JP3714659B2 - Fabrication method of anode for solid oxide fuel cell - Google Patents

Fabrication method of anode for solid oxide fuel cell Download PDF

Info

Publication number
JP3714659B2
JP3714659B2 JP28104299A JP28104299A JP3714659B2 JP 3714659 B2 JP3714659 B2 JP 3714659B2 JP 28104299 A JP28104299 A JP 28104299A JP 28104299 A JP28104299 A JP 28104299A JP 3714659 B2 JP3714659 B2 JP 3714659B2
Authority
JP
Japan
Prior art keywords
oxygen ion
solution
ion conductor
cell
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28104299A
Other languages
Japanese (ja)
Other versions
JP2001102061A (en
Inventor
玲一 千葉
文一 吉村
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28104299A priority Critical patent/JP3714659B2/en
Publication of JP2001102061A publication Critical patent/JP2001102061A/en
Application granted granted Critical
Publication of JP3714659B2 publication Critical patent/JP3714659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は固体電解質型燃料電池用燃料極の作製法、さらに詳細にはゾルゲル法を用いた固体電解質型燃料電池用燃料極の作製法に関するものである。
【0002】
【従来の技術および問題点】
近年、酸素イオン伝導体を用いた固体電解質燃料電池に関心が高まりつつある。特にエネルギーの有効利用という観点から、固体燃料電池はカルノー効率の制約を受けないため本質的に高いエネルギー変換効率を有し、さらに良好な環境保全が期待されるなどの優れた特長を持っている。固体電解質燃料電池は、約800℃から1000℃の高温で動作させる必要があるため、セルはセラミック材によって構成されている。セルは酸素イオン伝導体である固体電解質を狭んで電子伝導体である空気極と燃料極が配置されている。これらの電極は、ガスが拡散しやすくする為に多孔質体を用いる。このセルを積み重ねる為にセル間に電子伝導体であるインターコネクタ材を使用する。
【0003】
これら要素材について、従来検討されてきた材料を表1に示した。固体電解質としては従来YSZ(イットリウム安定化ジルコニア)、空気極にはLa0.8Sr0.2MnO3(LSM)、燃料極にはNi−YSZ、そしてインターコネクタ材料にはLa0.9Sr0.1CrO3が最も有望視されている。
【0004】
ここで、燃料極は、Niとジルコニアやセリアなどの酸素イオン伝導体との混合体を用いている。Niの存在により電子伝導性が付与される。Niと酸素イオン伝導体との混合体とすることで電解質と密着し、電解質との界面付近に電気化学反応に必要な反応ガス、電子、イオンが共存する三相界面を提供している。電子伝導度の点からは、Niの体積比が多い方が好ましいがNiのみを用いると粒成長を起こし三相界面の減少を招く。三相界面長を増やし電極性能を向上させる点からは、酸素イオン伝導体及びNiの平均粒径を小さくすることが好ましい。そしてNiと酸素イオン伝導体との混合体とすることで微細な構造を形成することができ、また高温でも粒成長が抑えられる。
【0005】
ところで、このような微細構造を形成するのに、従来は、NiOとジルコニアなど酸素イオン伝導体の混合体をぺースト状に調製し、これを電解質シートなどに塗布し、セルを組み上げたあと燃料ガス中でNiOが還元されて、Niと酸素イオン伝導体との混合体を得る湿式法が検討されてきた。この方法は原料のスラリを有効に利用でき、また使用する装置も安価であることから、最も製造コストの低減が容易である。しかし、微細構造は原料となる粉末の平均粒径で決まってしまうため、原料粉末よりも細かな微細構造を形成することは不可能である。0.1μm以下の原料粉末を歩留まり良く得ることは難しい。このため従来の方法では、0.1μm以下の微細構造を作製することは難しい。
【0006】
【本発明の目的】
本発明はゾルゲル法を用いた固体電解質型燃料電池用燃料極の作製法に関するもので、従来の燃料極作製法に比べ微細な構造の電極を作製し、高い性能の燃料極を作製する方法を提供することを目的とする。
【0007】
【問題点を解決するための手段】
本発明による固体電解質型燃料電池用燃料極の作製法は、固体電解質とそれに隣接して設けられた多孔質な空気極および燃料極からなるセル、そして、それら電極を電気的に接続するインターコネクタを有し、燃料ガスと空気または酸素ガスとの化学反応を電気エネルギーに変換する固体燃料電池におけるNiOと酸素イオン伝導体との混合体からなる燃料極の作製法において、燃料極の酸素イオン伝導体の組成に対応したアルコキシドの混合液であるゾルゲル液と水またはアルコールなどの極性溶媒にNi塩を溶かした溶液との混合液を原液とし、これを固体電解質に塗布し、その後熱処理することで再結晶化させることを特徴とする。
【0008】
本発明によれば、従来の湿式法に比べ微細な構造を形成することができる。これにより、電極と電解質の三相界面長を増やし電極活性を高めることができ、電極活性が充分高い燃料極を形成できる。
【0009】
以下に本発明を説明する。
【0010】
ゾルゲル法により微細な酸素イオン伝導体の層を形成できることが知られている。燃料極は酸素イオン伝導体とNiとの混合体であるが、前記燃料極の酸素イオン伝導体の組成に対応したアルコキシドの混合液にNi塩を極性溶媒に溶かした溶液を混合した原液を作製し、この原液を塗布し、熱処理することで、溶媒が蒸発し、またアルコキシドが分解燃焼することで、所望のNiOと酸素イオン伝導体との混合体である燃料極が作製できる。この原液は、分子レベルで完全に混合されている。最終に、NiOがNiに還元されて、Niと酸素イオン伝導体との混合体が得られる。この様にして作製された燃料極は0.001μmから0.2μmと極めて微細な構造を持っているため、非常に大きな三相界面長が得られ、高い電極活性が実現される。上記極性溶媒としては、たとえば水、アルコールなどを使用することができる。
【0011】
また、本発明による燃料極の酸素イオン伝導体の組成に対応したアルコキシド溶液とNi塩を極性溶媒に溶かした溶液を混合した原液に、酸素イオン伝導体(たとえばSASZ)の粉末を添加しておくこともできる。この場合、微細なNiOと酸素イオン伝導体との混合体内に比較的粗大な粒が分散された構造が得られる。この粗大な粒は電極の性能自体には殆ど影響しないが、燃料ガスの透過性が向上するので特に厚い電極を作製するときに効果がある。また電子伝導度をあまり低下させず、熱膨張係数を低減する効果がある。添加する酸素イオン伝導体の平均粒径は0.1μm以上であるのが好ましい。0.1μm未満であると、燃料ガスの透過性が改良されない恐れがあるとともに、熱膨張係数の低減効果が小さくなる恐れがある。
【0012】
また、酸素イオン伝導体を分散させたスラリを固体電解質に塗布して、高温で焼成し、多孔質の固定電解質(多孔質体)を形成し、その後、アルコキシド溶液とNi塩の溶液を混合した原液を塗布して、その後熱処理することで再結晶化させることにより製造することも可能である。この場合も、同様に微細なNiOと酸素イオン伝導体との混合体内に比較的粗大な粒が分散された構造が得られる。この場合、平均粒径0.5μm以上の酸素イオン伝導体粉末を使用するのがよい。0.5μm未満であると、微細なNiOと酸素イオン伝導体との混合体内に比較的粗大な粒が分散されたことにならず、燃料ガスの透過性が改良されない恐れがあり、また熱膨張を低減できない恐れがある。
【0013】
同様に酸素イオン伝導体粉末とNiO粉末を分散させたスラリを固体電解質に塗布して、高温で焼成し、多孔質の固定電解質(多孔質体)を形成し、その後、アルコキシド溶液とNi塩の溶液を混合した原液を塗布して、その後熱処理することで再結晶化させることにより製造することも可能である。この場合も、同様に微細なNiOと酸素イオン伝導体との混合体内に比較的粗大な粒が分散された構造が得られる。この場合、平均粒径1μm以上の酸素イオン伝導体粉末と0.5μm以上のNiO粉末を使用するのがよい。酸素イオン伝導体粉末の平均粒径が1μm未満、および NiO粉末の平均粒径が0.5μm未満であると、同様に燃料ガスの透過性が改善されない恐れがあるとともに、熱膨張の低減が小さい恐れがある。
【0014】
上記の酸素イオン伝導体あるいは酸素イオン伝導体粉末とNiO粉末を分散させたスラリを固体電解質に塗布して、高温で焼成し、多孔質の固定電解質を形成する場合の焼成温度は、好ましくは1200℃以上である。1200℃未満であると、良好な寸法の孔が得られにくく、燃料ガスの透過性が改善されない恐れがあり、また固体電解質へのまたは電極層への密着性が低下する恐れがある。
【0015】
【実施例】
以下に本発明の実施例を説明する。なお、当然のことであるが本発明は以下の実施例に限定されるものではない。
【0016】
【実施例1】
本発明の効果を示すために、図1に示す構造の単セルで試験を行なった。また図2は単セルの平面図である。本発明において、1は燃料極、2は固体電解質、3は空気極である。固体電解質としてSASZ((ZrO20.89(Sc230 .105(Al230.005)なる組成の酸化物を、空気極にLa0.8Sr0.2MnO3を用いた。
【0017】
そして燃料極はNiO−SASZ(NiO:SASZ=70:30wt%)を用い以下の方法で作製した。すなわち、金属元素Zr,Sc,Alにおいて、上記固体電解質と同じ組成比が得られる様にZr,Al金属を含むアルコキシド溶液とSc硝酸水溶液を混合したゾルゲル液を用意し、これにNi(NO32の飽和水溶液を混合し原液とした。ここでNiOがSASZに対して重量比で70:30となる様に混合を行った。
【0018】
この原液を厚み0.2mmの上記固体電解質(0.2mm×22mm×22mm)2に3000rpmでスピンコートし、400℃で熱処理を行った。スピンコートに際し、6mm径の円形部分のみを露出させ他の部分は覆い、この部分のみに燃料極を設けた。この工程を数回行い、最後に1000℃で焼成し、厚み1.5μmの燃料極1を形成した。
【0019】
次に裏面にはLSM空気極(6mm径)3を、そしてシートの端に白金参照極を塗布し、800℃で焼成し単セルとした。ここで、空気極の集電には白金メッシュ4を、そして燃料極1の集電には最後に金ぺーストをつけた金メッシュ5を用い、930℃で焼成した。なお図1において、6は白金端子、7はガスシールである。
【0020】
このセル(セル♯1)を図1に示す様にセル測定系に装着し、800℃にて発電試験を行った。比較のために用いたセル(セル♯0−1)は、燃料極に平均粒径1μmのSASZとNiOとの混合体をPVA水溶液に分散させ6mm径の円形に塗布し1300℃で焼成し、次に上記の手順で空気極と参照極を設けた。表2−1に実験条件をまとめた。
【0021】
この単セルの800℃における過電圧(電流密度1A/cm2時)を表2−2のセル♯1に示す。ここで燃料極には水素、空気極には酸素を供給した。電流密度は、燃料極の面積を基にして求めた値である。過電圧は、電流遮断法、すなわちリレーにより電流を遮断し、この応答から過電圧を求めた。比較のために上記の単セルの燃料極だけを従来のものとしたセルの特性も同時に示す。ここで、燃料極過電圧は電流密度が1.0A/cm2時の値である。本発明の燃料極を用いた時は、従来の燃料極を用いたセルに比べ良好な特性を示した。
【0022】
【実施例2】
単セルの作製において、ゾルゲル原液に平均粒径0.4μmのSASZ粉末(SASZ粉末の重量とSASZゾルゲル液から析出させた重量の比は80:20とした)を分散させたスラリを原料とし、燃料極を設けた。ここで、NiOのSASZに対する重量比は70:30、燃料極の厚みは10μmとなるように調整した。このセル(セル♯2)を用いて、実施例1と同様の実験を行った。表2−2のセル♯2の欄に示す様に実施例1における標準セル(セル♯0−1)に比べて特性が改善された。
【0023】
【実施例3】
実施例1と同様の単セルにおいて、燃料極のゾルゲル液を8YSZ(0.92ZrO−0.08Y)用すなわちZrとY金属を含むアルコキシド液とし、Ni(NO水溶液を混合した原液を使用した。ここで、NiOの8YSZに対する重量比は70:30、燃料極の厚みは1.5μmとなるように調整した。電解質シートにはSASZに替えて8YSZ電解質シートを用いた。このセル♯3を用いて実施例1と同様の実験を行った。表2−2のセル♯3の欄に示す様に従来セル(セル♯0−2)に比べて特性が改善された。
【0024】
【実施例4】
実施例1の単セルを基にしてセル♯4を作製した。すなわち燃料極のゾルゲル液をSDC(Ce0.8Sm0.2)用、すなわちCeとSm金属を含むアルコキシド液とし、Ni(NO水溶液を混合した原液を用意した。ここで、NiOのSASZに対する重量比は70:30、燃料極の厚みは1.5μmとなるように調整した。固体電解質にはSASZに替えてSDC固体電解質を用いた。実施例1と同様の方法で燃料極を塗布し1100℃で焼成した。次に実施例1と同様の空気極、参照極を設け、セル♯4を得た。このセル用をいて実施例1と同様の実験を行った。比較のために従来セル(セル♯0−3)を用意した。すなわち実施例1における標準セル♯0−1の電解質シートをSASZからSDCに替え、またSDC粉末の混合体(NiO:SDC粉末=70:30wt%)をPVA水溶液に分散させたスラリを原料として燃料極を形成し、従来セル(セル♯0−3)とした。これらのセルの電極特性を表2−2に示す。セル♯4の欄に示す様に従来セル(セル♯0−3)に比べて特性が改善された。
【0025】
【実施例5】
実施例1と同様の単セルにおいて、平均粒径5μmのSASZ粉末をPVA水溶液に分散したスラリを0.2mm厚のSASZ固体電解質に塗布し、1300℃で焼成し、厚み80μmの多孔質固体電解液を形成した。この時、集電用の白金のメッシュをスラリにのせて焼成を行った。燃料極のSASZ組成に対応したゾルゲル液を用意し、Ni(NO水溶液と混合して原液とした。ここで、NiOのSASZに対する重量比は70:30である。この原液を上述の多孔体上に塗布し、しみ込ませた後、1100℃で焼成しセル♯5とした。このセル♯5を用いて実施例1と同様の実験を行った。表2−2のセル♯5の欄に示す様に実施例1における標準セル(セル♯0−1)に比べて特性が改善された。
【0026】
【実施例6】
実施例5において、SASZスラリに替えてSASZ(平均粒径5μm)とNiO(平均粒径0.8μm)の混合体をPVAに分散したスラリを用意した。ここでNiOに対するSASZの重量比は60:40とした。そして1300℃で焼成し、厚み80μmのNi−SASZ多孔体に実施例5と同様の原液をしみ込ませ1100℃で焼成しセル♯6を得た。このセル♯6を用いて実施例1と同様の実験を行った。表2−2のセル♯6の欄に示す様に実施例1における標準セル(セル♯0−1)に比べて特性が改善された。
【0027】
表1

Figure 0003714659
【0028】
表2−1
Figure 0003714659
【0029】
表2−2
Figure 0003714659
【0030】
【発明の効果】
以上説明したように、固体電解質燃料電池の燃料極を、ゾルゲル法を用いた本方法で作成することにより、従来の湿式法に比べ微細な構造を形成することができる。また、従来の湿式法と同じ装置を使用するので、製造コストについては従来法と同等である。これにより電極活性が高く、従来材料湿式の作製法に比べ優れた特性を有する燃料極を安価に得ることに成功した。本発明は固体燃料電池の高効率動作化に大きな貢献をなすものである。
【図面の簡単な説明】
【図1】実施例に用いた燃料電池の模式図。
【図2】実施例に用いた単セルの平面図。
【符号の説明】
1 燃料極
2 固体電解質
3 空気極[0001]
[Industrial application fields]
The present invention relates to a method for producing a fuel electrode for a solid oxide fuel cell, and more particularly to a method for producing a fuel electrode for a solid oxide fuel cell using a sol-gel method.
[0002]
[Prior art and problems]
In recent years, there has been an increasing interest in solid electrolyte fuel cells using oxygen ion conductors. In particular, from the viewpoint of effective use of energy, solid fuel cells are not subject to the restrictions of Carnot efficiency, so they have inherently high energy conversion efficiency and have excellent features such as better environmental conservation. . Since the solid electrolyte fuel cell needs to be operated at a high temperature of about 800 ° C. to 1000 ° C., the cell is made of a ceramic material. In the cell, a solid electrolyte that is an oxygen ion conductor is narrowed, and an air electrode and a fuel electrode that are electron conductors are arranged. These electrodes use a porous body to facilitate gas diffusion. In order to stack the cells, an interconnector material which is an electronic conductor is used between the cells.
[0003]
Table 1 shows materials that have been conventionally studied for these element materials. The most promising solid electrolyte is YSZ (yttrium stabilized zirconia), La 0.8 Sr 0.2 MnO 3 (LSM) for the air electrode, Ni-YSZ for the fuel electrode, and La 0.9 Sr 0.1 CrO 3 for the interconnect material. Is being viewed.
[0004]
Here, the fuel electrode uses a mixture of Ni and an oxygen ion conductor such as zirconia or ceria. Electron conductivity is imparted by the presence of Ni. By providing a mixture of Ni and oxygen ion conductor, it is in close contact with the electrolyte, and provides a three-phase interface in the vicinity of the interface with the electrolyte in which reactive gases, electrons and ions necessary for electrochemical reaction coexist. From the viewpoint of electron conductivity, it is preferable that the volume ratio of Ni is large. However, when only Ni is used, grain growth occurs and the three-phase interface is reduced. From the viewpoint of increasing the three-phase interface length and improving the electrode performance, it is preferable to reduce the average particle diameter of the oxygen ion conductor and Ni. By using a mixture of Ni and oxygen ion conductor, a fine structure can be formed, and grain growth can be suppressed even at high temperatures.
[0005]
By the way, in order to form such a fine structure, conventionally, a mixture of oxygen ion conductors such as NiO and zirconia is prepared in a paste shape, and this is applied to an electrolyte sheet and the cell is assembled. Wet methods have been studied in which NiO is reduced in gas to obtain a mixture of Ni and an oxygen ion conductor. In this method, the raw material slurry can be used effectively, and the apparatus to be used is inexpensive, so that the manufacturing cost can be most easily reduced. However, since the fine structure is determined by the average particle size of the raw material powder, it is impossible to form a finer structure than the raw material powder. It is difficult to obtain a raw material powder of 0.1 μm or less with a good yield. For this reason, it is difficult to produce a fine structure of 0.1 μm or less by the conventional method.
[0006]
[Object of the present invention]
The present invention relates to a method for producing a fuel electrode for a solid oxide fuel cell using a sol-gel method, and a method for producing a high-performance fuel electrode by producing an electrode having a finer structure than a conventional fuel electrode production method. The purpose is to provide.
[0007]
[Means for solving problems]
A method for producing a fuel electrode for a solid oxide fuel cell according to the present invention includes a cell comprising a solid electrolyte, a porous air electrode and a fuel electrode provided adjacent to the solid electrolyte, and an interconnector for electrically connecting the electrodes. In a method for producing a fuel electrode comprising a mixture of NiO and oxygen ion conductor in a solid fuel cell that converts a chemical reaction between fuel gas and air or oxygen gas into electric energy, the oxygen ion conduction of the fuel electrode A mixed solution of a sol-gel solution, which is a mixed solution of alkoxide corresponding to the composition of the body, and a solution in which a Ni salt is dissolved in a polar solvent such as water or alcohol is used as a stock solution, which is applied to a solid electrolyte and then heat-treated. It is characterized by recrystallization.
[0008]
According to the present invention, a fine structure can be formed as compared with a conventional wet method. As a result, the three-phase interface length between the electrode and the electrolyte can be increased to increase the electrode activity, and a fuel electrode with sufficiently high electrode activity can be formed.
[0009]
The present invention will be described below.
[0010]
It is known that a fine oxygen ion conductor layer can be formed by a sol-gel method. The fuel electrode is a mixture of an oxygen ion conductor and Ni, but a stock solution is prepared by mixing a mixed solution of alkoxide corresponding to the composition of the oxygen ion conductor of the fuel electrode with a solution obtained by dissolving Ni salt in a polar solvent. Then, by applying this stock solution and performing a heat treatment, the solvent evaporates and the alkoxide decomposes and burns, whereby a fuel electrode that is a mixture of desired NiO and oxygen ion conductor can be produced. This stock solution is thoroughly mixed at the molecular level. Finally, NiO is reduced to Ni, and a mixture of Ni and oxygen ion conductor is obtained. Since the fuel electrode manufactured in this way has an extremely fine structure of 0.001 μm to 0.2 μm , a very large three-phase interface length can be obtained and high electrode activity can be realized. As said polar solvent, water, alcohol, etc. can be used, for example.
[0011]
Further, an oxygen ion conductor (for example, SASZ) powder is added to a stock solution in which an alkoxide solution corresponding to the composition of the oxygen ion conductor of the fuel electrode according to the present invention and a solution obtained by dissolving Ni salt in a polar solvent are mixed. You can also. In this case, a structure in which relatively coarse particles are dispersed in a mixture of fine NiO and oxygen ion conductor is obtained. The coarse particles hardly affect the performance of the electrode itself, but are effective in producing a particularly thick electrode because the fuel gas permeability is improved. In addition, there is an effect of reducing the thermal expansion coefficient without reducing the electronic conductivity so much. The average particle diameter of the oxygen ion conductor to be added is preferably 0.1 μm or more. If it is less than 0.1 μm , the permeability of the fuel gas may not be improved, and the effect of reducing the thermal expansion coefficient may be reduced.
[0012]
In addition, a slurry in which an oxygen ion conductor is dispersed is applied to a solid electrolyte and fired at a high temperature to form a porous fixed electrolyte (porous body) , and then an alkoxide solution and a Ni salt solution are mixed. It is also possible to manufacture by applying the stock solution and then recrystallizing it by heat treatment. In this case as well, a structure in which relatively coarse particles are dispersed in a mixture of fine NiO and oxygen ion conductor can be obtained. In this case, it is preferable to use oxygen ion conductor powder having an average particle size of 0.5 μm or more. If it is less than 0.5 μm, relatively coarse particles will not be dispersed in the mixture of fine NiO and oxygen ion conductor, and there is a possibility that the permeability of fuel gas will not be improved, and thermal expansion will occur. May not be reduced.
[0013]
Similarly, a slurry in which oxygen ion conductor powder and NiO powder are dispersed is applied to a solid electrolyte and fired at a high temperature to form a porous fixed electrolyte (porous body) . Thereafter, an alkoxide solution and a Ni salt solution are formed. It is also possible to manufacture by applying a stock solution mixed with the solution, followed by heat treatment and recrystallization. In this case as well, a structure in which relatively coarse particles are dispersed in a mixture of fine NiO and oxygen ion conductor can be obtained. In this case, it is preferable to use an oxygen ion conductor powder having an average particle size of 1 μm or more and a NiO powder of 0.5 μm or more. If the average particle size of the oxygen ion conductor powder is less than 1 μm and the average particle size of the NiO powder is less than 0.5 μm, the fuel gas permeability may not be improved, and the reduction in thermal expansion is small. There is a fear.
[0014]
When the above-mentioned oxygen ion conductor or slurry in which oxygen ion conductor powder and NiO powder are dispersed is applied to a solid electrolyte and fired at a high temperature to form a porous fixed electrolyte, the firing temperature is preferably 1200. It is above ℃. When the temperature is lower than 1200 ° C., it is difficult to obtain pores having good dimensions, the fuel gas permeability may not be improved, and the adhesion to the solid electrolyte or electrode layer may be reduced.
[0015]
【Example】
Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples.
[0016]
[Example 1]
In order to show the effect of the present invention, a test was conducted on a single cell having the structure shown in FIG. FIG. 2 is a plan view of a single cell. In the present invention, 1 is a fuel electrode, 2 is a solid electrolyte, and 3 is an air electrode. The SASZ ((ZrO 2) 0.89 ( Sc 2 O 3) 0 .105 (Al 2 O 3) 0.005) becomes oxides of the composition as a solid electrolyte, with La 0.8 Sr 0.2 MnO 3 to the air electrode.
[0017]
The fuel electrode was made of NiO-SASZ (NiO: SASZ = 70: 30 wt%) by the following method. That is, the metal elements Zr, Sc, In Al, prepared the solid electrolyte and as the same composition ratio is obtained Zr, sol-gel solution were mixed alkoxide solution and Sc nitrate aqueous solution containing Al metal, to which Ni (NO 3 2 ) A saturated aqueous solution of 2 was mixed to make a stock solution. Here, mixing was performed such that NiO was 70:30 by weight with respect to SASZ.
[0018]
This stock solution was spin-coated at 3000 rpm on the above-mentioned solid electrolyte (0.2 mm × 22 mm × 22 mm) 2 having a thickness of 0.2 mm and heat-treated at 400 ° C. At the time of spin coating, only a circular portion having a diameter of 6 mm was exposed and the other portions were covered, and a fuel electrode was provided only on this portion. This process was performed several times and finally fired at 1000 ° C. to form a fuel electrode 1 having a thickness of 1.5 μm .
[0019]
Next, an LSM air electrode (6 mm diameter) 3 was applied to the back surface, and a platinum reference electrode was applied to the end of the sheet, and fired at 800 ° C. to form a single cell. Here, a platinum mesh 4 was used for collecting the air electrode, and a gold mesh 5 with a gold paste was used for collecting the fuel electrode 1 at the end. In FIG. 1, 6 is a platinum terminal and 7 is a gas seal.
[0020]
This cell (cell # 1) was attached to a cell measurement system as shown in FIG. 1, and a power generation test was conducted at 800 ° C. The cell used for comparison (cell # 0-1) was prepared by dispersing a mixture of SASZ and NiO having an average particle diameter of 1 μm in a fuel electrode in a PVA aqueous solution, applying it to a 6 mm diameter circle, and firing it at 1300 ° C. Then, an air electrode and a reference electrode were provided in the above procedure. Table 2-1 summarizes the experimental conditions.
[0021]
The overvoltage (at a current density of 1 A / cm 2 ) at 800 ° C. of this single cell is shown in cell # 1 of Table 2-2. Here, hydrogen was supplied to the fuel electrode and oxygen was supplied to the air electrode. The current density is a value obtained based on the area of the fuel electrode. The overvoltage was determined by the current interruption method, that is, the current was interrupted by a relay, and the overvoltage was obtained from this response. For comparison, the characteristics of a cell in which only the single-cell fuel electrode is conventional are also shown. Here, the fuel electrode overvoltage is a value when the current density is 1.0 A / cm 2 . When the fuel electrode of the present invention was used, a better characteristic was shown compared to the cell using the conventional fuel electrode.
[0022]
[Example 2]
In the production of a single cell, a slurry in which a SASZ powder having an average particle size of 0.4 μm (the ratio of the weight of the SASZ powder and the weight precipitated from the SASZ sol-gel solution was 80:20) was dispersed in the sol-gel stock solution. A fuel electrode was provided. Here, the weight ratio of NiO to SASZ was adjusted to 70:30, and the thickness of the fuel electrode was adjusted to 10 μm . Using this cell (cell # 2), the same experiment as in Example 1 was performed. As shown in the column of cell # 2 in Table 2-2, the characteristics were improved as compared with the standard cell (cell # 0-1) in Example 1.
[0023]
[Example 3]
In the same single cell as in Example 1, the sol-gel solution of the fuel electrode was used for 8YSZ (0.92ZrO 2 -0.08Y 2 O 3 ), that is, an alkoxide solution containing Zr and Y metal, and a Ni (NO 3 ) 2 aqueous solution was used. A mixed stock solution was used. Here, the weight ratio of NiO to 8YSZ was adjusted to 70:30, and the thickness of the fuel electrode was adjusted to 1.5 μm . As the electrolyte sheet, an 8YSZ electrolyte sheet was used instead of SASZ. An experiment similar to that of Example 1 was performed using the cell # 3. As shown in the cell # 3 column of Table 2-2, the characteristics were improved compared to the conventional cell (cell # 0-2).
[0024]
[Example 4]
Cell # 4 was fabricated based on the single cell of Example 1. That is, a sol-gel solution for the fuel electrode was used for SDC (Ce 0.8 Sm 0.2 O 2 ), that is, an alkoxide solution containing Ce and Sm metal, and a stock solution in which a Ni (NO 3 ) 2 aqueous solution was mixed was prepared. Here, the weight ratio of NiO to SASZ was adjusted to 70:30, and the thickness of the fuel electrode was adjusted to 1.5 μm . As the solid electrolyte, SDC solid electrolyte was used instead of SASZ. The fuel electrode was applied in the same manner as in Example 1 and fired at 1100 ° C. Next, an air electrode and a reference electrode similar to those in Example 1 were provided to obtain a cell # 4. The same experiment as in Example 1 was performed using this cell. A conventional cell (cell # 0-3) was prepared for comparison. That is, the electrolyte sheet of the standard cell # 0-1 in Example 1 is changed from SASZ to SDC, and a fuel using a slurry in which a mixture of SDC powder (NiO: SDC powder = 70: 30 wt%) is dispersed in a PVA aqueous solution as a raw material. A pole was formed to form a conventional cell (cell # 0-3). The electrode characteristics of these cells are shown in Table 2-2. As shown in the cell # 4 column, the characteristics were improved as compared with the conventional cell (cell # 0-3).
[0025]
[Example 5]
In a single cell similar to Example 1, a slurry in which a SASZ powder having an average particle size of 5 μm was dispersed in a PVA aqueous solution was applied to a 0.2 mm thick SASZ solid electrolyte, fired at 1300 ° C., and porous having a thickness of 80 μm . A solid electrolyte was formed. At this time, firing was carried out by placing a platinum mesh for current collection on a slurry. A sol-gel solution corresponding to the SASZ composition of the fuel electrode was prepared and mixed with a Ni (NO 3 ) 2 aqueous solution to obtain a stock solution. Here, the weight ratio of NiO to SASZ is 70:30. This undiluted solution was applied onto the above porous body and impregnated, and then fired at 1100 ° C. to obtain cell # 5. An experiment similar to that of Example 1 was performed using the cell # 5. As shown in the column of cell # 5 in Table 2-2, the characteristics were improved compared to the standard cell (cell # 0-1) in Example 1.
[0026]
[Example 6]
In Example 5, a slurry in which a mixture of SASZ (average particle size 5 μm ) and NiO (average particle size 0.8 μm ) was dispersed in PVA in place of the SASZ slurry was prepared. Here, the weight ratio of SASZ to NiO was 60:40. Then, it was fired at 1300 ° C., a Ni-SASZ porous body having a thickness of 80 μm was impregnated with the same stock solution as in Example 5, and fired at 1100 ° C. to obtain cell # 6. An experiment similar to that in Example 1 was performed using the cell # 6. As shown in the column of cell # 6 in Table 2-2, the characteristics were improved compared to the standard cell (cell # 0-1) in Example 1.
[0027]
Table 1
Figure 0003714659
[0028]
Table 2-1.
Figure 0003714659
[0029]
Table 2-2
Figure 0003714659
[0030]
【The invention's effect】
As described above, a fine structure can be formed as compared with the conventional wet method by forming the fuel electrode of the solid electrolyte fuel cell by the present method using the sol-gel method. Moreover, since the same apparatus as the conventional wet method is used, the manufacturing cost is equivalent to the conventional method. As a result, the present inventors succeeded in obtaining a fuel electrode having high electrode activity and superior characteristics as compared with the conventional wet process for producing materials at low cost. The present invention greatly contributes to high-efficiency operation of solid fuel cells.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a fuel cell used in Examples.
FIG. 2 is a plan view of a single cell used in the example.
[Explanation of symbols]
1 Fuel electrode 2 Solid electrolyte 3 Air electrode

Claims (4)

NiOと酸素イオン伝導体との混合体からなる燃料極の酸素イオン伝導体の組成に対応したアルコキシドの混合液であるゾルゲル液と極性溶媒にNi塩を溶かした溶液との混合液を原液とし、これを固体電解質に塗布し、その後熱処理し再結晶化させることを特徴とする固体電解質型燃料電池用燃料極の作製法。  A mixed solution of a sol-gel solution, which is a mixed solution of alkoxide corresponding to the composition of the oxygen ion conductor of the fuel electrode composed of a mixture of NiO and an oxygen ion conductor, and a solution in which a Ni salt is dissolved in a polar solvent, is used as a stock solution. A method for producing a fuel electrode for a solid oxide fuel cell, which is applied to a solid electrolyte and then recrystallized by heat treatment. 請求項1において、平均粒径が0.1μm以上の酸素イオン伝導体の粉末を前記原液に添加したことを特徴とする固体電解質型燃料電池用燃料極の作製法。  2. The method for producing a fuel electrode for a solid oxide fuel cell according to claim 1, wherein a powder of an oxygen ion conductor having an average particle size of 0.1 [mu] m or more is added to the stock solution. 請求項1において、平均粒径が0.5μm以上の酸素イオン伝導体の粉末を用いたスラリを固体電解質上に塗布し、一度1200℃以上の高温で焼成し、多孔質体を形成した後、この多孔質体に前記ゾルゲル液と極性溶媒にNi塩を溶かした溶液との混合液からなる原液をしみ込ませ、これを熱処理して前記多孔質体内に微細な酸素イオン伝導体とNiOの混合体を析出させることを特徴とする固体電解質型燃料電池用燃料極の作製法。In claim 1, after applying a slurry using a powder of an oxygen ion conductor having an average particle size of 0.5 μm or more on a solid electrolyte, and firing once at a high temperature of 1200 ° C. or more to form a porous body , The porous body is impregnated with a stock solution composed of a mixture of the sol-gel solution and a solution of Ni salt dissolved in a polar solvent, and heat-treated to mix the fine oxygen ion conductor and NiO in the porous body. A method for producing a fuel electrode for a solid oxide fuel cell, characterized by precipitating an electrolyte. 請求項1において、平均粒径が1μm以上の酸素イオン伝導体の粉末と平均粒径が0.5μm以上のNiOの粉末を混合したスラリを固体電解質上に塗布 し、一度1200℃以上の高温で焼成し、多孔質体を形成した後、この多孔質体に前記ゾルゲル液と極性溶媒にNi塩を溶かした溶液との混合液からなる原液をしみ込ませ、これを熱処理して前記多孔質体に微細な酸素イオン伝導体とNiOの混合体を析出させることを特徴とする固体電解質型燃料電池用燃料極の作製法。In Claim 1, the slurry which mixed the powder of oxygen ion conductor with an average particle diameter of 1 micrometer or more and the powder of NiO with an average particle diameter of 0.5 micrometer or more was apply | coated on the solid electrolyte, and once at high temperature of 1200 degreeC or more. After firing to form a porous body, this porous body is impregnated with a stock solution composed of a mixture of the sol-gel solution and a solution of Ni salt in a polar solvent, and this is heat-treated to form the porous body. A method for producing a fuel electrode for a solid oxide fuel cell, wherein a mixture of a fine oxygen ion conductor and NiO is deposited.
JP28104299A 1999-10-01 1999-10-01 Fabrication method of anode for solid oxide fuel cell Expired - Fee Related JP3714659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28104299A JP3714659B2 (en) 1999-10-01 1999-10-01 Fabrication method of anode for solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28104299A JP3714659B2 (en) 1999-10-01 1999-10-01 Fabrication method of anode for solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2001102061A JP2001102061A (en) 2001-04-13
JP3714659B2 true JP3714659B2 (en) 2005-11-09

Family

ID=17633497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28104299A Expired - Fee Related JP3714659B2 (en) 1999-10-01 1999-10-01 Fabrication method of anode for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3714659B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024165B2 (en) * 2003-02-27 2007-12-19 日本電信電話株式会社 Fuel electrode for solid oxide fuel cell and method for producing the same
JP4587663B2 (en) * 2003-12-05 2010-11-24 日本電信電話株式会社 Fuel electrode for solid oxide fuel cell and method for producing the same
WO2006092912A1 (en) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated Solid oxide type fuel battery cell and process for producing the same
JP2006252796A (en) * 2005-03-08 2006-09-21 Tokyo Electric Power Co Inc:The Fuel electrode for solid oxide fuel cell

Also Published As

Publication number Publication date
JP2001102061A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
US5937264A (en) Electrode structure for solid state electrochemical devices
Craciun et al. A novel method for preparing anode cermets for solid oxide fuel cells
RU2521874C2 (en) Solid oxide cell and battery containing same
Peng et al. ZnO-doped BaZr0. 85Y0. 15O3− δ proton-conducting electrolytes: Characterization and fabrication of thin films
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
JPH10302812A (en) Solid oxide fuel cell stack having composite electrode and production thereof
KR20010024177A (en) Sintered electrode for solid oxide fuel cells
JP2008538543A (en) Precursor material infiltration and coating methods
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
JP3981418B2 (en) Electrode structure for solid state electrochemical devices
JPH11297333A (en) Fuel electrode and solid electrolyte fuel cell using the same
JP2004127635A (en) Cell plate for solid oxide fuel cell and its manufacturing method
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP2008546161A (en) Deposition of electrodes for solid oxide fuel cells
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
JP3714659B2 (en) Fabrication method of anode for solid oxide fuel cell
CN111403752A (en) Low-temperature solid oxide fuel cell composite cathode material and preparation method of single fuel cell thereof
JP3448242B2 (en) Solid electrolyte fuel cell
JP2004335131A (en) Fuel electrode for solid oxide fuel cell and its manufacturing method
JP5110337B2 (en) Electrode structure for solid oxide fuel cell and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees