、本発明の材料は、Mnの微細析出
ではなくNの不均一によりピンニング型微構造を生ずる
のであるから、上述の公報で開示された磁性材料とは全
く異なった磁性材料となる。以下、本発明の製造法につ
いて例示する。 (1)母合金の調製 本発明の磁性材料は、過剰のNを導入することによりR
−Fe−Mn合金中にピンニング点が微分散する微構
造、例示すればセル構造の境界にピンニング点が存在す
る微構造をとったとき、ピンニング点にMnが共存する
と保磁力の値が極めて大きくなる。従って、Mnの添加
は母合金調整の段階で行う。
Therefore, the material of the present invention produces a pinning type microstructure due to non-uniformity of N rather than fine precipitation of Mn, and thus is a magnetic material which is completely different from the magnetic material disclosed in the above-mentioned publication. . Hereinafter, the production method of the present invention will be exemplified. (1) Preparation of Master Alloy The magnetic material of the present invention has an R content by introducing excess N.
When a fine structure in which pinning points are finely dispersed in the —Fe—Mn alloy, for example, a microstructure in which pinning points exist at the boundary of the cell structure, the coercive force value is extremely large when Mn coexists at the pinning points. Become. Therefore, Mn is added at the stage of adjusting the mother alloy.

【0032】R−Fe−Mn合金の製造法としては、
イ)R、Fe成分、Mn金属を高周波により溶解し、鋳
型などに鋳込む高周波溶解法、ロ)銅などのボートに金
属成分を仕込み、アーク放電により溶かし込むアーク溶
解法、ハ)高周波溶解した溶湯を、回転させた銅ロール
上に落しリボン状の合金を得る超急冷法、ニ)高周波溶
解した溶湯をガスで噴霧して合金粉体を得るガスアトマ
イズ法、ホ)Fe成分及びまたはMnの粉体またはFe
−Mn合金粉体、R及びまたはMnの酸化物粉体、及び
還元剤を高温下で反応させ、RまたはR及びMnを還元
しながら、RまたはR及びMnを、Fe成分及びまたは
Fe−Mn合金粉末中に拡散させるR/D法、ヘ)各金
属成分単体及びまたは合金をボールミルなどで微粉砕し
ながら反応させるメカニカルアロイング法、ト)上記何
れかの方法で得た合金を水素雰囲気下で加熱し、一旦R
及びまたはMnの水素化物と、Fe成分及びまたはMn
またはFe−Mn合金に分解し、この後高温下で低圧と
して水素を追い出しながら再結合させ合金化するHDD
R法のいずれを用いてもよい。
As a method for producing the R-Fe-Mn alloy,
B) High frequency melting method in which R, Fe components and Mn metal are melted by high frequency and cast in a mold, b) Arc melting method in which a metal component is charged in a boat such as copper and melted by arc discharge, c) High frequency melting Ultra-quenching method in which molten metal is dropped on a rotating copper roll to obtain a ribbon-shaped alloy, d) Gas atomizing method in which molten metal melted by high frequency is sprayed with gas to obtain alloy powder, and e) Fe component and / or Mn powder Body or Fe
-Mn alloy powder, R and / or Mn oxide powder, and a reducing agent are reacted at a high temperature to reduce R or R and Mn while R or R and Mn are mixed with Fe component and / or Fe-Mn. R / D method of diffusing in alloy powder, f) mechanical alloying method of reacting while pulverizing individual metal components and / or alloy with a ball mill, and g) alloy obtained by any of the above methods under hydrogen atmosphere Heat at
And / or Mn hydride, Fe component and / or Mn
Alternatively, an HDD that decomposes into an Fe-Mn alloy and then recombines to alloy under reduced pressure at high temperature to expel hydrogen.
Any of the R methods may be used.

【0033】高周波溶解法、アーク溶解法を用いた場
合、溶融状態から、合金が凝固する際にFe主体の軟磁
性成分が析出しやすく、特に窒化工程を経た後も保磁力
の低下をひきおこす。そこで、この軟磁性成分を消失さ
せたり、菱面体晶や六方晶の結晶構造を増大させたりす
る目的で、アルゴン、ヘリウムなどの不活性ガス、水素
ガスのうち少なくとも1種を含むガス中もしくは真空
中、600℃〜1300℃の温度範囲で焼鈍を行うこと
が有効である。この方法で作製した合金は、超急冷法な
どを用いた場合に比べ、結晶粒径が大きく結晶性が良好
であり、高い残留磁束密度を有している。従って、この
合金は均質な主原料相を多量に含んでおり、本発明の磁
性材料を得る母合金として最も好ましい。 (2)粗粉砕及び分級 上記方法で作製した合金インゴットを直接窒化すること
も可能であるが、結晶粒径が500μmより大きいと窒
化処理時間が長くなり、粗粉砕を行ってから窒化する方
が効率的である。200μm以下に粗粉砕すれば、窒化
効率がさらに向上するため、特に好ましい。
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe is likely to precipitate from the molten state when the alloy is solidified, and particularly the coercive force is lowered even after the nitriding step. Therefore, for the purpose of eliminating this soft magnetic component or increasing the rhombohedral or hexagonal crystal structure, an inert gas such as argon or helium, or a gas containing at least one of hydrogen gas or a vacuum is used. It is effective to anneal in the temperature range of 600 ° C to 1300 ° C. The alloy produced by this method has a large crystal grain size, good crystallinity, and high residual magnetic flux density, as compared with the case of using the ultra-quenching method. Therefore, this alloy contains a large amount of homogeneous main raw material phases and is most preferable as a master alloy for obtaining the magnetic material of the present invention. (2) Coarse crushing and classification It is also possible to directly nitride the alloy ingot produced by the above method, but if the crystal grain size is larger than 500 μm, the nitriding time will be longer, and it is better to carry out coarse crushing before nitriding. It is efficient. Coarse pulverization to 200 μm or less is particularly preferable because the nitriding efficiency is further improved.

【0034】粗粉砕はジョ−クラッシャー、ハンマー、
スタンプミル、ローターミル、ピンミル、コーヒーミル
などを用いて行う。また、ボールミルやジェットミルな
どのような粉砕機を用いても、条件次第では窒化に適当
な、合金粉末の調製が可能である。母合金に水素を吸蔵
させたのち上記粉砕機で粉砕する方法、水素の吸蔵・放
出を繰り返し粉化する方法を用いても良い。
For coarse crushing, a jaw crusher, a hammer,
It is performed by using a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a crusher such as a ball mill or a jet mill is used, it is possible to prepare an alloy powder suitable for nitriding depending on the conditions. A method in which hydrogen is absorbed by the mother alloy and then crushed by the crusher, or a method in which hydrogen is repeatedly occluded and released may be used.

【0035】さらに、粗粉砕の後、ふるい、振動式ある
いは音波式分級機、サイクロンなどを用いて粒度調整を
行うことも、より均質な窒化を行うために有効である。
粗粉砕、分級の後、不活性ガスや水素中で焼鈍を行うと
構造の欠陥を除去することができ、場合によっては効果
がある。以上で、本発明の製造法における希土類−鉄成
分−Mn合金の粉体原料またはインゴット原料の調製法
を例示したが、これらの原料の結晶粒径、粉砕粒径、表
面状態などにより、以下に示す窒化の最適条件に違いが
見られる。 (3)窒化・焼鈍 窒化はアンモニアガス、窒素ガスなどの窒素源を含むガ
スを、上記(1)または、(1)及び(2)で得たR−
Fe成分−Mn成分合金粉体またはインゴットに接触さ
せて、結晶構造内に窒素を導入する工程である。
Furthermore, after coarse pulverization, it is also effective to carry out nitriding more uniformly by adjusting the grain size using a sieve, a vibration type or sonic type classifier, a cyclone, or the like.
After coarse pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects, which is effective in some cases. In the above, the method for preparing the powder raw material or the ingot raw material of the rare earth-iron component-Mn alloy in the production method of the present invention has been illustrated, but depending on the crystal grain size, pulverized grain size, surface state, etc. of these raw materials, There is a difference in the optimum conditions of nitridation shown. (3) Nitriding / annealing Nitriding is performed by using a gas containing a nitrogen source such as ammonia gas or nitrogen gas obtained in the above (1) or (1) and (2).
In this step, nitrogen is introduced into the crystal structure by bringing it into contact with the Fe component-Mn component alloy powder or ingot.

【0036】このとき、窒化雰囲気ガス中に水素を共存
させると、窒化効率が高いうえに、結晶構造が安定なま
ま窒化できる点で好ましい。また反応を制御するため
に、アルゴン、ヘリウム、ネオンなどの不活性ガスなど
を共存させる場合もある。最も好ましい窒化雰囲気とし
ては、アンモニアと水素の混合ガスであり、特にアンモ
ニア分圧を0.1〜0.7の範囲に制御すれば、窒化効
率が高い上に本発明の窒素量範囲全域の磁性材料を作製
することができる。
At this time, coexistence of hydrogen in the nitriding atmosphere gas is preferable because the nitriding efficiency is high and the nitriding can be performed while the crystal structure is stable. In addition, in order to control the reaction, an inert gas such as argon, helium, or neon may coexist. The most preferable nitriding atmosphere is a mixed gas of ammonia and hydrogen. Particularly, if the ammonia partial pressure is controlled in the range of 0.1 to 0.7, the nitriding efficiency is high and the magnetic properties in the entire nitrogen amount range of the present invention are high. The material can be made.

【0037】窒化反応は、ガス組成、加熱温度、加熱処
理時間、加圧力で制御し得る。このうち加熱温度は、母
合金組成、窒化雰囲気によって異なるが、200〜65
0℃の範囲で選ばれるのが望ましい。200℃未満であ
ると窒化が進まず、650℃を越えると主原料相が分解
して、菱面体晶または六方晶の結晶構造を保ったまま窒
化することができない。窒化効率と主相の含有率を高く
するために、さらに好ましい温度範囲は250〜600
℃である。
The nitriding reaction can be controlled by the gas composition, heating temperature, heat treatment time, and pressure. Of these, the heating temperature varies depending on the composition of the mother alloy and the nitriding atmosphere, but is 200 to 65
It is desirable to select in the range of 0 ° C. If the temperature is lower than 200 ° C., nitriding does not proceed, and if the temperature exceeds 650 ° C., the main raw material phase decomposes, and it is impossible to perform nitriding while maintaining the rhombohedral or hexagonal crystal structure. In order to increase the nitriding efficiency and the content of the main phase, a more preferable temperature range is 250 to 600.
° C.

【0038】また窒化を行った後、不活性ガス及び又は
水素ガス中で焼鈍することは磁気特性を向上させる点で
好ましい。窒化・焼鈍装置としては、横型、縦型の管状
炉、回転式反応炉、密閉式反応炉などが挙げられる。何
れの装置においても、本発明の磁性材料を調整すること
が可能であるが、特に窒素組成分布の揃った粉体を得る
ためには回転式反応炉を用いるのが好ましい。
After nitriding, it is preferable to anneal in an inert gas and / or hydrogen gas in order to improve the magnetic properties. Examples of the nitriding / annealing device include horizontal and vertical tubular furnaces, rotary reaction furnaces, and closed reaction furnaces. It is possible to adjust the magnetic material of the present invention in any of the apparatuses, but it is preferable to use a rotary reactor in order to obtain a powder having a uniform nitrogen composition distribution.

【0039】反応に用いるガスは、ガス組成を一定に保
ちながら1気圧以上の気流を反応炉の送り込む気流方
式、ガスを容器に加圧力0.01〜70気圧の領域で封
入する封入方式、或いはそれらの組合せなどで供給す
る。本磁性材料の製造方法としては、(1)又は、
(1)及び(2)に例示した方法でR−Fe成分−Mn
組成の母合金を調製してから、(3)で示した方法で窒
化する工程を用いるのが最も好ましい。特に(1)で得
られた合金又はこれを(2)の方法で粉砕、分級した合
金を、不活性ガス及び水素ガスのうち少なくとも一種を
含む雰囲気下で、600〜1300℃で熱処理したの
ち、アンモニアガスを含む雰囲気下で、200〜650
℃の範囲で熱処理することによる、焼鈍処理を行ったの
ち窒化を行うと、酸化による保磁力の劣化が極めて小さ
い磁性材料を得ることができる。
The gas used for the reaction is a gas flow system in which a gas flow of 1 atm or more is fed into the reaction furnace while keeping the gas composition constant, an encapsulation system in which the gas is sealed in a container at a pressure of 0.01 to 70 atm. Supply them in combination. The manufacturing method of the present magnetic material includes (1) or
R-Fe component-Mn by the method illustrated in (1) and (2)
It is most preferable to use a step of preparing a master alloy having the composition and then nitriding it by the method shown in (3). In particular, after the alloy obtained in (1) or the alloy obtained by crushing and classifying the alloy by the method of (2) is heat-treated at 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and a hydrogen gas, 200 to 650 in an atmosphere containing ammonia gas
When annealing is performed by heat treatment in the range of ° C and then nitriding is performed, it is possible to obtain a magnetic material in which the deterioration of coercive force due to oxidation is extremely small.

【0040】以上が本発明のR−Fe−Mn−N系磁性
材料の製造法に関する説明であるが、特に実用的な硬磁
性材料として本発明の磁性材料を応用する際には、
(4)再粉砕、(5)磁場成形、(6)着磁を行う場合
がある。この中で(4)再粉砕工程でO成分を導入し、
より成形性、磁石特性の高い材料とする方法は有効であ
る。以下、その例を簡単に示す。 (4)再粉砕 再粉砕工程は、上記のR−Fe−Mn−N系材料より細
かい微粉体まで粉砕する場合や、R−Fe−Mn−N−
H−O系材料を得るために、上述のR−Fe−Mn−N
系磁性材料にO及びH成分を導入する目的で行われる工
程である。
The above is a description of the method for producing the R-Fe-Mn-N-based magnetic material of the present invention. Particularly when the magnetic material of the present invention is applied as a practical hard magnetic material,
(4) Re-grinding, (5) magnetic field molding, and (6) magnetization may be performed. In this, (4) Introducing O component in the re-grinding step,
It is effective to use a material having higher moldability and magnetic properties. The example will be briefly described below. (4) Re-grinding The re-grinding step is carried out when pulverizing fine powder finer than the above R-Fe-Mn-N-based material or R-Fe-Mn-N-
To obtain the H—O-based material, the above-mentioned R—Fe—Mn—N
This is a process performed for the purpose of introducing O and H components into the magnetic material.

【0041】再粉砕の方法としては(2)で挙げた方法
のほか、回転ボールミル、振動ボールミル、遊星ボール
ミル、ウエットミル、ジェットミル、カッターミル、ピ
ンミル、自動乳鉢及びそれらの組合せなどが用いられ
る。O成分やH成分を導入する際、その導入量を本発明
の範囲に調整する方法としては、再粉砕雰囲気中の水分
量や酸素濃度を制御する方法が挙げられる。
As the re-grinding method, in addition to the method mentioned in (2), a rotary ball mill, a vibrating ball mill, a planetary ball mill, a wet mill, a jet mill, a cutter mill, a pin mill, an automatic mortar and a combination thereof are used. As a method of adjusting the introduced amount of the O component or the H component within the range of the present invention, a method of controlling the water content or oxygen concentration in the re-grinding atmosphere can be mentioned.

【0042】例えば、ジェットミル等の乾式粉砕機を用
いる場合は、粉砕ガス中の水分量を1ppm〜1%、酸
素濃度を0.01〜5%の範囲の所定濃度に保ったり、
またボールミル等の湿式粉砕機を用いる場合は、エタノ
ールや他の粉砕溶媒中の水分量を0.1重量ppm〜8
0重量%、溶存酸素量を0.1重量ppm〜10重量p
pmの範囲に調整するなどで酸素量を適当な範囲に制御
する。
For example, when a dry mill such as a jet mill is used, the amount of water in the milling gas is kept at a predetermined concentration in the range of 1 ppm to 1% and the oxygen concentration is in the range of 0.01 to 5%.
When a wet mill such as a ball mill is used, the amount of water in ethanol or other milling solvent is 0.1 wtppm to 8 wt%.
0 wt%, dissolved oxygen amount 0.1 wtppm ~ 10 wtp
The oxygen amount is controlled in an appropriate range by adjusting the range to pm.

【0043】また、再粉砕した粒子の取扱い操作をさま
ざまな酸素分圧に制御されたグローブボックス中で行う
ことにより、酸素量を調節することもできる。再粉砕に
より、10μm未満の粒径となった微粉体は、若干耐酸
化性能に劣るが、後述のように、本発明の10μm以上
の粗粉体と組み合わせて用いると、磁気特性を高めるこ
とができ、むしろ好ましい場合がある。
The amount of oxygen can also be adjusted by performing the handling operation of the re-ground particles in a glove box controlled to various oxygen partial pressures. The fine powder having a particle size of less than 10 μm by re-grinding is slightly inferior in oxidation resistance performance, but as described later, when used in combination with the coarse powder of 10 μm or more of the present invention, magnetic properties can be improved. Yes, but rather preferred.

【0044】本発明の磁性材料は、粉砕粒径によって、
ほとんど保磁力が変化せず、また磁化の低下も著しくな
い。従って、10μm以上の本発明の粗粉体と上記の方
法で粉砕した微粉体を混合して成形すると、充填率が高
まるので、磁化や最大エネルギー積の高い成形体が作製
でき、実用上好ましい磁石材料となる。但し、粗粉体と
微粉体の配合比、即ち粒子径分布によって、角形比が低
下する場合があるので注意を要する。 (5)磁場成形 例えば、(3)又は、(3)及び(4)で得た磁性粉体
を異方性ボンド磁石に応用する場合、熱硬化性樹脂や金
属バインダーと混合したのち磁場中で圧縮成形したり、
熱可塑性樹脂と共に混練したのち磁場中で射出成形を行
ったりして、磁場成形する。
The magnetic material of the present invention is
Almost no change in coercive force and no significant decrease in magnetization. Therefore, when the coarse powder of the present invention having a size of 10 μm or more and the fine powder pulverized by the above method are mixed and molded, the packing rate is increased, so that a molded body having high magnetization and maximum energy product can be produced, and a practically preferable magnet. It becomes a material. However, it should be noted that the squareness ratio may decrease depending on the compounding ratio of the coarse powder and the fine powder, that is, the particle size distribution. (5) Magnetic field molding For example, when the magnetic powder obtained in (3) or (3) and (4) is applied to an anisotropic bonded magnet, it is mixed with a thermosetting resin or a metal binder and then in a magnetic field. Compression molding,
After kneading with a thermoplastic resin, injection molding is performed in a magnetic field to perform magnetic field molding.

【0045】磁場成形は、R−Fe−Mn−N系磁性材
料を充分に磁場配向せしめるため、好ましくは10kO
e以上、さらに好ましくは15kOe以上の磁場中で行
う。 (6)着磁 (5)で得た異方性ボンド磁石材料や焼結磁石材料、
(3)または、(3)及び(4)で得た粉体を樹脂や金
属バインダーとともに成形した等方性ボンド磁石や焼結
磁石材料については、磁石性能を高めるために、通常着
磁が行われる。着磁は、例えば静磁場を発生する電磁
石、パルス磁場を発生するコンデンサー着磁器などによ
って行う。充分着磁を行わしめるための、磁場強度は、
好ましくは15kOe以上、さらに好ましくは30kO
e以上である。 (7)M成分の添加 (3)又は、(3)及び(4)で得た磁性粉体にZnな
どのM成分をさらに添加し、(5)の工程前或は後に熱
処理を行って各種磁石材料とする方法は、角形比を向上
させる点で有効な方法である。
The magnetic field shaping is preferably 10 kO in order to sufficiently orient the R-Fe-Mn-N magnetic material in the magnetic field.
e or more, and more preferably in a magnetic field of 15 kOe or more. (6) Magnetization Anisotropic bonded magnet material or sintered magnet material obtained in (5),
The isotropic bonded magnet or sintered magnet material obtained by molding the powder obtained in (3) or (3) and (4) together with a resin or a metal binder is usually magnetized in order to improve the magnet performance. Be seen. The magnetization is performed by, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, or the like. The magnetic field strength for sufficient magnetization is
Preferably 15 kOe or more, more preferably 30 kOe
e or more. (7) Addition of M component (3) Alternatively, M component such as Zn is further added to the magnetic powder obtained in (3) and (4), and heat treatment is performed before or after the step (5). The method of using a magnet material is an effective method in improving the squareness ratio.

【0046】[0046]

【実施例】以下、実施例により本発明を具体的に説明す
る。評価方法は以下のとおりである。 (1)磁気特性 平均粒径約30〜36μmの粗粉体または約2〜3μm
の微粉体であるR−Fe−Mn−N系磁性材料またはR
−Fe−N系磁性材料に銅粉を混ぜ、外部磁場15kO
e中、2ton/cm2 で成形し、室温中80kOeの
磁場でパルス着磁した後、振動試料型磁力計(VSM)
を用いて、室温の固有保磁力(iHc/kOe)及び磁
化(emu/g)を測定した。
EXAMPLES The present invention will be specifically described below with reference to examples. The evaluation method is as follows. (1) Magnetic properties Coarse powder having an average particle size of about 30 to 36 μm or about 2 to 3 μm
Fine powder of R-Fe-Mn-N based magnetic material or R
-Fe-N magnetic material mixed with copper powder, external magnetic field 15kO
In e, molded at 2 ton / cm 2 and pulse-magnetized in a magnetic field of 80 kOe at room temperature, then a vibrating sample magnetometer (VSM)
Was used to measure the intrinsic coercive force (iHc / kOe) and magnetization (emu / g) at room temperature.

【0047】成形磁石については、室温中80kOeの
磁場でパルス着磁した後、室温の固有保磁力(iHc/
kOe)、磁化(kG)、(BH)max [MGOe]を
測定した。 (2)窒素量、酸素量及び水素量 Si34(SiO2 を定量含む)を標準試料として、不
活性ガス融解法により窒素量を定量した。 (3)平均粒径 レーザー回折式粒度分布計を用いて、体積相当径分布を
測定し、その分布曲線より求めたメジアン径にて評価し
た。 (4)耐酸化性能 平均粒径約30〜36μmまたは約2〜3μmの粉体
を、110℃の恒温槽に入れ、200時間後の固有保磁
力を(1)と同様にして測定し、(1)の結果と比較し
て固有保磁力の保持率(%)を求めた。成形磁石も同様
にして評価した。保持率の高いものほど、耐酸化性能が
高い。特に、本試験では各種バインダーを添加せず評価
しているため、保持率90%を越えるものは、例えばボ
ンド磁石とした時の実用物性として充分使用可能で、保
持率95%を越えるものは実用上極めて好適な材料と判
定できる。 (5)温度特性試験 VSMを用い、室温〜150℃までの温度範囲にて、
(1)で調製した試料の固有保磁力を測定した。室温と
150℃の固有保磁力の値から、1℃あたりの保磁力の
低下率を計算し、保磁力の温度変化率β[固有保磁力の
可逆温度係数](%/℃)を求めた。保磁力の温度変化
率の小さいものほど実用的に優れた材料である。このよ
うな材料はパーミアンスの小さな永久磁石材料に応用す
る際、室温での保磁力がさほど高くなくても、一般に不
可逆温度係数が小さくなり、より高温用途、偏平材料用
途に好ましく用いられる。
The molded magnet was pulse-magnetized in a magnetic field of 80 kOe at room temperature and then subjected to room temperature intrinsic coercive force (iHc /
kOe), magnetization (kG), and (BH) max [MGOe] were measured. (2) Nitrogen amount, oxygen amount and hydrogen amount Si 3 N 4 (including quantitative amount of SiO 2 ) was used as a standard sample, and the nitrogen amount was quantified by the inert gas fusion method. (3) Average Particle Size The volume equivalent diameter distribution was measured using a laser diffraction type particle size distribution meter, and the median diameter obtained from the distribution curve was evaluated. (4) Oxidation resistance performance A powder having an average particle size of about 30 to 36 μm or about 2 to 3 μm was placed in a thermostatic chamber at 110 ° C., and the intrinsic coercive force after 200 hours was measured in the same manner as in (1). The retention rate (%) of the intrinsic coercive force was calculated by comparing with the result of 1). The molded magnet was evaluated in the same manner. The higher the retention rate, the higher the oxidation resistance performance. In particular, in this test, since various binders were evaluated without addition, those having a retention rate of more than 90% can be used sufficiently as practical physical properties when used as a bonded magnet, and those having a retention rate of more than 95% are practical. It can be determined that the material is extremely suitable. (5) Temperature characteristic test Using VSM, in the temperature range from room temperature to 150 ° C,
The intrinsic coercive force of the sample prepared in (1) was measured. From the values of the intrinsic coercive force at room temperature and 150 ° C., the decrease rate of the coercive force per 1 ° C. was calculated, and the temperature change rate β of the coercive force [reversible temperature coefficient of the intrinsic coercive force] (% / ° C.) was obtained. A material having a smaller coercive force change rate with temperature is a practically superior material. When applied to a permanent magnet material having a small permeance, such a material generally has a small irreversible temperature coefficient even if the coercive force at room temperature is not so high, and is preferably used for higher temperature applications and flat material applications.

【0048】[0048]

【実施例1】純度99.9%のSm、純度99.9%の
Fe及び純度99.9%のMnを用いてアルゴンガス雰
囲気下高周波溶解炉で溶解混合し、さらにアルゴン雰囲
気中、1150℃で20時間焼鈍し徐冷することによ
り、Sm11.2Fe84.2Mn4.6組成の合金を調製した。
Example 1 Sm having a purity of 99.9%, Fe having a purity of 99.9%, and Mn having a purity of 99.9% were melt-mixed in a high-frequency melting furnace under an argon gas atmosphere, and further, at 1150 ° C. in an argon atmosphere. An alloy having a composition of Sm 11.2 Fe 84.2 Mn 4.6 was prepared by annealing for 20 hours and slowly cooling.

【0049】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Mn合金粉体を横型管状炉
に仕込み、465℃において、アンモニア分圧0.35
atm、水素ガス0.65atmの混合気流中で4時間
加熱処理し、続いてアルゴン気流中で1時間焼鈍したの
ち、平均粒径約30μmに調整した。
This alloy was crushed with a jaw crusher and then further crushed with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm. This Sm-Fe-Mn alloy powder was charged into a horizontal tubular furnace, and the ammonia partial pressure was 0.35 at 465 ° C.
After heat treatment for 4 hours in a mixed gas flow of atm and hydrogen gas of 0.65 atm, followed by annealing for 1 hour in an argon gas flow, the average particle size was adjusted to about 30 μm.

【0050】得られたSm−Fe−Mn−N系粉体の組
成、磁気特性、耐酸化性能、温度特性試験結果を表1に
示した。さらに、外部磁場を印加しないで成形し、初磁
化曲線を測定した結果より、Sm−Fe−Mn−N系粉
体がピンニング型の材料であることが判った。なお、X
線回折法により解析した結果、主に菱面体晶を示す回折
線が認められ、更に、2θ=44゜(Cu、Kα線)付
近にも回折線が認められた。
Table 1 shows the composition, magnetic characteristics, oxidation resistance and temperature characteristic test results of the obtained Sm-Fe-Mn-N powder. Further, it was found that the Sm-Fe-Mn-N-based powder was a pinning type material from the result of molding without applying an external magnetic field and measurement of the initial magnetization curve. Note that X
As a result of analysis by a line diffraction method, diffraction lines mainly showing rhombohedral crystals were recognized, and further, diffraction lines were recognized near 2θ = 44 ° (Cu, Kα line).

【0051】[0051]

【実施例2】母合金の組成を、表1に示す組成に変更す
る以外は実施例1と同様な操作によって、平均粒径約3
0μmのR−Fe−Co−Mn−N系粉体を得た。その
結果を表1に示す。なお、X線回折法により解析した結
果、主に菱面体晶を示す回折線が観測されたほか、2θ
=44゜(Cu、Kα線)付近に比較的大きな回折線が
認められた。
Example 2 An average particle diameter of about 3 was obtained by the same operation as in Example 1 except that the composition of the mother alloy was changed to the composition shown in Table 1.
0 μm R-Fe-Co-Mn-N-based powder was obtained. The results are shown in Table 1. As a result of analysis by the X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were observed and 2θ
A relatively large diffraction line was recognized around = 44 ° (Cu, Kα line).

【0052】さらに、実施例2の粉体を、ボールミルに
より平均粒径約2μmまで粉砕した。この材料のiHc
は9.3kOeであった。この結果は、実施例2の粉体
において、固有保磁力iHcに粒径依存性がないことを
示している。なお、平均粒径約2μmの粉体の評価結果
を表1(参考例1)に併せて示した。
Further, the powder of Example 2 was pulverized with a ball mill to an average particle size of about 2 μm. IHc of this material
Was 9.3 kOe. This result shows that in the powder of Example 2, the intrinsic coercive force iHc has no particle size dependency. The evaluation results of the powder having an average particle size of about 2 μm are also shown in Table 1 (Reference Example 1).

【0053】また、本実施例で作製した約30μmのS
8.5 (Fe0.89Co0.1166.2Mn3.6 21.7組成を
有する磁性材料の無磁場下成形体の初磁化曲線を図1に
示す。この曲線は12kOeあたりに変曲点(磁化Mを
磁場Hで2次微分したd2 M/dH2 の極大点[図1中
上向き矢印])を有している。この変曲点が存在するこ
とは、本材料がピンニング型の磁性材料となっているこ
との一つの証拠である。
Further, the S of about 30 μm prepared in this embodiment is used.
FIG. 1 shows the initial magnetization curve of a magnetic material compact having a composition of m 8.5 (Fe 0.89 Co 0.11 ) 66.2 Mn 3.6 N 21.7 under no magnetic field. This curve has an inflection point (maximum point of d 2 M / dH 2 obtained by quadratic differentiation of magnetization M with magnetic field H [upward arrow in FIG. 1]) around 12 kOe. The existence of this inflection point is one proof that this material is a pinning type magnetic material.

【0054】[0054]

【実施例3〜7】母合金の組成を、表1に示す組成に変
更する以外は、実施例1とほぼ同様な操作によって、平
均粒径約30μmの希土類−鉄成分−マンガン−窒素系
粉体を得た。その結果を表1に示す。
[Examples 3 to 7] A rare earth-iron component-manganese-nitrogen-based powder having an average particle size of about 30 µm was prepared in substantially the same manner as in Example 1 except that the composition of the mother alloy was changed to that shown in Table 1. Got the body The results are shown in Table 1.

【0055】[0055]

【実施例8】窒化条件をアンモニア分圧0.25〜0.
4atm、水素分圧0.6〜0.75atm、窒化温度
440〜480℃の範囲で窒化時間を1〜4時間とし、
窒素量を17.6〜23.0原子%まで変化させる以外
は実施例2と同様な操作によって、平均粒径約30μm
のR−Fe−Mn−N系粉体を得た。そのiHcの窒素
量依存性を図2(●;図中黒丸が実施例8の結果)に示
す。
[Embodiment 8] The nitriding conditions are as follows: ammonia partial pressure of 0.25 to 0.
4 atm, hydrogen partial pressure of 0.6 to 0.75 atm, nitriding temperature of 440 to 480 ° C., and nitriding time of 1 to 4 hours,
An average particle diameter of about 30 μm was obtained by the same operation as in Example 2 except that the nitrogen amount was changed to 17.6 to 23.0 atomic%.
The R-Fe-Mn-N type | system | group powder of was obtained. The dependency of iHc on the nitrogen content is shown in FIG. 2 (; the black circle in the figure is the result of Example 8).

【0056】[0056]

【比較例1】Mnを加えず、窒化時間を2時間とする以
外は実施例1と同様にして、表1に示した組成のSm−
Fe−N系粉体を得た。この材料のiHcは0.5kO
eであった。この結果を表1に示す(参考例2)。さら
に、この材料をボールミルで約2μmまで微粉砕した。
この結果を表1に示す。
Comparative Example 1 Sm-having the composition shown in Table 1 was prepared in the same manner as in Example 1 except that Mn was not added and the nitriding time was 2 hours.
Fe-N type powder was obtained. IHc of this material is 0.5 kO
It was e. The results are shown in Table 1 (Reference Example 2). Further, this material was finely ground to about 2 μm with a ball mill.
Table 1 shows the results.

【0057】[0057]

【比較例2】窒化条件を400℃、アンモニア分圧0.
32atm、水素分圧0.68atm、2.5時間とす
る以外は実施例1と同様にして、表1に示した組成のS
m−Fe−Mn−N系粉体を得た。この材料のiHcは
0.45kOeであった。この結果を表1に示す(参考
例3)さらに、この材料をボールミルで約2μmまで微
粉砕した。この結果を表1に示す。
[Comparative Example 2] Nitriding conditions were set to 400 ° C and the ammonia partial pressure was set to 0.
S of the composition shown in Table 1 was carried out in the same manner as in Example 1 except that the hydrogen partial pressure was 32 atm, the hydrogen partial pressure was 0.68 atm, and the time was 2.5 hours.
An m-Fe-Mn-N-based powder was obtained. The iHc of this material was 0.45 kOe. The results are shown in Table 1 (Reference Example 3). Further, this material was finely pulverized with a ball mill to about 2 μm. Table 1 shows the results.

【0058】[0058]

【比較例3】実施例2の母合金を用いる以外は比較例2
と同様にして、Sm−Fe−Mn−Co−N系粉体を得
た。この材料のiHcは0.5kOeであった。この結
果を図1(○;図中白丸が比較例3の結果)に示す。
Comparative Example 3 Comparative Example 2 except that the mother alloy of Example 2 is used
In the same manner as in Sm-Fe-Mn-Co-N powder was obtained. The iHc of this material was 0.5 kOe. The results are shown in FIG. 1 (◯; white circles in the figure are results of Comparative Example 3).

【0059】[0059]

【実施例9】純度99.9%のSm、純度99.9%の
Fe、純度99.9%のCo及び純度99.9%のMn
を用いてアルゴンガス雰囲気下高周波溶解炉で溶解混合
し、さらにアルゴン雰囲気中、1150℃で20時間焼
鈍し徐冷することにより、Sm10.8(Fe0.89
0.1184.6Mn4.6 組成の合金を調製した。
Example 9 Sm with 99.9% purity, Fe with 99.9% purity, Co with 99.9% purity and Mn with 99.9% purity
Sm 10.8 (Fe 0.89 C) by melting and mixing in a high-frequency melting furnace in an argon gas atmosphere, and further annealing and annealing in an argon atmosphere at 1150 ° C. for 20 hours.
o 0.11 ) An alloy having a composition of 84.6 Mn 4.6 was prepared.

【0060】この合金をジョークラッシャーにより粉砕
し、次いで酸素分圧が約1モル%の窒素雰囲気中ロータ
ーミルでさらに粉砕した後、ふるいで粒度を調整して、
平均粒径約50μmの粉体を得た。このSm−Fe−C
o−Mn合金粉体を横型管状炉に仕込み、465℃にお
いて、アンモニア分圧0.35atm、水素ガス0.6
5atmの混合気流中で4.5時間加熱処理した。続い
て酸素分圧が約10-5の水素ガス気流中で450℃、1
0分間焼鈍したのち、平均粒径約30μmに調整した。
This alloy was crushed with a jaw crusher, then further crushed with a rotor mill in a nitrogen atmosphere having an oxygen partial pressure of about 1 mol%, and then the particle size was adjusted with a sieve,
A powder having an average particle size of about 50 μm was obtained. This Sm-Fe-C
The o-Mn alloy powder was charged into a horizontal tubular furnace, and the partial pressure of ammonia was 0.35 atm and the hydrogen gas was 0.6 at 465 ° C.
Heat treatment was performed for 4.5 hours in a mixed air stream of 5 atm. Then, in a hydrogen gas stream with an oxygen partial pressure of about 10 -5 at 450 ° C, 1
After annealing for 0 minutes, the average particle size was adjusted to about 30 μm.

【0061】得られた粉体の組成は、Sm8.5(Fe
0.89Co0.1166.8Mn3.618.52. 6 、飽和磁化は
123emu/g、固有保磁力は4.7kOe、耐酸化
性能は97%、保磁力の温度特性は0.35%/℃であ
った。なお、X線回折法により解析した結果、主に菱面
体晶を示す回折線が観測されたほか、2θ=44゜(C
u、Kα線)付近にも回折線が認められた。
The composition of the obtained powder was Sm 8.5 (Fe
0.89 Co 0.11) 66.8 Mn 3.6 N 18.5 H 2. 6, the saturation magnetization is 123emu / g, intrinsic coercive force 4.7KOe, oxidation resistance is 97%, the temperature characteristics of the coercive force 0.35% / ° C. met It was As a result of analysis by the X-ray diffraction method, diffraction lines mainly showing rhombohedral crystals were observed and 2θ = 44 ° (C
Diffraction lines were also observed near (u, Kα rays).

【0062】[0062]

【実施例10】実施例9と同様にして得られた母合金
を、酸素分圧1モル%の窒素気流中で粗粉砕し、音波式
分級機によってふるい径75〜90μmの粒子径に調整
した。このSm−Fe−Co−Mn合金粉末を、アンモ
ニア分圧0.35atm、水素ガス分圧0.65atm
のアンモニア−水素混合ガス気流中、465℃で4時間
窒化したのち、酸素分圧10-5atmのアルゴン気流中
で1時間焼鈍した。
Example 10 The mother alloy obtained in the same manner as in Example 9 was roughly pulverized in a nitrogen stream having an oxygen partial pressure of 1 mol% and adjusted to have a particle size of sieve of 75 to 90 μm by a sonic classifier. . With this Sm-Fe-Co-Mn alloy powder, ammonia partial pressure 0.35 atm and hydrogen gas partial pressure 0.65 atm.
In the ammonia-hydrogen mixed gas stream of 4 hours at 465 ° C., and then annealed in an argon stream with an oxygen partial pressure of 10 −5 atm for 1 hour.

【0063】得られた平均粒径36μmのSm8.8(F
0.89Co0.1168.8Mn3.818.50.1 組成の粉体
を水分量25wtppm、溶存酸素43wtppmのシ
クロヘキサン中で15分間ボールミル粉砕した。この材
料の組成は、Sm8.7(Fe0.89Co0.1167.9Mn3.8
18.10.21 .3 で、平均粒径は12μmであった。
The Sm 8.8 (F
e 0.89 Co 0.11 ) 68.8 Mn 3.8 N 18.5 H 0.1 A powder having a composition was ball-milled for 15 minutes in cyclohexane having a water content of 25 wtppm and a dissolved oxygen content of 43 wtppm. The composition of this material is Sm 8.7 (Fe 0.89 Co 0.11 ) 67.9 Mn 3.8
In N 18.1 H 0.2 O 1 .3, the average particle size was 12 [mu] m.

【0064】このSm−Fe−Co−Mn−N−H−O
系粉末を15kOeの外部磁場下、12ton/cm2
の圧力で圧縮成形した圧粉体の磁気特性は、飽和磁化
8.8kG、固有保磁力5.2kOe、(BH)max
12.1MGOeであった。また、この圧粉体のβは
0.37%/℃、耐酸化性能は100%であった。
This Sm-Fe-Co-Mn-N-H-O
12 ton / cm 2 under a magnetic field of 15 kOe
The magnetic properties of the green compact compression-molded under the pressure of are: saturation magnetization 8.8 kG, intrinsic coercive force 5.2 kOe, (BH) max =
It was 12.1 MGOe. Further, β of this green compact was 0.37% / ° C, and the oxidation resistance was 100%.

【0065】[0065]

【実施例11】実施例10で得られた平均粒径36μm
のSm8.8 (Fe0.89Co0.1168.8Mn3.818.5
0.1組成の粉体を、ボールミル時間を4時間とする以外
は実施例10と同様な同様な方法で粉砕し、平均粒径3
μmのSm8.5(Fe0.89Co0.1 166.5Mn3.717.8
0.72.8組成の微粉体を得た。
Example 11 Average particle size of 36 μm obtained in Example 10
Sm 8.8 (Fe 0.89 Co 0.11 ) 68.8 Mn 3.8 N 18.5 H
A powder of 0.1 composition was pulverized in the same manner as in Example 10 except that the ball mill time was 4 hours, and the average particle size was 3
μm Sm 8.5 (Fe 0.89 Co 0.1 1 ) 66.5 Mn 3.7 N 17.8
A fine powder having a composition of H 0.7 O 2.8 was obtained.

【0066】この粉体4gに対して、上記平均粒径36
μmのSm8.8(Fe0.89Co0.1168.8Mn3.818.5
0.1組成の粉体6gを乳鉢に入れ、チタン系カップリ
ング剤を微量分散したシクロヘキサン中で軽く混合し
た。混合後の体積相当径分布は、3μmと28μmの2
箇所にピークを有していた。この混合粉体を、実施例1
0と同様にして圧粉体としたときの磁気特性は、飽和磁
化9.5kG、固有保磁力5.0kOe、(BH)max
=14.5MGOeであった。また、この圧粉体のβは
0.37%/℃、耐酸化性能は100%であった。
With respect to 4 g of this powder, the above-mentioned average particle size is 36
μm Sm 8.8 (Fe 0.89 Co 0.11 ) 68.8 Mn 3.8 N 18.5
6 g of H 0.1 composition powder was placed in a mortar and lightly mixed in cyclohexane in which a small amount of titanium-based coupling agent was dispersed. The volume equivalent diameter distribution after mixing is 3 μm and 28 μm.
It had a peak at some points. This mixed powder was used in Example 1.
The magnetic properties of the green compact in the same manner as in 0 are: saturation magnetization 9.5 kG, intrinsic coercive force 5.0 kOe, (BH) max
= 14.5 MGOe. Further, β of this green compact was 0.37% / ° C, and the oxidation resistance was 100%.

【0067】[0067]

【実施例12】焼鈍終了後、焼鈍温度から500℃まで
の冷却速度を、約130℃/minとする以外(実施例
1の同冷却速度は約4℃/min)は、実施例1と同様
にして、Sm−Fe−Mn−N系材料を作製した。この
材料の固有保磁力iHcは、6.6kOeであった。
[Example 12] Same as Example 1 except that after the annealing, the cooling rate from the annealing temperature to 500 ° C was set to about 130 ° C / min (the same cooling rate of Example 1 was about 4 ° C / min). Then, an Sm-Fe-Mn-N-based material was produced. The intrinsic coercive force iHc of this material was 6.6 kOe.

【0068】[0068]

【比較例4】実施例1で得た粒径約30μmのSm−F
e−Mn−N系粉体を、2ton/cm2 、15kOe
の条件で磁場成形したあと、アルゴン雰囲気下、110
0℃、1時間の条件で熱処理を行った。これを急冷した
ときの成形体のiHcは0.1kOe以下であった。こ
の成形体を再び約30μmに粉砕した粉体のiHcは
0.1kOe以下であった。なおこの材料の結晶構造を
X線回折により解析した結果、α−鉄、窒化鉄に対応す
る回折線が主に検出された。このものは本発明における
菱面晶体または六方晶の結晶構造を含有しないものであ
った。
Comparative Example 4 Sm-F having a particle size of about 30 μm obtained in Example 1
The e-Mn-N powder was 2 ton / cm 2 , 15 kOe.
Magnetic field molding under the conditions
The heat treatment was performed at 0 ° C. for 1 hour. The iHc of the molded body when cooled rapidly was 0.1 kOe or less. The iHc of the powder obtained by pulverizing the compact again to about 30 μm was 0.1 kOe or less. As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines mainly corresponding to α-iron and iron nitride were detected. This did not contain the rhombohedral or hexagonal crystal structure of the present invention.

【0069】[0069]

【表1】 [Table 1]

【0070】[0070]

【発明の効果】以上説明した様に、本発明によれば、1
0μm以上の粗粉体で保磁力の高く、優れた耐酸化性能
と温度特性を有した希土類−鉄成分−マンガン−窒素
(−水素−酸素)系磁性材料を提供することができる。
As described above, according to the present invention, 1
It is possible to provide a rare earth-iron component-manganese-nitrogen (-hydrogen-oxygen) magnetic material having a coarse powder of 0 μm or more, a high coercive force, and excellent oxidation resistance and temperature characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2で作製したSm8.5(Fe0.89Co
0.1166.2Mn3.621.7組成を有する磁性材料の無磁
場下成形体の初磁化曲線。
FIG. 1 Sm 8.5 (Fe 0.89 Co produced in Example 2)
0.11 ) 66.2 Mn 3.6 N 21.7 Initial magnetization curve of a magnetic material compact without a magnetic field.

【図2】Sm10.9(Fe0.89Co0.1166.2Mn4.6
成を有する母合金を様々な条件で窒化した実施例8及び
比較例3の磁性材料の窒素量と保磁力iHcの相関図。
FIG. 2 is a correlation diagram of nitrogen content and coercive force iHc of magnetic materials of Example 8 and Comparative Example 3 in which a mother alloy having a composition of Sm 10.9 (Fe 0.89 Co 0.11 ) 66.2 Mn 4.6 was nitrided under various conditions.

【図3】Sm8.5Fe65.0Mn3.523.0材料の微構造を
TEM(透過電子顕微鏡)により観察した写真。
FIG. 3 is a photograph obtained by observing a microstructure of a Sm 8.5 Fe 65.0 Mn 3.5 N 23.0 material with a TEM (transmission electron microscope).

【図4】Sm8.2(Fe0.89Co0.1165.9Mn3.5
22.4磁性材料を0〜15kOeの範囲の静磁場及び79
kOeのパルス磁場で着磁した場合の着磁磁場と保磁力
の相関図。
FIG. 4 Sm 8.2 (Fe 0.89 Co 0.11 ) 65.9 Mn 3.5 N
22.4 Magnetic material with static magnetic field in the range of 0 to 15 kOe and 79
The correlation diagram of a magnetizing magnetic field and coercive force at the time of magnetizing with a pulse magnetic field of kOe.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年5月23日[Submission date] May 23, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/04 (72)発明者 入山 恭彦 静岡県富士市鮫島2番地の1 旭化成工業 株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI technical display location C22C 38/04 (72) Inventor Yasuhiko Iriyama 1-2, Samejima, Fuji City, Shizuoka Prefecture Asahi Kasei Corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】一般式RαFe(100- α- β- γ) Mnβ
Nγで表わされる磁性材料であり、(但し、Rは希土類
元素のうち少なくとも一種、α、β、γは原子%で、下
式を満たす) 3≦α≦20 0.5≦β≦25 17≦γ≦25 その主相が、少なくとも前記R、Fe、Mn及びNを成
分とする菱面体晶又は六方晶の結晶構造を有した相であ
るとともに、平均粒径が10μm以上であることを特徴
とする磁性材料。
1. The general formula RαFe (100- α - β - γ ) Mnβ
A magnetic material represented by Nγ (where R is at least one of rare earth elements, α, β, and γ are atomic% and satisfy the following formula): 3 ≦ α ≦ 20 0.5 ≦ β ≦ 25 17 ≦ γ ≦ 25 The main phase is a phase having a rhombohedral or hexagonal crystal structure containing at least the aforementioned R, Fe, Mn, and N as components, and has an average particle size of 10 μm or more. Magnetic material to do.
【請求項2】窒素濃度分布が微細な濃淡を有する請求項
1の磁性材料。
2. The magnetic material according to claim 1, wherein the nitrogen concentration distribution has a fine gradation.
【請求項3】Fe成分の0.01〜50原子%をCo で
置換した組成を有する請求項1または2の磁性材料。
3. The magnetic material according to claim 1, which has a composition in which 0.01 to 50 atomic% of the Fe component is replaced with Co.
【請求項4】Rの50原子%以上がSmである請求項1
ないし3のいずれかの磁性材料。
4. The R is 50 atomic% or more of which is Sm.
The magnetic material according to any one of 1 to 3.
【請求項5】実質的にR、Fe、Mnからなる合金を、
アンモニアガスを含む雰囲気下で、200〜650℃の
範囲で熱処理することを特徴とする請求項1ないし4の
いずれかに記載の磁性材料の製造法。
5. An alloy consisting essentially of R, Fe and Mn,
The method for producing a magnetic material according to claim 1, wherein the heat treatment is performed in a range of 200 to 650 ° C. in an atmosphere containing ammonia gas.
【請求項6】実質的にR−Fe−Mnからなる合金を、
不活性ガス及び水素ガスのうち少なくとも一種を含む雰
囲気中または真空中で、600〜1300℃の範囲で熱
処理したのち、アンモニアガスを含む雰囲気下で、20
0〜650℃の範囲で熱処理することにより窒素を導入
する請求項1ないし4のいずれかに記載の磁性材料の製
造法。
6. An alloy consisting essentially of R—Fe—Mn,
After performing a heat treatment in the range of 600 to 1300 ° C. in an atmosphere containing at least one of an inert gas and a hydrogen gas, or in a vacuum, in an atmosphere containing ammonia gas, 20
The method for producing a magnetic material according to any one of claims 1 to 4, wherein nitrogen is introduced by heat treatment in the range of 0 to 650 ° C.
【請求項7】一般式RαFe(100- α- β- γ- δ- ε
) MnβNγHδOεで表わされる磁性材料であり、
(但し、RはYを含む希土類元素のうち少なくとも一
種、α、β、γ、δ、εは原子%で、下式を満たす) 3≦100α/(100−δ−ε)≦20 0.5≦100β/(100−δ−ε)≦25 17≦100γ/(100−δ−ε)≦25 0.01≦δ≦10 1≦ε≦10 その主相が、少なくとも前記R、Fe、Mn及びNを成
分とする菱面体晶又は六方晶の結晶構造を有した相であ
るとともに、平均粒径が10μm以上であることを特徴
とする磁性材料。
7. A general formula RαFe (100- α - β - γ - δ - ε
) A magnetic material represented by MnβNγHδOε,
(However, R is at least one of rare earth elements including Y, and α, β, γ, δ, and ε are atomic%, and satisfy the following formulas): 3 ≦ 100α / (100−δ−ε) ≦ 20 0.5 ≦ 100β / (100−δ−ε) ≦ 25 17 ≦ 100γ / (100−δ−ε) ≦ 25 0.01 ≦ δ ≦ 10 1 ≦ ε ≦ 10 The main phase is at least the aforementioned R, Fe, Mn and A magnetic material having a rhombohedral or hexagonal crystal structure containing N as a component and having an average particle size of 10 μm or more.
【請求項8】窒素濃度分布が微細な濃淡を有する請求項
7の磁性材料。
8. The magnetic material according to claim 7, wherein the nitrogen concentration distribution has a fine gradation.
【請求項9】Fe成分の0.01〜50原子%をCoで
置換した組成を有する請求項7または8の磁性材料。
9. The magnetic material according to claim 7, which has a composition in which 0.01 to 50 atomic% of the Fe component is replaced with Co.
【請求項10】R成分の50原子%以上がSmである組
成を有する請求項7ないし9のいずれかの磁性材料。
10. The magnetic material according to claim 7, which has a composition in which 50 atomic% or more of the R component is Sm.
【請求項11】請求項1ないし4のいずれかに記載の磁
性材料を粉砕してなる平均粒径10μm未満の磁性材料
0.1〜50重量%と、請求項1ないし4のいすれかに
記載または請求項7ないし10のいすれかに記載の磁性
材料50〜99.9重量%とを含有する磁性材料。
11. A magnetic material having an average particle size of less than 10 μm, which is obtained by pulverizing the magnetic material according to any one of claims 1 to 4, in an amount of 0.1 to 50% by weight, and the magnetic material according to any one of claims 1 to 4. A magnetic material containing 50 to 99.9% by weight of the magnetic material according to any one of claims 7 to 10.
JP12172395A 1994-05-25 1995-05-19 Magnetic material and its manufacturing method Expired - Lifetime JP3560387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12172395A JP3560387B2 (en) 1994-05-25 1995-05-19 Magnetic material and its manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP11102094 1994-05-25
JP12523294 1994-06-07
JP6-125232 1994-06-07
JP6-111020 1994-06-07
JP12172395A JP3560387B2 (en) 1994-05-25 1995-05-19 Magnetic material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0855712A true JPH0855712A (en) 1996-02-27
JP3560387B2 JP3560387B2 (en) 2004-09-02

Family

ID=27311866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12172395A Expired - Lifetime JP3560387B2 (en) 1994-05-25 1995-05-19 Magnetic material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3560387B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187118A (en) * 1997-09-01 1999-03-30 Toshiba Corp Material and manufacture of magnet and bond magnet using the same
JP2005268718A (en) * 2004-03-22 2005-09-29 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen based magnet powder and method for manufacturing the same
JP2009088121A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnet powder
WO2009057742A1 (en) * 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha Composite magnetic material for magnet and method for manufacturing such material
EP2146357A1 (en) * 2007-04-27 2010-01-20 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
JP2010283359A (en) * 2010-07-05 2010-12-16 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen based magnet powder
EP3086333A1 (en) * 2015-04-16 2016-10-26 Jtekt Corporation Magnet manufacturing method and magnet
CN107112104A (en) * 2014-11-11 2017-08-29 住友电气工业株式会社 Magnet formed body, magnetic part, the manufacture method of the manufacture method of magnet formed body and magnetic part
JP2018046222A (en) * 2016-09-16 2018-03-22 大同特殊鋼株式会社 Samarium-iron-nitrogen based magnet material and samarium-iron-nitrogen based bond magnet
WO2022004081A1 (en) 2020-06-29 2022-01-06 国立大学法人東北大学 Rare earth-iron-nitrogen-based magnetic powder, compound for bond magnet, bond magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187118A (en) * 1997-09-01 1999-03-30 Toshiba Corp Material and manufacture of magnet and bond magnet using the same
JP2005268718A (en) * 2004-03-22 2005-09-29 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen based magnet powder and method for manufacturing the same
KR101250673B1 (en) * 2007-04-27 2013-04-03 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Magnetic material for high frequency wave, and method for production thereof
JP5669389B2 (en) * 2007-04-27 2015-02-12 旭化成株式会社 Magnetic material for high frequency and its manufacturing method
EP2146357A1 (en) * 2007-04-27 2010-01-20 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
EP2146357A4 (en) * 2007-04-27 2011-05-04 Asahi Chemical Ind Magnetic material for high frequency wave, and method for production thereof
JP2009088121A (en) * 2007-09-28 2009-04-23 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen magnet powder
JP4830024B2 (en) * 2007-11-02 2011-12-07 旭化成株式会社 Composite magnetic material for magnet and manufacturing method thereof
WO2009057742A1 (en) * 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha Composite magnetic material for magnet and method for manufacturing such material
JP2010283359A (en) * 2010-07-05 2010-12-16 Sumitomo Metal Mining Co Ltd Rare earth-iron-manganese-nitrogen based magnet powder
CN107112104A (en) * 2014-11-11 2017-08-29 住友电气工业株式会社 Magnet formed body, magnetic part, the manufacture method of the manufacture method of magnet formed body and magnetic part
EP3220394A4 (en) * 2014-11-11 2017-12-20 Sumitomo Electric Industries, Ltd. Magnet molding, magnetic member, method for manufacturing magnet molding, and method for manufacturing magnetic member
CN107112104B (en) * 2014-11-11 2019-11-05 住友电气工业株式会社 The manufacturing method of magnet formed body, magnetic part, the manufacturing method of magnet formed body and magnetic part
EP3086333A1 (en) * 2015-04-16 2016-10-26 Jtekt Corporation Magnet manufacturing method and magnet
JP2018046222A (en) * 2016-09-16 2018-03-22 大同特殊鋼株式会社 Samarium-iron-nitrogen based magnet material and samarium-iron-nitrogen based bond magnet
WO2022004081A1 (en) 2020-06-29 2022-01-06 国立大学法人東北大学 Rare earth-iron-nitrogen-based magnetic powder, compound for bond magnet, bond magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder

Also Published As

Publication number Publication date
JP3560387B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
US5181973A (en) Sintered permanent magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP2003193208A (en) Magnet material and production method therefor
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP4170468B2 (en) permanent magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
US5230749A (en) Permanent magnets
JP2740981B2 (en) R-Fe-Co-BC permanent magnet alloy with excellent thermal stability with small irreversible demagnetization
JP4529180B2 (en) Rare earth permanent magnet
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH04338604A (en) Metallic bonding magnet and manufacture thereof
JPH06112019A (en) Nitride magnetic material
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JP2000216015A (en) Compressed type rigid magnetic material and manufacture thereof
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JP3209292B2 (en) Magnetic material and its manufacturing method
WO2022202760A1 (en) Magnetic material for high frequency use, and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term