JPH0855625A - Manufacture of fuel electrode substrate - Google Patents

Manufacture of fuel electrode substrate

Info

Publication number
JPH0855625A
JPH0855625A JP6209097A JP20909794A JPH0855625A JP H0855625 A JPH0855625 A JP H0855625A JP 6209097 A JP6209097 A JP 6209097A JP 20909794 A JP20909794 A JP 20909794A JP H0855625 A JPH0855625 A JP H0855625A
Authority
JP
Japan
Prior art keywords
ysz
fuel electrode
electrode
nickel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6209097A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Masaya Takahashi
雅也 高橋
Katsumi Manabe
勝巳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6209097A priority Critical patent/JPH0855625A/en
Publication of JPH0855625A publication Critical patent/JPH0855625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent drop in strength of a fuel electrode substrate serving as a cell supporting body by carrying metal functioning as a fuel electrode on the whole surface including the insides of pores of a porous body serving as an electrode supporting body in a solid electrolytic fuel cell. CONSTITUTION:A porous sintered body prepared by a press process or a extrusion molding process from powder of yttrium oxide added stabilized zirconia (YSZ) is immersed in an aqueous solution of metal functioning as a fuel electrode for impregnating it, dried, then heat treated. The YSZ to which alumina is added may be used, and a group V111 element such as nickel in the periodic table is used as the functional metal. Heat treatment temperature of 500-700 deg.C is preferable. Since nickel in the electrode substrate is chemically firmly bonded to the whole surface including the insides of pores of the YSZ, specified performance can be obtained in a small amount. Since the porous body made of YSZ is used in the substrate, the thermal expansion coefficient is the same as that of a solid electrolyte made of YSZ, and drop in strength of the substrate can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は固体電解質型燃料電池用
燃料電極基板の作製法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a fuel electrode substrate for a solid oxide fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、化学反応エネルギーを直
接、電気エネルギーに変換する装置であり、ここで述べ
る固体電解質型燃料電池(以下、SOFC)は、電解質
を初めとする電池の構成材料にセラミックスを使用した
燃料電池である。
2. Description of the Related Art A fuel cell is a device for directly converting chemical reaction energy into electric energy, and a solid oxide fuel cell (hereinafter referred to as SOFC) described here is a ceramic as a constituent material of a cell including an electrolyte. Is a fuel cell using.

【0003】電解質材料としては、酸素イオン伝導性を
有する、イットリアを添加して結晶構造の安定化を図っ
た安定化ジルコニア(YSZ)が主に使用されている。
しかし、この材料の導電率(酸素イオンの伝導性)は数
100℃程度の温度では極めて低いので、燃料電池とし
て所定の電力を取り出す際の電解質部における電圧降下
を抑制するため、動作温度として900〜1000℃が
選定されている。一方、これと同時に電解質部における
電圧降下の低減を目的として、電解質の薄膜化が行なわ
れ、数10〜数100μmの膜厚が選定されている。
As the electrolyte material, stabilized zirconia (YSZ), which has oxygen ion conductivity and whose crystal structure is stabilized by adding yttria, is mainly used.
However, since the conductivity (oxygen ion conductivity) of this material is extremely low at a temperature of about several hundreds of degrees Celsius, an operating temperature of 900 is set in order to suppress a voltage drop in the electrolyte portion when a predetermined electric power is taken out as a fuel cell. ~ 1000 ° C has been selected. On the other hand, at the same time, for the purpose of reducing the voltage drop in the electrolyte portion, the electrolyte is thinned and a film thickness of several tens to several hundreds μm is selected.

【0004】一方、電極材料としては耐高温性の観点か
ら、空気極にはABO3構造のペロブスカイト型の複合
酸化物、燃料極にはニッケルジルコニアサーメット(N
i−YSZ)が主に使用されている。ペロブスカイト型
の複合酸化物としては、例えばLa1-xSrxMnO3
La1-xSrxCoO3があるが、電極への要求条件とし
ては、多孔質体であり電極活性を有すると共に、導電性
を持ち、さらに電解質との間で熱膨張率差が小さいこと
が必要であり、このような観点から前者が一般的に使用
されている。
On the other hand, from the viewpoint of high temperature resistance as an electrode material, a perovskite type complex oxide having an ABO 3 structure is used for the air electrode, and nickel zirconia cermet (N) is used for the fuel electrode.
i-YSZ) is mainly used. Examples of perovskite-type composite oxides include La 1-x Sr x MnO 3 and La 1-x Sr x CoO 3, but the requirement for the electrode is that it is a porous body and has electrode activity. It is necessary for the former to be conductive and to have a small difference in coefficient of thermal expansion from the electrolyte. From this viewpoint, the former is generally used.

【0005】SOFCはこのような材料で構成され、原
理的には、これら3者が電解質を介して配置されていれ
ばよい。したがって、最も簡便なセルの構成は、図1に
示すような、電解質自身がセルを支える自立膜型の平板
型である。すなわち、電解質2を介して、酸化剤極3と
燃料極4を設けて構造になっている。SOFCは単セル
1のみで使用されることはなく、所定の出力を得るため
にはそれに必要となる複数個の単セル1を積層し、それ
らを電気的に接続することが必要であり、この際、各セ
ル間にはガスの混合を防止し、電気のみ通す機能を持っ
たインタコネクタ板5の設置が不可欠である。しかし、
この方法では先に述べたような理由から電解質板2は薄
いことが望まれるのに対し、薄いと単セルの強度が不足
し、積層が困難になる。そこで、この方式では電解質板
の厚みは数100μmの厚みとなり、必ずしもセルの発
電特性は良好なものにはならない。なお、符号8および
9はそれぞれ、燃料ガス流路、酸化剤ガス流路である。
The SOFC is made of such a material, and in principle, it is sufficient that these three members are arranged via an electrolyte. Therefore, the simplest cell structure is a flat plate type of a self-supporting membrane in which the electrolyte itself supports the cell as shown in FIG. That is, the structure is such that the oxidant electrode 3 and the fuel electrode 4 are provided via the electrolyte 2. The SOFC is not used only in the single cell 1, and in order to obtain a predetermined output, it is necessary to stack a plurality of single cells 1 required for it and electrically connect them. At this time, it is indispensable to install an interconnector plate 5 having a function of preventing gas mixing and passing electricity only between the cells. But,
In this method, the electrolyte plate 2 is desired to be thin for the reasons described above, but if it is thin, the strength of the single cell is insufficient, and the lamination becomes difficult. Therefore, in this method, the thickness of the electrolyte plate is several 100 μm, and the power generation characteristics of the cell are not necessarily good. Reference numerals 8 and 9 are a fuel gas passage and an oxidant gas passage, respectively.

【0006】[0006]

【発明が解決する問題点】この解決手段の1つとして
は、一方の電極をセルの支持体とし、この表面に薄い電
解質膜を形成することが考えられる。これが図3の支持
膜型の構造である。この構造のセルでは、酸化剤極6と
燃料極7のどちらかの電極を支持体とすることが可能で
ある。ところで、酸化剤極6をセルの支持体とする場合
には特段の支障はないが、燃料極7を支持体とする場
合、従来の方法で作製された電極では基板強度や電解質
2との熱膨張率差で問題があった。なお、符号、5、
8、9は図2と同様のものを示す。
As one of the means for solving this problem, it is conceivable that one of the electrodes serves as a support for the cell and a thin electrolyte membrane is formed on this surface. This is the support membrane type structure of FIG. In the cell of this structure, either the oxidant electrode 6 or the fuel electrode 7 can be used as the support. By the way, when the oxidizer electrode 6 is used as a support of the cell, there is no particular problem, but when the fuel electrode 7 is used as a support, the electrode manufactured by the conventional method has a substrate strength and a heat of the electrolyte 2. There was a problem due to the difference in expansion coefficient. Incidentally, reference numerals 5,
Reference numerals 8 and 9 show the same as in FIG.

【0007】すなわち、従来、このサーメット電極の調
製法としては、一般的に酸化ニッケル粉末とYSZ粉末
の混合法が広く採用され、酸化ニッケルが0.1〜5μ
m程度、またYSZが0.1〜10μm程度の粉末が使
用されていた。しかし、このような方法で作製した粉末
を出発物質とした場合、燒結体中ではニッケルとYSZ
が独立した粒子状態のまま存在し、ニッケルの微粒子が
YSZの粒界部にも存在する構造になっている。燃料電
極7においては、ニッケル粒は電極の反応部と共に電子
伝導部、そしてYSZ粒がイオン伝導体となっており、
電解質のYSZを経由した酸素イオンは電極中のYSZ
を伝導して電極内に到達する。一方、ニッケル粒子は、
YSZ粒子と気相との3者の接触部が反応点として作用
すると共に、電子伝導体として機能する。この反応点に
おいて、YSZを伝わってきた酸素イオンと気相から供
給される水素とから、水と電子が生成する反応が進行
し、電子は電極内のニッケル粒子を通って電極の外部表
面に送られる。したがって、燃料電極においてはニッケ
ルとYSZの分散状況が重要であり、この分布によって
電極の特性が左右される。
That is, conventionally, as a method for preparing this cermet electrode, a mixing method of nickel oxide powder and YSZ powder has generally been widely adopted.
A powder having a particle size of about m and a YSZ of about 0.1 to 10 μm was used. However, when the powder produced by such a method is used as a starting material, nickel and YSZ are contained in the sintered body.
Exist in the state of independent particles, and nickel fine particles also exist in the grain boundary portion of YSZ. In the fuel electrode 7, the nickel particles are the electron conducting part together with the reaction part of the electrode, and the YSZ particles are the ion conductor.
Oxygen ions passing through YSZ of the electrolyte are YSZ in the electrode
To reach the inside of the electrode. On the other hand, nickel particles are
The contact portion between the YSZ particles and the gas phase acts as a reaction point and also functions as an electron conductor. At this reaction point, the reaction of producing water and electrons proceeds from the oxygen ions transmitted through YSZ and hydrogen supplied from the gas phase, and the electrons are sent to the outer surface of the electrode through the nickel particles in the electrode. To be Therefore, the dispersion state of nickel and YSZ is important in the fuel electrode, and this distribution influences the characteristics of the electrode.

【0008】望ましい電極構造としては、ニッケル粒子
が、YSZの表面に付着し、かつ各粒子は互いに接触し
た状態で電子の導電路が編み目状に形成され、これが途
中で切断されることなく電極表面の集電体まで電気的に
接続されていることである。しかし、ニッケルとYSZ
を機械的に混合して調製した物質では、電極として望ま
しいこのような特徴を得ることは難しく、このため電極
性能の向上を目的に、混合物中のニッケル含有率を増さ
ざるを得なかった。しかし、含有率を増加させると熱膨
張率が大きくなるので無闇に含有率を増加させてもSO
FCを構成することができなくなる。YSZを出発物質
とし従来の方法で作製したサーメットの場合、電極性能
上から必要とされるニッケルの添加量は最低でも40w
t%である。一方、サーメットの熱膨張率はニッケルの
量が多いほど大きくなり(酸化ニッケルのみの場合:1
5×10-6/度、YSZのみの場合:10-6/度)、酸
化ニッケルを40wt%添加させた電極の熱膨張率は1
1×10-6/度となり、電解質との間で熱膨張率差を有
している。そして、このような熱膨張率差は添加する酸
化ニッケル量の増加につれて大きくなる。この理由は、
酸化ニッケルがYSZの粒界部に入り込んでいるためで
ある。このような粒界部に入り込んだ酸化ニッケルは、
使用中に水素にさらされると還元され、還元による体積
減少のために粒界部の接合性の低下をもたらし、基板の
強度低下を招いていた。基板強度が低下すると基板にク
ラックや反りが生じ、セルの変形によるガス漏れや極端
な場合にはセルの破損に至ることもあった。この結果、
従来の方法で調製された燃料電極基板ではセルの信頼性
が低いという重大な欠点があった。
As a desirable electrode structure, nickel particles adhere to the surface of YSZ, and the conductive paths of electrons are formed in a knitted pattern in a state where the particles are in contact with each other, and this is not cut in the middle of the electrode surface. That is, it is electrically connected to the current collector. However, nickel and YSZ
It was difficult to obtain such characteristics desirable for an electrode with a substance prepared by mechanically mixing the above, and therefore, the nickel content in the mixture had to be increased for the purpose of improving the electrode performance. However, if the content rate is increased, the coefficient of thermal expansion also increases, so even if the content rate is increased indiscriminately, the SO
FC cannot be configured. In the case of a cermet produced by a conventional method using YSZ as a starting material, the amount of nickel required for electrode performance is at least 40w.
t%. On the other hand, the coefficient of thermal expansion of cermet increases as the amount of nickel increases (for nickel oxide only: 1
5 × 10 −6 / degree, YSZ only: 10 −6 / degree), and the coefficient of thermal expansion of the electrode containing 40 wt% of nickel oxide is 1
It is 1 × 10 −6 / degree, and has a coefficient of thermal expansion difference with the electrolyte. Then, such a difference in coefficient of thermal expansion increases as the amount of nickel oxide added increases. The reason for this is
This is because nickel oxide has entered the grain boundary portion of YSZ. Nickel oxide that has entered such grain boundaries is
When it was exposed to hydrogen during use, it was reduced, and the reduction in volume due to reduction resulted in a decrease in the bondability at the grain boundary portion, leading to a decrease in the strength of the substrate. When the strength of the substrate is lowered, the substrate is cracked or warped, which may lead to gas leakage due to deformation of the cell or damage to the cell in extreme cases. As a result,
The fuel electrode substrate prepared by the conventional method has a serious drawback of low cell reliability.

【0009】[0009]

【発明の目的】本発明の目的は、従来のSOFCの燃料
極が、1000℃の水素ガス雰囲気下で使用するとYS
Z粒子の界面部に存在する酸化ニッケル粒子の還元が進
行し、セル支持体となった基板の強度が低下するといっ
た問題点の解決を図ったSOFCを提供することにあ
る。
OBJECT OF THE INVENTION The object of the present invention is to provide a conventional SOFC fuel electrode with YS when used in a hydrogen gas atmosphere at 1000.degree.
An object of the present invention is to provide an SOFC that solves the problem that the reduction of the nickel oxide particles existing at the interface of the Z particles progresses and the strength of the substrate serving as the cell support decreases.

【0010】[0010]

【問題点を解決するための手段】本発明は、燃料電極の
形成にあたって、まず、電極保持体となる多孔質体を作
製し、次いで燃料電極として作用する金属をこの多孔質
体の細孔内を含む全表面上に担持させることを特徴とし
ている。
According to the present invention, in forming a fuel electrode, first, a porous body to be an electrode holder is prepared, and then a metal acting as a fuel electrode is placed in the pores of the porous body. It is characterized in that it is supported on the entire surface including.

【0011】従来のSOFCにおいては、燃料電極はニ
ッケルジルコニアサーメットが使用され、その作製法と
しては、酸化ニッケル(または、金属ニッケル粉末)粉
末とYSZ粉末を混合させた粉末を燒結させる方法が採
られており、本発明のような調製方法は行なわれていな
かった。
In a conventional SOFC, a nickel zirconia cermet is used as a fuel electrode, and a method of producing it is to use a method of sintering a powder obtained by mixing nickel oxide (or metal nickel powder) powder and YSZ powder. However, the preparation method as in the present invention has not been carried out.

【0012】[0012]

【実施例】本発明においては、YSZ粉末を原料粉末と
してプレス法や、押し出し成形法などによって多孔質の
燒結体11を作製し、次いでこれに電極として作用する
金属の水溶液12を含浸させ、乾燥させた後、最後に所
定の温度で熱処理することで電極基板を作製する。
EXAMPLE In the present invention, YSZ powder is used as a raw material powder to prepare a porous sintered body 11 by a pressing method, an extrusion molding method, etc., and then an aqueous solution 12 of a metal acting as an electrode is impregnated and dried. After that, the electrode substrate is manufactured by finally performing heat treatment at a predetermined temperature.

【0013】前述の多孔質燒結体11としては、YSZ
あるいはたとえばアルミナなどを添加したYSZなどの
YSZをベースとした物質を用いることができる。
As the above-mentioned porous sintered body 11, YSZ is used.
Alternatively, for example, a YSZ-based substance such as YSZ to which alumina is added can be used.

【0014】また、燃料電極として作用に適する金属と
しては、たとえば周期率表第8族に属する金属で燃料電
極反応に対して活性であればよく、ニッケルのほか、特
にロジウムやルテニウムなどでもよい。
The metal suitable for the action as the fuel electrode may be, for example, a metal belonging to Group 8 of the periodic table as long as it is active for the fuel electrode reaction, and may be nickel, particularly rhodium or ruthenium.

【0015】燒結体11を水溶液12に浸漬した後、熱
処理を行なうわけであるが、この熱処理の温度は、50
0〜700℃であるのが好ましい。500℃未満である
と、たとえば塩などが飛散せずに、金属が析出しない恐
れがあり、一方700℃を越えると、金属自体が飛散す
る恐れを生じる。
After the sintered body 11 is immersed in the aqueous solution 12, the heat treatment is performed. The temperature of this heat treatment is 50.
It is preferably 0 to 700 ° C. If the temperature is lower than 500 ° C., for example, salt or the like may not be scattered and the metal may not be deposited, while if it exceeds 700 ° C., the metal itself may be scattered.

【0016】図1は本発明における実施例の燃料電極基
板の作製法のプロセスを示すものである。すなわち、ま
ずYSZをプレス、押し出しなどによって成形し、その
後焼結して燃料電極基板となる多孔質のYSZ燒結体を
作製する(図1(1))。次にこの燒結体11を金属の
水溶液12中に浸漬して(図1(2))、金属を燒結体
11の細孔内を含む全ての表面上に保持させている。
FIG. 1 shows a process of manufacturing a fuel electrode substrate according to an embodiment of the present invention. That is, first, YSZ is molded by pressing, extrusion, or the like, and then sintered to produce a porous YSZ sintered body to be a fuel electrode substrate (FIG. 1 (1)). Next, the sintered body 11 is dipped in the aqueous solution 12 of the metal (FIG. 1 (2)) to hold the metal on all the surfaces including the inside of the pores of the sintered body 11.

【0017】次に、本発明の具体的な実施例について以
下に述べる。ここで使用する多孔質体は通常の成形法で
グリーン体を作製し、これを燒結させることによって得
た。ここでは押し出し成形とプレス成形法で、このよう
な多孔質体を作製した。使用した原料粉末は市販のYS
Zであり、ここでは東ソーのTZ−8Yを用いた。
Next, specific examples of the present invention will be described below. The porous body used here was obtained by producing a green body by an ordinary molding method and sintering the green body. Here, such a porous body was produced by extrusion molding and press molding. The raw material powder used is a commercially available YS
Z, and here TZ-8Y manufactured by Tosoh Corporation was used.

【0018】まず、押し出し成形法を応用した多孔質体
の作製例を述べる。押し出し成形法では粘土状の材料が
必要であり、この物質は原料粉末に専用の水溶性のバイ
ンダを添加して作製した。具体的には、原料粉末100
に対し、バインダ約5、水10〜15(重量ベースの混
合比)を添加して作製した。バインダとしては、メチル
セルロース系の水溶性高分子を用いた。また、成形体の
仕上がりを考慮し、可塑剤も2〜5(混合比(重量ベー
ス))加えた。このように作製した押し出し成形体を乾
燥させた後、燒結させ燒結体11を作製した。なお、燒
結前には脱脂が必要であり、ここでは約400℃で行な
った。そして、燒結は温度1250〜1350℃で、2
〜5時間で行なった。なお、作製した多孔質体(燒結
体)11の大きさは、幅、100mmで長さは150と
200mm、厚みは5mmである。長さは押し出された
成形体の切断長さによるだけであり、どのようなものも
作製可能であった。ここで得られた燒結体11の多孔度
は、燒結条件に依存するが、1300℃燒結のもので約
35%であった。また、細孔径は1〜10μmであっ
た。
First, an example of producing a porous body by applying the extrusion molding method will be described. The extrusion method requires a clay-like material, and this substance was prepared by adding a dedicated water-soluble binder to the raw material powder. Specifically, the raw material powder 100
On the other hand, about 5 parts of binder and 10 to 15 of water (mixing ratio on a weight basis) were added. A methylcellulose-based water-soluble polymer was used as the binder. Further, in consideration of the finish of the molded body, a plasticizer of 2 to 5 (mixing ratio (weight basis)) was also added. The extruded body produced in this manner was dried and then sintered to produce a sintered body 11. Note that degreasing is necessary before sintering, and here, degreasing was performed at about 400 ° C. Then, the sintering is performed at a temperature of 1250 to 1350 ° C. for 2
Done in ~ 5 hours. The size of the manufactured porous body (sintered body) 11 is 100 mm in width, 150 and 200 mm in length, and 5 mm in thickness. The length depends only on the cut length of the extruded molded product, and any product can be produced. The porosity of the sintered body 11 obtained here depended on the sintering conditions, but it was about 35% when sintered at 1300 ° C. The pore size was 1 to 10 μm.

【0019】次に、プレス法による作製例について述べ
る。プレス法では押し出し法と異なるバインダ処理が必
要であり、ここではPVAをバインダに使用した。YS
ZをPVAの水溶液中に投入し、これをスプレードライ
ヤで噴霧乾燥し、バインダコーティングした造粒粉を作
製した。この造粒粉を1t/cm2で成形し、50mm
角、厚み5mmの成形体を得た。次に、これを燒結し、
多孔質体(燒結体)11とした。このときの燒結条件
は、押し出し成形法による成形体の燒結とほぼ同じとし
た。しかし、プレス成形では粉末の充填状況が異なるた
めか、燒結性が高くなり1300℃の燒結で多孔度は約
30%であった。一方、細孔径は1〜5μmであった。
Next, an example of fabrication by the pressing method will be described. The pressing method requires a binder treatment different from the extrusion method, and PVA was used as the binder here. YS
Z was put into an aqueous solution of PVA, and this was spray-dried with a spray dryer to prepare a binder-coated granulated powder. This granulated powder is molded at 1 t / cm 2 and 50 mm
A molded product having a corner and a thickness of 5 mm was obtained. Next, sinter this,
The porous body (sintered body) 11 was used. The sintering conditions at this time were almost the same as the sintering of the molded body by the extrusion molding method. However, in the press molding, the sinterability was high probably because the powder filling condition was different, and the porosity was about 30% by sinter at 1300 ° C. On the other hand, the pore size was 1 to 5 μm.

【0020】このように作製した多孔質体11にニッケ
ル水溶液12を含浸させた(図1(3))。ここで使用
したニッケル水溶液12は、塩化ニッケル6水和物を蒸
留水に溶解させて調製した。なお、このときの水溶液の
濃度は、水溶液の全量が多孔質基板に含浸させたとき
に、ニッケルの含有量が20wt%となる濃度とした。
そして、この水溶液を多孔質基板に全量を含浸させ、室
温中で水分を蒸発させ、十分に乾燥した(図1
(4))。次に、100℃の雰囲気下に24時間以上さ
らしてさらに乾燥させ、最後に600℃で12時間熱処
理を行ないYSZ層の細孔内に付着させた(図1
(5))。
The thus prepared porous body 11 was impregnated with an aqueous nickel solution 12 (FIG. 1 (3)). The nickel aqueous solution 12 used here was prepared by dissolving nickel chloride hexahydrate in distilled water. The concentration of the aqueous solution at this time was such that the nickel content was 20 wt% when the entire amount of the aqueous solution was impregnated into the porous substrate.
Then, the porous substrate was impregnated with the whole amount of this aqueous solution, the water was evaporated at room temperature, and it was sufficiently dried (FIG. 1).
(4)). Next, it was exposed to an atmosphere of 100 ° C. for 24 hours or more to be further dried, and finally heat-treated at 600 ° C. for 12 hours to be attached inside the pores of the YSZ layer (FIG. 1).
(5)).

【0021】本発明では、このようにして燃料電極基板
を作製した。このようにして作製した燃料極は、発電雰
囲気(1000℃、燃料極雰囲気ガス)にさらすと付着
したニッケルが金属状態に還元されて導電性が発現し、
そのまま電極とすることができた。セルはこの基板を使
用し、電解質を溶射し、さらに酸化材極を形成すること
で作製することができる。
In the present invention, the fuel electrode substrate is manufactured in this way. When the fuel electrode produced in this manner is exposed to a power generation atmosphere (1000 ° C., fuel electrode atmosphere gas), the attached nickel is reduced to a metal state to exhibit conductivity,
It could be directly used as an electrode. A cell can be manufactured by using this substrate, spraying an electrolyte, and forming an oxidizer electrode.

【0022】本発明による調製法によって作製した燃料
極と、従来の方法によるニッケルジルコニアサーメット
電極における諸特性を調査した。一例として、熱膨張特
性と導電率を示す。導電率については、従来の方法で作
製した電極は酸化ニッケルを50wt%以上添加するこ
とで、100s/cm以上になったのに対し、本発明品
では、ニッケル量で20wt%程度含浸させるだけで、
これと同等以上の導電率を得ることができた。一方、熱
膨張特性については、従来の方法の場合、酸化ニッケル
の添加量の増加と共に比例して増加し、30wt%で1
1.2×10-6(1/K)、50wt%では12.2×
10-6(1/K)にも達し、先のYSZとの差はそれぞ
れ、1.2×10-6(1/K)、2.2×10-6(1/
K)になっている。これに対し、本発明品では、YSZ
が多孔質体の骨格構造を形成しているので、YSZと同
一の値であった。この関係を表1に示した。
Various characteristics of the fuel electrode prepared by the preparation method according to the present invention and the nickel zirconia cermet electrode prepared by the conventional method were investigated. As an example, thermal expansion characteristics and conductivity are shown. Regarding the electric conductivity, the electrode manufactured by the conventional method was 100 s / cm or more by adding 50 wt% or more of nickel oxide, whereas the product of the present invention was impregnated with about 20 wt% of nickel. ,
It was possible to obtain a conductivity equal to or higher than this. On the other hand, regarding the thermal expansion characteristics, in the case of the conventional method, it increases in proportion to the increase in the addition amount of nickel oxide, and becomes 1 at 30 wt%.
1.2 × 10 -6 (1 / K), 12.2 × at 50 wt%
It reaches 10 -6 (1 / K), and the difference from the previous YSZ is 1.2 × 10 -6 (1 / K) and 2.2 × 10 -6 (1 /
K). On the other hand, in the product of the present invention, YSZ
Has the same value as YSZ since it forms a skeleton structure of a porous body. This relationship is shown in Table 1.

【0023】 [0023]

【0024】さらに、2つの方法で調製した電極基板の
強度を還元終了後の状態において測定した。測定は3点
曲げ試験法で行なった。その結果、従来の方法による基
板では、酸化ニッケルの添加によって基板強度は低下し
たが、本発明品ではYSZのオリジナルな強度をそのま
ま維持することができた。これは、先にも述べたように
YSZが多孔質体の骨格構造を形成し、このようなYS
Zの骨格構造の細孔内の表面にニッケルが担持されてい
るためと推定される。
Further, the strength of the electrode substrate prepared by the two methods was measured in the state after completion of the reduction. The measurement was performed by the 3-point bending test method. As a result, in the substrate prepared by the conventional method, the substrate strength was lowered by the addition of nickel oxide, but in the product of the present invention, the original strength of YSZ could be maintained as it was. This is because YSZ forms a skeleton structure of a porous body as described above,
It is presumed that nickel is supported on the surface of the pores of the skeleton structure of Z.

【0025】なお、この実施例では通常広く使用されて
いるニッケルを例に説明したが、燃料電極として適する
金属としては周期率表第8族に属する金属で燃料電極反
応に対して活性であればよく、ニッケル以外には特にロ
ジウムやルテニウムでもこのような電極基板の形成が可
能である。これらを適用する場合、塩化ロジウム6水和
物や塩化ルテニウムが使用できる。また、この他容易に
水溶液になるもので、また、容易に熱分解するものであ
れば適用可能であり、硝酸塩を出発物質とすることもで
きる。
In this embodiment, nickel, which is generally widely used, has been described as an example, but a metal suitable as a fuel electrode is a metal belonging to Group 8 of the periodic table if it is active for the fuel electrode reaction. Of course, it is possible to form such an electrode substrate with rhodium or ruthenium in addition to nickel. When these are applied, rhodium chloride hexahydrate and ruthenium chloride can be used. In addition to the above, any solution that can be easily converted into an aqueous solution and that can be easily thermally decomposed can be applied, and a nitrate can be used as a starting material.

【0026】従来のSOFCでは、セルの構成や方式に
かかわらず燃料極には全て粉末の混合法で調製されたニ
ッケルジルコニアサーメットが使用されていた。このた
め、このような基板をセルの支持体とし、この表面に発
電部を形成するSOFCにおいては、以下のような問題
があった。
In the conventional SOFC, nickel zirconia cermet prepared by the powder mixing method was used for all the fuel electrodes regardless of the cell configuration and system. For this reason, the SOFC in which such a substrate is used as the support of the cell and the power generation portion is formed on the surface thereof has the following problems.

【0027】(1)電解質との間で熱膨張率差が存在し
ており、高温下での長期間の使用で電解質の剥離が生じ
てセルが破損しやすい。
(1) There is a difference in coefficient of thermal expansion between the electrolyte and the electrolyte, and when used at high temperature for a long time, peeling of the electrolyte occurs and the cell is easily damaged.

【0028】(2)熱膨張率差を抑えるためニッケル添
加量が制限され電極性能が低い。
(2) In order to suppress the difference in coefficient of thermal expansion, the amount of nickel added is limited and the electrode performance is low.

【0029】(3)使用に伴って酸化ニッケルの還元が
進行し、基板の強度が低下する。また、使用中のニッケ
ル粒子の燒結の進行に伴い経時的な強度低下が起こる。
(3) The nickel oxide is reduced with use, and the strength of the substrate is reduced. In addition, the strength of the nickel particles decreases over time with the progress of sintering of the nickel particles.

【0030】しかし、本発明のSOFCにおいては、ニ
ッケル粉末とYSZ粉末の混合物を出発物質に使用する
のではなく、予め多孔質状態に形成したYSZ燒結体に
金属の水溶液を含浸させる。したがって、細孔内の表面
に均一に付着させることができ、それと共にYSZの粒
界に酸化ニッケルが配置されないので、使用中の酸化ニ
ッケルの還元による基板強度の低下もない。また所定の
形状で任意の多孔度とした多孔質燒結体に含浸させるの
で、基板の多孔度の調節も容易であり、例え、多孔度を
大きくしても、各粉末粒子の表面にニッケルが吸着され
ているので、電気的な接触は確保され、従来品のような
導電率の低下は生じない。また、YSZ粒子との熱膨張
率差はなく、電極性能を向上させるにあたっても熱膨張
率を意識せずにニッケル金属の含浸量を増すだけで対応
することができる。そして、本発明による方法では、ニ
ッケルはYSZの全表面に化学吸着によって付着してい
るので、従来品で生じていたような、金属粒子の燒結に
よる凝集現象も生じない。したがって、本発明による燃
料極の調製法によれば、従来のSOFCの燃料極に内在
していた上記の問題を一気に解決することができる。
However, in the SOFC of the present invention, a mixture of nickel powder and YSZ powder is not used as a starting material, but a YSZ sintered body formed in a porous state in advance is impregnated with an aqueous solution of metal. Therefore, it can be uniformly attached to the surface in the pores, and at the same time, nickel oxide is not arranged at the grain boundaries of YSZ, so that there is no reduction in substrate strength due to reduction of nickel oxide during use. Further, since the porous sintered body having a predetermined shape and an arbitrary porosity is impregnated, it is easy to control the porosity of the substrate, and even if the porosity is increased, nickel is adsorbed on the surface of each powder particle. As a result, electrical contact is ensured, and there is no decrease in conductivity unlike conventional products. Further, there is no difference in the coefficient of thermal expansion from the YSZ particles, and it is possible to improve the electrode performance by simply increasing the impregnation amount of nickel metal without paying attention to the coefficient of thermal expansion. Further, in the method according to the present invention, since nickel adheres to the entire surface of YSZ by chemical adsorption, the agglomeration phenomenon due to sintering of metal particles unlike the conventional product does not occur. Therefore, according to the method for preparing a fuel electrode of the present invention, the above-mentioned problems inherent in the fuel electrode of the conventional SOFC can be solved at once.

【0031】[0031]

【発明の効果】以上説明したように、本発明のSOFC
の燃料電極基板では、酸化ニッケルとジルコニアを混合
させた粉末を燒結させるのではなく、まず、電極保持体
となる多孔質体を作製し、次いで燃料極として作用する
金属をこの多孔質体の細孔内を含む全表面上に担持させ
ることで燃料電極基板を作製している。この方法では、
電極として作用するニッケル等の金属の付着は化学的に
行なわれ、金属はYSZの細孔内を含む全表面に化学的
に強固に結合した状態に維持することができる。
As described above, the SOFC of the present invention
In the fuel electrode substrate of No. 1, instead of sintering powder mixed with nickel oxide and zirconia, first, a porous body to be an electrode holder is prepared, and then a metal acting as a fuel electrode is added to the porous body. The fuel electrode substrate is manufactured by supporting it on the entire surface including the inside of the holes. in this way,
The metal such as nickel acting as an electrode is chemically attached, and the metal can be maintained in a state where it is chemically and strongly bonded to the entire surface including the inside of the YSZ pores.

【0032】従来のように、金属とYSZの混合によっ
て作製したサーメット電極の場合、金属の含有率が大き
くなるほど熱膨張率が大きくなり、実用的な性能を持っ
た電極は電解質との間で熱膨張率差が生じていた。しか
し、本方法では、電極の基板の強度を保つのはYSZの
多孔質体であり、この物体の細孔内の表面に金属が担持
されている。したがって、まず、燃料電極基板の熱膨張
率は電解質のYSZと同一である。また、金属は細孔内
表面に均一に付着させることができるので、従来の方法
よりも少ない量で所定の性能を得ることができ、付着さ
せた金属の表面積も大きくすることができる。さらに燃
料電極基板の作製にあたっても、従来行なわれていた方
法のように出発原料の粒径等の制限を受けることもな
い。なお、本発明の方法で調製した燃料極は、従来の電
極のようにYSZ内に金属が粒子状で存在している構造
ではないので、高温下での金属の還元による基板の強度
低下や金属粒子の凝集による電極性能の低下といった問
題もなく、長期にわたって安定した性能を持つ信頼性の
高いSOFCを得ることができる。このように本発明に
よればSOFCの性能向上に貢献することが極めて大き
く、産業上の点からも多大な効果を奏するものである。
In the case of a cermet electrode produced by mixing a metal and YSZ as in the conventional case, the coefficient of thermal expansion increases as the content of the metal increases, and an electrode having a practical performance is heated with the electrolyte. There was a difference in expansion coefficient. However, in this method, it is the YSZ porous body that maintains the strength of the electrode substrate, and the metal is supported on the surface of the pores of this body. Therefore, first, the coefficient of thermal expansion of the fuel electrode substrate is the same as YSZ of the electrolyte. In addition, since the metal can be uniformly attached to the inner surface of the pores, the predetermined performance can be obtained with a smaller amount than the conventional method, and the surface area of the attached metal can be increased. Further, also in the production of the fuel electrode substrate, there is no restriction on the particle size of the starting material and the like unlike the conventional method. Since the fuel electrode prepared by the method of the present invention does not have a structure in which the metal is present in the YSZ in the form of particles unlike the conventional electrode, the reduction in the strength of the substrate due to the reduction of the metal at high temperature and the metal It is possible to obtain a highly reliable SOFC having stable performance over a long period of time without a problem of deterioration of electrode performance due to aggregation of particles. As described above, according to the present invention, contribution to the performance improvement of the SOFC is extremely large, and a great effect is obtained from an industrial point of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電極基板の作製工程を示す
図。
FIG. 1 is a diagram showing a manufacturing process of a fuel electrode substrate according to the present invention.

【図2】従来の自立膜型の平板型SOFCの単セルとセ
ルの積層時の状態を示す図。
FIG. 2 is a view showing a state in which a single cell of a conventional free-standing film type flat plate SOFC and a cell are stacked.

【図3】従来の支持膜型の平板型SOFCの単セルとセ
ルの積層時の状態を示す図。
FIG. 3 is a diagram showing a state in which a single cell and a cell of a conventional supporting film type flat plate SOFC are stacked.

【符号の説明】[Explanation of symbols]

1 単セル 2 電解質 3 酸化剤極 4 燃料極 5 インタコネクタ 6 酸化剤極基板 7 燃料極基板 8 燃料ガス通路 9 酸化剤ガス通路 11 燒結体(多孔質体) 12 水溶液 1 Single Cell 2 Electrolyte 3 Oxidizer Electrode 4 Fuel Electrode 5 Interconnector 6 Oxidizer Electrode Substrate 7 Fuel Electrode Substrate 8 Fuel Gas Passage 9 Oxidant Gas Passage 11 Sintered Body (Porous Body) 12 Aqueous Solution

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】燃料電極と酸化剤電極が固体電解質を介し
て配置され、燃料電極側に燃料を、酸化剤極側に酸化剤
を供給することで発電する固体電解質型燃料電池の燃料
電極基板の作製法であって、まず、電極保持体となる多
孔質体を作製し、次いで燃料電極として作用する金属を
前記多孔質体の細孔内を含む全表面上に担持させること
を特徴とする燃料電極基板の作製法。
1. A fuel electrode substrate for a solid oxide fuel cell, in which a fuel electrode and an oxidizer electrode are arranged via a solid electrolyte, and a fuel is generated on the fuel electrode side and an oxidizer is supplied on the oxidizer electrode side to generate electric power. The method for producing a porous body according to claim 1, wherein a porous body serving as an electrode holder is first prepared, and then a metal acting as a fuel electrode is supported on the entire surface including the pores of the porous body. Manufacturing method of fuel electrode substrate.
【請求項2】前記電極保持体となる多孔質体が、酸化イ
ットリウムを添加したジルコニア、または該ジルコニア
をベースとする物質であることを特徴とする請求項1記
載の燃料電極基板の作製法。
2. The method for producing a fuel electrode substrate according to claim 1, wherein the porous body serving as the electrode holder is zirconia to which yttrium oxide is added, or a substance based on the zirconia.
【請求項3】前記燃料電極として作用する金属は周期率
表第8属の金属であることを特徴とする請求項1または
2記載の燃料電極基板の作製法。
3. The method for producing a fuel electrode substrate according to claim 1, wherein the metal acting as the fuel electrode is a metal belonging to Group 8 of the periodic table.
【請求項4】前記金属の水溶性化合物を使用して水溶液
を調製し、該水溶液を前記多孔質体に含浸させ、乾燥さ
せた後、500〜700℃の温度で熱処理を行なうこと
を特徴とする請求項1から3記載のいずれかの燃料電極
の作製法。
4. A water-soluble compound of the metal is used to prepare an aqueous solution, the porous body is impregnated with the aqueous solution, dried, and then heat-treated at a temperature of 500 to 700 ° C. The method for producing a fuel electrode according to claim 1, wherein
JP6209097A 1994-08-10 1994-08-10 Manufacture of fuel electrode substrate Pending JPH0855625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6209097A JPH0855625A (en) 1994-08-10 1994-08-10 Manufacture of fuel electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6209097A JPH0855625A (en) 1994-08-10 1994-08-10 Manufacture of fuel electrode substrate

Publications (1)

Publication Number Publication Date
JPH0855625A true JPH0855625A (en) 1996-02-27

Family

ID=16567244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6209097A Pending JPH0855625A (en) 1994-08-10 1994-08-10 Manufacture of fuel electrode substrate

Country Status (1)

Country Link
JP (1) JPH0855625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287685A (en) * 2006-03-23 2007-11-01 Dainippon Printing Co Ltd Solid-oxide fuel cell and method of manufacturing the same
WO2009060752A1 (en) 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
KR100898219B1 (en) * 2006-09-18 2009-05-18 연세대학교 산학협력단 Porous nano composite powder, method of fabricating thereof, solid oxide fuel electrode and fuel cell using the same
JP2012201516A (en) * 2011-03-23 2012-10-22 Sumitomo Osaka Cement Co Ltd Composite ceramic material, method of manufacturing the same, and solid oxide type fuel cell
US8395524B2 (en) 2008-11-11 2013-03-12 Hussmann Corporation Data communication for refrigerated merchandisers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287685A (en) * 2006-03-23 2007-11-01 Dainippon Printing Co Ltd Solid-oxide fuel cell and method of manufacturing the same
KR100898219B1 (en) * 2006-09-18 2009-05-18 연세대학교 산학협력단 Porous nano composite powder, method of fabricating thereof, solid oxide fuel electrode and fuel cell using the same
WO2009060752A1 (en) 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
US8557471B2 (en) 2007-11-05 2013-10-15 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder comprising zirconium hydroxide coating layer or zirconium oxide coating layer, SOFC anode material and method of producing the same
US8741502B2 (en) 2007-11-05 2014-06-03 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide type fuel cell and method for producing the same, and anode material, anode and solid oxide type fuel cell using the same
US8395524B2 (en) 2008-11-11 2013-03-12 Hussmann Corporation Data communication for refrigerated merchandisers
JP2012201516A (en) * 2011-03-23 2012-10-22 Sumitomo Osaka Cement Co Ltd Composite ceramic material, method of manufacturing the same, and solid oxide type fuel cell

Similar Documents

Publication Publication Date Title
US5670270A (en) Electrode structure for solid state electrochemical devices
US5993986A (en) Solide oxide fuel cell stack with composite electrodes and method for making
EP3021393B1 (en) Solid oxide fuel cell, manufacturing method therefor, fuel-cell stack, and solid oxide fuel-cell device
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
US20070141423A1 (en) Tubular electrochemical reactor cell and electrochemical reactor system which is composed of the cell
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2009211830A (en) Solid oxide electrochemical cell and processes for producing the same
KR100424194B1 (en) Electrode part having microstructure of extended triple phase boundary by porous ion conductive ceria film coating and Method to manufacture the said electrode
JP3981418B2 (en) Electrode structure for solid state electrochemical devices
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
US9005490B2 (en) Material for solid state sintered material
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
KR101260856B1 (en) Dual layer interconnect for solid oxide fuel cell, solid oxide fuel cell therewith and preparation method thereof
JP2007234272A (en) Proton-conducting electrolyte, and electrochemical cell using it
JP3347561B2 (en) Solid oxide fuel cell
JPH0855625A (en) Manufacture of fuel electrode substrate
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
KR101424701B1 (en) The segment-in-series type sofc module and the method of manufacturing the same
JP2018139182A (en) Solid electrolytic member, solid oxide type fuel cell, water electrolysis device, hydrogen pump and method for manufacturing solid electrolytic member
JP3714659B2 (en) Fabrication method of anode for solid oxide fuel cell
JP5522882B2 (en) Solid oxide fuel cell
JP2005174664A (en) Solid electrolyte fuel cell
JPH10144337A (en) Fuel electrode of solid electrolytic fuel cell and manufacture thereof
JP3652932B2 (en) Solid oxide fuel cell