JPH0842930A - 単流体冷却装置 - Google Patents

単流体冷却装置

Info

Publication number
JPH0842930A
JPH0842930A JP7072614A JP7261495A JPH0842930A JP H0842930 A JPH0842930 A JP H0842930A JP 7072614 A JP7072614 A JP 7072614A JP 7261495 A JP7261495 A JP 7261495A JP H0842930 A JPH0842930 A JP H0842930A
Authority
JP
Japan
Prior art keywords
fluid
compressor
coolant
turbine
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7072614A
Other languages
English (en)
Other versions
JP3222350B2 (ja
Inventor
Joost J Brasz
ジェイ.ブラス ジュースト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of JPH0842930A publication Critical patent/JPH0842930A/ja
Application granted granted Critical
Publication of JP3222350B2 publication Critical patent/JP3222350B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/13Kind or type mixed, e.g. two-phase fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

(57)【要約】 【目的】 圧縮に使用されるエネルギーの本質的な蒸留
の回収が可能にして、2相流タービン膨張機を備えた冷
凍システムを提供する。 【構成】 単流体2相タービンエキスパンダーは圧縮−
膨張冷却システムにおいて用いられる。タービンエキス
パンダー14は関連する冷却コンプレッサー11の駆動
トレインの結合されたロータを有し、コンプレッサーは
高速コンプレッサー又はギヤークリューコンプレッサー
である。タービンは、ストレートフォワード設計であ
り、周辺翼を有するロータディスクとノズルブロックを
有し、ノズルグループは翼の方向に向けられている。各
ノズルは、オリフィス板と収束/放散形状であり、音速
放出が可能である。翼はインパルスリアクション形状で
あり、鋭い曲部出口を持ち、ロータにおける2相混合物
のフラッシングを防ぐ。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、圧縮/膨張冷凍に係
り、特に冷却器、空調機、ヒートポンプ、又はターボエ
キスパンダーが、圧力を減少させるのに濃縮された冷凍
剤を膨張させるとともに、圧縮された流体のエネルギー
の一部を回復させるのに用いられる冷凍システムに関す
る。
【0002】
【従来の技術】単流体2相流膨張弁、フロートバルブ、
又は流体を膨張させるため、すなわち冷却流体の流れを
高圧から低圧に絞るために、コンデンサ熱交換機と蒸発
熱交換機間の機械的圧力調節器を組み込んでいる。
【0003】冷凍サイクルにおいて、冷凍効率を改良す
る目的で、タービン又はターボエキスパンダーを使用す
ることは予め提案されている。2相流タービンは、絞り
膨張バルブの等エンタルピー膨張プロセスを断熱(等エ
ントロピー)膨張プロセスに置き換えるのに、必要とさ
れる。すなわち、タービンは、膨張する冷却剤のエネル
ギーを吸収するとともに、回転エネルギーに変換する。
同時に、蒸発機に入る冷却剤の液体蒸留が増加する。理
想的には、膨張冷却剤のエネルギーは回復し、システム
コンプレッサーを駆動するのに必要なモータエネルギー
を低減させるのに用いることが出来る。
【0004】米国特許第4,336,693号には、膨
張ステージとして、リアクションタービンを用いる冷凍
システムについて述べられている。この研究において
は、遠心リアクションタービンは、膨張機能を果たすと
ともに、パワーを引き出す前に、液体からの蒸気を分離
するように作用する。これは、公知のターボエキスパン
ダーよりも効率を上昇させる。この従来の特許におい
て、タービンによって発生したエネルギーは例えば発電
機を駆動するのに使用できる。
【0005】
【発明が解決しようとする課題】しかしながら、この役
目をなすタービンは、多くの理由により特別な効果はな
い。殆どの冷凍プロセスにおいて、冷却剤が飽和液体相
から底品質の2相液体/蒸気状態にされるところでは、
膨張プロセスは、コンプレッサーに必要なワーク入力に
比べて、比較的少ない量のワークを発生する。さらに、
一般に用いられるタービンは、コンプレッサーよりも容
量が小さいばかりでなく、2相流と膨張液体の速度によ
り、低効率となる。最適な効率とするためには、2相流
タービンは、もちろん、コンプレッサーとは完全に異な
る速度を必要とする。結局、公知の技術では、タービン
エキスパンダーは、エネルギー回収が少なくかつ絞り弁
の初期コストと保守コストにおいて優れていないので、
2相流タービンは使用されていない。
【0006】単流体2相流タービンエキスパンダーは、
冷凍システムの残りに対するタービンの臨界が見られる
場合のみ、実用的な効率が得られる。もし、タービンロ
ータが高効率膨張を果たすことができるような設計速度
を持っておれば、コンプレッサーにタービンロータシャ
フトを直接結合することが可能であり、例えば蒸気速度
と2相流速度のような冷却剤の特性にタービンが適合
し、かつ冷凍システム(すなわち、冷凍機、冷却器、又
は空調機)の容量は、タービンエキスパンダーの質量流
体条件を満たす。しかしながら、従来のシステムは、こ
れを満足するものではなく、かつ所望の効率の増加は達
成されない。
【0007】例えば、R134AとR22のような中間
−高圧力冷却剤に対して、2相流タービンエキスパンダ
ーは、リッジ(Ritzi)の米国特許第4,298,
311号やハイズ(Hays)の米国特許第4,33
6,693号およびハイズ(Hays)の米国特許第
4,438,638号において述べられているものを使
用することが出来る。これらの特許は、液体質量のほと
んど(例えば90%)液体である2相の作動流体(ワー
キング)によって駆動されるタービンに関するものであ
り、蒸気と液体混合物がロータをインパクトするよう
に、1つ又はそれ以上のノズルがロータにおいて凝縮さ
れた冷却剤に向けられている。これらのタービンはリア
クションモータとして設計されており、膨張する蒸気の
機械的エネルギーは、熱としてよりも機械的シャフト出
力エネルギーに変換される。このことは、理論的には、
膨張後の全液体質量の液体蒸留を最大にする。
【0008】しかしながら、最適な膨張を供するところ
のタービンのサイズでは、最適な出力シャフトパワーが
得られない。所定の質量に対するタービンの膨張容量
を、コンプレッサー駆動に直接結合できるのに必要なシ
ャフト速度に適合させるような工夫がなされていない。
【0009】本発明の目的は、凝縮流体の断熱膨張にア
プローチし、圧縮に使用されるエネルギーの本質的な蒸
留の回収が可能にして、従来の欠点を除去した、2相流
タービン膨張機を備えた冷凍システムを提供することで
ある。
【0010】この目的は、特許請求の範囲の請求項1の
序文による方法と装置において、請求項1の特徴部分に
よって達成される。
【0011】
【課題を解決するための手段】上記目的を達成するため
に、本発明は、液体と蒸気として存在し充てんされた流
体冷却剤と、蒸気を圧縮しエネルギーを冷却剤流体に加
えるために所定の回転速度で駆動されるとともに、所定
の減少した圧力で前記流体を受ける入口と上昇した圧力
で流体を供給する出口を有するロータリーコンプレッサ
ーと、入力シャフトに結合された駆動シャフトを有する
駆動モータと、圧縮された液体を蒸気に変換するために
凝縮された冷却剤からの熱を放出するコンデンサー手段
と、前記上昇した圧力で、冷却剤液を前記減少した圧力
に膨張させるための液体と蒸気の結合として、前記液体
が供給される入口を有するタービンエキスパンダーによ
って構成された単相流体圧縮/膨張冷却装置において、
前記ロータリーコンプレッサーの入力シャフトに結合さ
れ、冷却剤流体の圧縮エネルギーの少なくとも一部を、
圧縮された状態で回収する出力シャフトと、前記減少し
た圧力で前記冷却剤流体を供給する出口および、前記タ
ービンエキスパンダーの出口と前記コンプレッサーの出
口間の回路に位置し、前記減少した圧力で前記冷却流体
を供給し、冷却剤流体を蒸気と吸収熱に蒸発させるとと
もに、蒸気を前記コンプレッサー入口に戻すための蒸発
器手段によって、構成されていることを特徴とする。
【0012】また本発明は、液体と蒸気として存在し充
てんされた流体冷却剤と、蒸気を圧縮しエネルギーを冷
却剤流体に加えるために所定の回転速度で駆動されると
ともに、所定の減少した圧力で前記流体を受ける入口と
上昇した圧力で流体を供給する出口を有するロータリー
コンプレッサーと、入力シャフトに結合された駆動シャ
フトを有する駆動モータと、圧縮された液体を蒸気に変
換するために凝縮された冷却剤からの熱を放出するコン
デンサー手段と、前記上昇した圧力で、冷却剤液を前記
減少した圧力に膨張させるための液体と蒸気の結合とし
て、前記液体が供給される入口を有するタービンエキス
パンダーによって構成された単相流体圧縮/膨張冷却装
置において、前記ロータリーコンプレッサーの入力シャ
フトに結合され、冷却剤流体の圧縮エネルギーを、圧縮
された状態で回収する出力シャフトと、前記減少した圧
力で前記冷却剤流体を供給する出口および、前記タービ
ンエキスパンダーの出口と前記コンプレッサーの出口間
の回路に位置し、前記減少した圧力で前記冷却流体を供
給し、冷却剤流体を蒸気と吸収熱に蒸発させるととも
に、蒸気を前記コンプレッサー入口に戻すための蒸発器
手段によって構成され、前記タービンコンプレッサー
は、定常状態動作において前記コンプレッサーのパワー
の約10%を供給する、ことを特徴とする。
【0013】
【作用】わずかに低蒸気質に予冷された吸入条件を備え
た、単流体2相流タービンエキスパンダーは、凝縮され
た冷却剤を断熱的に膨張させるためと冷却剤の圧縮エネ
ルギー量を回収するために、関連する冷凍コンプレッサ
ーのドライブトレインに直接すなわち機械的に結合さ
れ、そのエネルギーはコンプレッサーを回転させるのに
適用される。
【0014】
【実施例】図面に関して、まず、図1を参照すると、ヒ
ートポンプ、冷凍機、冷却器、または空調機用の冷凍シ
ステム10は、概略的に示されており、電動機12又は
他の原動機によって駆動されるコンプレッサー11によ
って構成されている。コンプレッサー11は液体と蒸気
相または蒸気相状態で存在する作動流体を圧縮する。コ
ンプレッサーは、高圧高温で圧縮された蒸気をコンデン
サ13に放出する。そのコンデンサ13は、作動流体か
ら熱を放出し、高圧蒸気を高圧流体に凝縮する。液体は
コンデンサ13からタービンエキスパンダー14に流れ
る。高圧液は、高圧ポートに流れ、タービンロータを、
膨張作動流体の機械的エネルギーによって駆動する。換
言すると、コンプレッサー11によって作動流体に与え
られたエネルギーの一部はエキスパンダー14によって
回収される。ここから、作動流体は低圧で蒸発器に流れ
る。蒸発器15において、吸収された熱は作動流体を液
体から蒸気状態に変換する。蒸発器15からの蒸気は吸
気口側のコンプレッサー11に再入する。この概略図に
おいて、タービンエキスパンダー14からコンプレッサ
ー11までの連結16は、これらの2つの要素のシャフ
トを機械的に連結し、それによりタービンエキスパンダ
ー14はコンプレッサー11の駆動に際してモータを実
際に助ける。タービンエキスパンダーはモータのコンプ
レッサー負荷を軽減し、冷凍サイクルは、例えば絞り膨
張弁のような異なるタイプのエキスパンダーよりも、よ
り効率的に運転される。
【0015】図2は一般の冷凍システムの蒸気圧縮曲線
である。このチャートにおいては、温度Tは縦座標とし
て表され、エントロピーSは横座標として表されてい
る。圧縮/膨張サイクルは垂直線Aとして蒸気の断熱膨
張を示し、ラインB1で蒸気の過熱冷却が起こり、ライ
ンB2で2相等温の圧縮度によって追従される。作動流
体は等エンタルピー(isenthalpic)膨張を
行う。その膨張は、曲線Cに示すように、幾分右に下が
る。蒸発器における流体の等温蒸発は水平直線Dとして
示されている。等エンタルピー膨張により、凝縮した作
動流体の圧縮エネルギーの幾らかはシステムの低圧側で
液体が蒸気に変えられる時に消費されるので、膨張した
冷却剤の質は幾分増加する。効率的な運転のためには、
作動流体の質、すなわち、膨張した冷却剤の蒸留はでき
るだけ小さい方が良い。
【0016】図3は、図2のものと同様であるが、ター
ビンエキスパンダーを通しての作動流体の断熱膨張を達
成するシステム用のものである。断熱膨張は垂直な線
C’として示されている。ここで、少なくとも圧縮エネ
ルギーの幾らかは、エキスパンダーを通過する作動流体
から回収され、かつ機械的エネルギーに変換されるとと
もに、コンプレッサーへ戻される。このことは、冷却剤
の高い蒸留が流体として蒸発器に入り、非常に多くの量
の冷却が冷却剤の同量をもって達成される、ことを意味
する。タービンエキスパンダーを効率的に使用すること
によって、高冷却効率が可能である。例えば、R12,
R22およびR134Aのような高圧冷却剤によって、
標準の膨張バルブを介してのスロットリングロスはせい
ぜい20%であり、例えば、R123又はR245ca
のような低圧の冷却剤では12%である。しかしなが
ら、スロットリングタイプのエキスパンダーを50%の
効率を有するタービンエキスパンダーに置き換えること
が出来れば、スロットリングロスのかなりの量を回復で
きる。このように、コンプレッサーのシャフトに直接
(すなわち、機械的に)結合されているタービンエキス
パンダーは冷凍効率の改良を達成できる。冷凍サイクル
の効率を改善するためにタービンエキスパンダーを使用
することは実現出来ないアイデアであった。エキスパン
ダータービンを冷却システムに適合させることは達成さ
れていない。
【0017】例えば、効率よく運転するためには、シス
テムの必要性から、エキスパンダータービンホイールの
大きさと回転速度は質量流と圧力低下に適合させなけれ
ばならない。もちろん、経済的理由により、このタービ
ン速度はコンプレッサーのドライブトレインの有効なシ
ャフトに対応しなければならない。効率的な運転のため
に、タービンは十分な量のパワーをコンプレッサーに供
給しなければならない。最後に、タービンデザインは、
初期コストとメンテナンスコストの両方を小さくするた
めに、簡単でしかも信頼性がなければならない。
【0018】図4は、この発明の実用的な実施例による
コンプレッサーとエキスパンダーアッセンブリーの縦断
面図である。ここで、3相−2極モータ12は高速遠心
コンプレッサー11のハウジングに取り付けられてい
る。コンプレッサーは吸入口18と羽根車またはロータ
19を有し、この吸入口には蒸気が蒸発器から供給さ
れ、羽根またはロータはロータシャフトによって高速、
例えば15,000rpmで駆動される。作動流体は遠
心駆動され、拡散室21に入る。拡散室では羽根車から
の機械的エネルギーが圧力に変換される。圧縮されたガ
スはコンデンサー熱交換機(図示されていない)の出口
22へ進む。羽根車シャフト20は、モータ12のモー
タシャフトによって順番に駆動されるステップーアップ
ギヤーボックス23を介して駆動される。この実施例に
おいては、モータシャフト24は3600rpmの設計
速度で回転する。
【0019】タービンエキスパンダー14はモータ12
の多端に取り付けられている。ここで、吸入口プレナム
25は凝縮された高圧の作動流体を受け、出口プレナム
26は作動流体を低圧で蒸発器熱交換機(図示されてい
ない)に放出する。
【0020】タービンエキスパンダー14内で、ロータ
ディスク27は、モータシャフト24を結合するシャフ
ト28に取り付けられている。ノズルブロック29はデ
ィスク27を円周方向に囲みかつ複数のノズル30を含
んでいる。これらのノズル30は、吸入口プレナム25
に連通する基部端を有し、端部はロータディスクのリム
に向けられている。
【0021】図5と6は一般的なロータ27とノズルブ
ロックのアレンジメントを示す。ロータディスク27
は、軸流用に配設された周辺ブレード31を有し、おう
とつ(凹凸)翼によって衝撃反作用に設計されていると
ともに、ブレード又は羽根31の出口側(すなわち図6
の上端)プロフィル上の鋭い曲りは図6に示されてい
る。ブレード31の放射状外方縁に支持されたロータ囲
い板32は流体抵抗を防止する。ロータ27における2
相流混合物のフラッシングを防止するために、ロータ2
7は純粋なインパルスタイプである。もちろん、軸流設
計により、流体放出の欠点を避けることが出来、ブレー
ドの頂上にわたる流体のロータへの再入の欠点を避ける
事ができる。ブレード出口の鋭い曲りはブレード圧力面
の液体抵抗を減少させる。
【0022】ノズル30の設計は図7に断面で示されて
いる。多数の小孔を設けることによって流体からフラシ
ュオフするので、吸入口の多孔オリフィス板33は、蒸
気ポッケトの破壊を生じる。ノズル30は収束/放散設
計の内部プロフィル34を有し、すなわち、プロフィル
はウエスト35に集まり、それから、出口端に放散す
る。一つの代表的な設計においては、ノズルは、200
フィート/秒の出力圧を達成する。この実施例において
は、ロータディスク27の直径は7.5〃であり、適正
なロータ速度は3600rpmであり、ロータの羽根の
速度は100フィート/秒である。羽根速度は2相流混
合物の2分の1である。このことは、ノズルからロータ
の羽根までの2相流体のインパクトが最小のフラシュを
与えることと、流体−蒸気混合物の機械的エネルギーが
ロータディスク27に移送されることを意味する。高圧
冷却剤(代表的にはR234A)を用いる500トン水
冷冷却器において、タービンエキスパンダーは、20C
FMの吸入口容積率と、約265CFMの出口容積率を
もっている。断熱放熱速度は、約3.5平方インチのノ
ズル放出断面積で、200フィート/秒である。前述の
ように、ロータは7.50インチの直径をもっている。
3600rpmのロータ速度に戻ると、タービンは、6
0%の効率を持ち、約17.5馬力のタービン出力を達
成する。
【0023】例えばR245CAのような低圧冷却剤を
用いる同じような500トンシステムでは、タービンエ
キスパンダーは、17CFMの吸入口容積流率と120
6CMFの出力口容積流率を持つ。断熱ノズル放出速度
は、21.4平方インチのノズル放出断面積で、161
フィート/秒である。この場合、ロータ速度を適正なも
のとするために、1200rpmの低い最適ロータ速度
を必要とし、ロータ径を25インチにする必要がある。
これは、タービンロータシャフトを3対1のギヤー装置
を介してモータシャフト24に接続することによって、
達成することが出来る。低圧システムに対しては、ター
ビンパワー、すなわちタービンによって回収されるパワ
ー量は約8.3馬力よりも低く、見積タービン効率は約
45%である。
【0024】図6に戻ると、この実施例においては、ブ
ロック29の半径方向回りに配設された14のノズル3
0がある。しかしながら、ノズルの数とそれらのサイズ
は、例えば質量流、圧力差などの要素によって変えるこ
とができる。
【0025】図9は他の実施例を示し、小さいシステム
用のすなわち50トンの容量の高速スクリュータイプの
コンプレッサー40はインダクションモータ41によっ
て駆動され、タービンエキスパンダー43はコンプレッ
サーの高速雄ネジ(図示されていない)のシャフトに結
合されている。ここに、ゴーストラインで示されている
ロータ44はノズル45から放射するジェットによって
回転駆動される。入口プレナム46は高液作動流体を受
け、出口プレナム47は低圧作動流体を液/蒸気混合と
して、放出する。ここで知られている実施例のコンプレ
ッサーとネジギヤーコンプレッサーに加えて、2相流タ
ービンエキスパンダーは種々のコンプレッサーの駆動シ
ャフトに直接結合できる。タービンエキスパンダーは、
冷凍機、空調機または冷却器のコンプレッサーの駆動ト
ルクに直接結合できる。
【0026】この発明の変形例が図10−12に示され
ている。例えば図4に関して前述した装置は、オープン
駆動装置であって、モータ12は冷却剤雰囲気中にはな
い。タービン14とモータシャフト24との間、および
モータシャフト24とコンプレッサー11との間に分離
シールが必要である。しかしながら、図10の装置では
タービンエキスパンダー14が遠心コンプレッサー用の
ギヤボックス23のモータ軸端に取付られている。ター
ビンエキスパンダー14とコンプレッサー11の双方
は、共通のコンプレッサーハウジング47内に取付られ
ており、シングルシール46のみが必要とされ、コンプ
レッサーハウジング47の入口点におけるモータシャフ
トに取付られている。タービンエキスパンダー14は低
速ギヤーシャフト間に支持されている。この装置は、シ
ステムが必要とするシールの数を減少させる。もちろ
ん、低いものではタービンへの支持が改良される。
【0027】さらに、図4において前述したオープンド
ライブコンプレッサーハウジング内に配設されており、
サービス面でより困難である。ハーメチックギヤーボッ
クスに風損が生じる。
【0028】図11に示す装置において、ステップアッ
プ(増速)ギヤーボックス48は、モータシャフトに位
置し、遠心コンプレッサーのロータに直接結合されてい
る出力シャフトをもっている。ステップダウン(減速)
ギヤーボックス23’は、高速シャフトを結合するとと
もに、代表的に3600rpmの減少された速度に適合
するタービンエキスパンダー14に結合する。タービン
14はコンプレッサー11に比べて低パワーで動作する
ので、ギヤーボックス23は、前述した図3の実施例で
必要とされるものよりも軽くかつ安価にできる。もちろ
ん、図8の実施例に関して、タービンエキスパンダー1
4とコンプレッサー11の双方が共通のハウジング47
に位置しているので、シングルシール46のみが必要と
される。
【0029】図10はこの発明によるハーメチック装置
を示すもので、高速モータ12’が減速ギヤー23’,
タービンエキスパンダー14およびコンプレッサー11
の共通のハウジング内に気密にシールされている。高周
波インバータ50は、高速コンプレッサー11を直接駆
動するために、高周波数AC電力をモータ12’に供給
する。システムは、ハウジング47内に完全にシールさ
れており、かつ最小の機械部品の数の使用で済むことに
なる。
【0030】
【発明の効果】以上のとおり、本発明によれば、例えば
R22又はR134Aの高圧冷却剤と、2極インダクシ
ョンモータ(3000から3600rpm)によって駆
動される遠心力またはスクリューコンプレッサーを用い
ている、100から1000トンの容量の冷凍システム
に対して、タービン効率は60%と評価される。運転条
件によっては、絞り膨張弁を備えたシステムに比べて、
モータ負荷が6−15%に減少する。例えばR123又
はR245caのような低圧力冷却剤を用いる同様なシ
ステムでは、タービンロータ径の増加と低ロータシャフ
ト速度により、回収をもっと小さくできる。理想的に
は、約2−6%の回収が可能である。
【0031】速度と容量間の臨界関係が観測される限
り、スクリューコンプレッサー又は他のロータリーコン
プレッサーを有する100トンの容量以下の冷凍システ
ムにおいてタービンエキスパンダーを使用すると、効率
的なエネルギー回収を達成することができる。例えば、
高圧冷却剤を使用しているシステムにおいて、タービン
エキスパンダーは、12,000rpmで運転している
歯車スクリューコンプレッサー又は40,000rpm
で運転しているインバータ駆動5トンスクロールコンプ
レッサーの高速シャフトに直接結合することが出来る。
【0032】タービンは簡単な設計であり、周辺の翼を
備えたロータディスクとノズルブロックを備えていると
ともに、ノズルブロックは翼の方向に向けられている。
ノズルには、それぞれ、蒸気ポケットを破壊させるため
に、入口の翼が設けられている。ノズルは、ウエストを
集める内部形状を有し、出口に放出する。このデザイン
により、音速放出が達成され、液滴の破壊を行う流通圧
勾配を生成する。ロータの翼は、ロータの2相混合物の
さらなるはみ出しを防ぐために、純粋のインパルス設計
(デザイン)を生み出すよに曲げられている。ロータは
軸流デザインであり、翼には円周方向の囲い板を有し、
液体抵抗を防止し、液体の循環と侵入を防ぐことができ
る。
【0033】この発明の他の目的、特徴および利点は、
好ましい実施例の説明と添付図面を参照することによ
り、明らかになるであろう。
【図面の簡単な説明】
【図1】本発明の一実施例を示すタービンエキスパンダ
ーを内蔵した単液圧縮/膨張冷凍システムの透視図。
【図2】絞り膨張弁とタービンエキスパンダーを用いる
システムの冷却剤圧縮/膨張サイクルのチャート。
【図3】絞り膨張弁とタービンエキスパンダーを用いる
システムの冷却剤圧縮/膨張サイクルのチャート。
【図4】本発明の一実施例による遠心コンプレッサーと
エキスパンダーの組合わせによる断面図。
【図5】実施例のタービンエキスパンダーのロータとノ
ズルブロックの斜視図。
【図6】羽プロフィルの形状を示すロータの斜視図。
【図7】同様な斜視図で羽根プロフィルの形状を示す
図。
【図8】実施例のノズルの軸方向断面図。
【図9】関連するタービンエキスパンダーを有する高速
スクリューコンプレッサーを示す他の実施例の斜視図。
【図10】本発明の実用的な変形例の概略図。
【図11】本発明の実用的な変形例の概略図。
【図12】本発明の実用的な変形例の概略図。
【符号の説明】
11…コンプレッサー 12…モータ 13…コンデンサ 14…エキスパンダー 15…蒸発器 16…連結 19…ロータ 20…羽根車シャフト 21…拡散室 22…出口 23…ギヤーボックス 24…モータシャフト 25…吸入口プレナム 26…出口プレナム 27…ディスク 28…シャフト 30…ノズル 31…ブレード 32…ロータ囲い板 33…オリフィス板 35…ウエスト 40…コンプレッサー 41…インダクションモータ 43…タービンエキスパンダー 44…ロータ 45…ノズル 46…入口プレナム 47…出口プレナム 48…ギヤーボックス

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】 液体と蒸気として存在し充てんされた流
    体冷却剤と、 蒸気を圧縮しエネルギーを冷却剤流体に加えるために所
    定の回転速度で駆動されるとともに、所定の減少した圧
    力で前記流体を受ける入口と上昇した圧力で流体を供給
    する出口を有するロータリーコンプレッサーと、 入力シャフトに結合された駆動シャフトを有する駆動モ
    ータと、 圧縮された液体を蒸気に変換するために凝縮された冷却
    剤からの熱を放出するコンデンサー手段と、 前記上昇した圧力で、冷却剤液を前記減少した圧力に膨
    張させるための液体と蒸気の結合として、前記液体が供
    給される入口を有するタービンエキスパンダーによって
    構成された単相流体圧縮/膨張冷却装置において、 前記ロータリーコンプレッサーの入力シャフトに結合さ
    れ、冷却剤流体の圧縮エネルギーの少なくとも一部を、
    圧縮された状態で回収する出力シャフトと、 前記減少した圧力で前記冷却剤流体を供給する出口およ
    び、 前記タービンエキスパンダーの出口と前記コンプレッサ
    ーの出口間の回路に位置し、前記減少した圧力で前記冷
    却流体を供給し、冷却剤流体を蒸気と吸収熱に蒸発させ
    るとともに、蒸気を前記コンプレッサー入口に戻すため
    の蒸発器手段によって、構成されていることを特徴とす
    る、 単流体冷却装置。
  2. 【請求項2】 前記冷却剤が高圧冷却剤であることを特
    徴とする請求項1の単流体冷却装置。
  3. 【請求項3】 前記冷却剤がR22とR134Aからな
    るグループから選択されたものであることを特徴とする
    請求項2の単流体冷却装置。
  4. 【請求項4】 前記タービンエキスパンダーが、複数の
    周辺翼を有し少なくとも1つのノズルが前記流体のジェ
    ットに向いているロータを有する、インパルスタイプの
    2相流タービンエキスパンダーであることを特徴とす
    る、請求項1の単流体冷却装置。
  5. 【請求項5】 前記ノズルが入口で穴板を含んでいるこ
    とを特徴とする、請求項1の単流体冷却装置。
  6. 【請求項6】 前記コンプレッサー,前記蒸発器手段お
    よび前記ノズルが、100トンから1000トンの範囲
    の冷却容量を有することを特徴とする、請求項1の単流
    体冷却装置。
  7. 【請求項7】 前記コンプレッサーが遠心コンプレッサ
    ーを含み、前記入力シャフトが3000から3600r
    pmのシャフト速度を有し、前記タービンエキスパンダ
    ーが3000から3600rpmの速度で回転すること
    を特徴とする、請求項6の単流体冷却装置。
  8. 【請求項8】 前記タービンエキスパンダーが約18.
    5cmのオーダーの直径を持つタービンディスクを有
    し、少なくとも1つのノズルが前記ディスクの周辺翼で
    前記冷却流体に向いている、ことを特徴とする請求項7
    の単流体冷却装置。
  9. 【請求項9】 前記コンプレッサーがスクリューコンプ
    レッサーであり、前記駆動モータが多極インダクション
    モータであり、前記タービンエキスパンダーがギヤーボ
    ックスを介して前記駆動モータシャフトに結合されてい
    る、ことを特徴とする請求項1の単流体冷却装置。
  10. 【請求項10】 前記タービンエキスパンダーの出力シ
    ャフトが前記駆動モータのシャフト速度の約3から5倍
    の速度を有することを特徴とする請求項9の単流体冷却
    装置。
  11. 【請求項11】 液体と蒸気として存在し充てんされた
    流体冷却剤と、 蒸気を圧縮しエネルギーを冷却剤流体に加えるために所
    定の回転速度で駆動されるとともに、所定の減少した圧
    力で前記流体を受ける入口と上昇した圧力で流体を供給
    する出口を有するロータリーコンプレッサーと、 入力シャフトに結合された駆動シャフトを有する駆動モ
    ータと、 圧縮された液体を蒸気に変換するために凝縮された冷却
    剤からの熱を放出するコンデンサー手段と、 前記上昇した圧力で、冷却剤液を前記減少した圧力に膨
    張させるための液体と蒸気の結合として、前記液体が供
    給される入口を有するタービンエキスパンダーによって
    構成された単相流体圧縮/膨張冷却装置において、 前記ロータリーコンプレッサーの入力シャフトに結合さ
    れ、冷却剤流体の圧縮エネルギーを、圧縮された状態で
    回収する出力シャフトと、 前記減少した圧力で前記冷却剤流体を供給する出口およ
    び、 前記タービンエキスパンダーの出口と前記コンプレッサ
    ーの出口間の回路に位置し、前記減少した圧力で前記冷
    却流体を供給し、冷却剤流体を蒸気と吸収熱に蒸発させ
    るとともに、蒸気を前記コンプレッサー入口に戻すため
    の蒸発器手段によって構成され、前記タービンコンプレ
    ッサーは、定常状態動作において前記コンプレッサーの
    パワーの約10%を供給する、ことを特徴とする、 単相流体冷却装置。
JP07261495A 1994-04-05 1995-03-30 単流体冷却装置 Expired - Fee Related JP3222350B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/222,966 US5467613A (en) 1994-04-05 1994-04-05 Two phase flow turbine
US222,966 1994-04-05

Publications (2)

Publication Number Publication Date
JPH0842930A true JPH0842930A (ja) 1996-02-16
JP3222350B2 JP3222350B2 (ja) 2001-10-29

Family

ID=22834445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07261495A Expired - Fee Related JP3222350B2 (ja) 1994-04-05 1995-03-30 単流体冷却装置

Country Status (10)

Country Link
US (1) US5467613A (ja)
EP (1) EP0676600B1 (ja)
JP (1) JP3222350B2 (ja)
CN (1) CN1090744C (ja)
BR (1) BR9501437A (ja)
CA (1) CA2144492C (ja)
DE (1) DE69518686D1 (ja)
DK (1) DK0676600T3 (ja)
ES (1) ES2151948T3 (ja)
MX (1) MX9501594A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150811A1 (ja) * 2008-06-11 2009-12-17 ダイキン工業株式会社 タービン羽根車、タービン、タービン発電機及び冷凍装置
JP2010275924A (ja) * 2009-05-28 2010-12-09 Daikin Ind Ltd 冷凍サイクルに使用される膨張タービン
WO2020036018A1 (ja) * 2018-08-17 2020-02-20 三菱重工サーマルシステムズ株式会社 二相流タービンおよびそれを備えた冷凍機

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819554A (en) * 1995-05-31 1998-10-13 Refrigeration Development Company Rotating vane compressor with energy recovery section, operating on a cycle approximating the ideal reversed Carnot cycle
US5682759A (en) * 1996-02-27 1997-11-04 Hays; Lance Gregory Two phase nozzle equipped with flow divider
US5831341A (en) * 1996-05-02 1998-11-03 Satcon Technologies Corporation Turboalternator for hybrid motor vehicle
GB9707948D0 (en) 1997-04-19 1997-06-11 Interotex Limited Rotary heat and/or mass transfer arrangements
US5924307A (en) * 1997-05-19 1999-07-20 Praxair Technology, Inc. Turbine/motor (generator) driven booster compressor
US5983640A (en) * 1998-04-06 1999-11-16 Czaja; Julius Heat engine
US6507125B1 (en) * 1999-06-11 2003-01-14 Young Mi Choi High efficiency energy converting apparatus and method thereof
US6185956B1 (en) 1999-07-09 2001-02-13 Carrier Corporation Single rotor expressor as two-phase flow throttle valve replacement
US6794766B2 (en) * 2001-06-29 2004-09-21 General Electric Company Method and operational strategy for controlling variable stator vanes of a gas turbine power generator compressor component during under-frequency events
AU2003238364A1 (en) * 2002-05-21 2003-12-02 Walter Dolzer Refrigerating machine
JP2004080937A (ja) * 2002-08-20 2004-03-11 Honda Motor Co Ltd 発電電動機装置
US6644062B1 (en) * 2002-10-15 2003-11-11 Energent Corporation Transcritical turbine and method of operation
WO2004053311A1 (en) * 2002-12-10 2004-06-24 Ingersoll-Rand Energy Systems Corporation Hermetic motor and gas booster
ES2237283B1 (es) * 2003-04-30 2006-10-16 Fco. Javier Landa Axpe Sistema para obtener energia electrica.
US7159416B2 (en) * 2003-12-11 2007-01-09 Carrier Corporation Heat generating expander for heat pump systems
JP2005265278A (ja) * 2004-03-18 2005-09-29 Daikin Ind Ltd 冷凍装置
JP3708536B1 (ja) * 2004-03-31 2005-10-19 松下電器産業株式会社 冷凍サイクル装置およびその制御方法
US20060251808A1 (en) * 2005-05-03 2006-11-09 Lloyd Kamo Protective coatings for pumps
CN101389828B (zh) * 2006-02-23 2011-05-11 松下电器产业株式会社 涡旋式膨胀机及制冷循环装置
JP4715615B2 (ja) * 2006-04-20 2011-07-06 ダイキン工業株式会社 冷凍装置
GB0609326D0 (en) * 2006-05-02 2006-06-21 Bayram Peter J Power generating & cooling refrigeration expansion 'valve'
US20070271956A1 (en) * 2006-05-23 2007-11-29 Johnson Controls Technology Company System and method for reducing windage losses in compressor motors
US20090211223A1 (en) * 2008-02-22 2009-08-27 James Shihfu Shiao High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures
US8156757B2 (en) * 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
US20100139298A1 (en) * 2007-05-07 2010-06-10 Alexander Lifson Motor-compressor drive apparatus
US8590326B2 (en) * 2007-10-09 2013-11-26 Panasonic Corporation Refrigeration cycle apparatus
US9353765B2 (en) 2008-02-20 2016-05-31 Trane International Inc. Centrifugal compressor assembly and method
US8037713B2 (en) * 2008-02-20 2011-10-18 Trane International, Inc. Centrifugal compressor assembly and method
EP2257710B1 (en) * 2008-03-13 2020-05-20 Daikin Applied Americas Inc. High capacity chiller compressor
JP5363212B2 (ja) * 2008-09-30 2013-12-11 株式会社日立製作所 空調システム
US8820114B2 (en) 2009-03-25 2014-09-02 Pax Scientific, Inc. Cooling of heat intensive systems
US20120118538A1 (en) * 2010-11-12 2012-05-17 Thomas Gielda Pump-Less Cooling
JP5628892B2 (ja) 2009-04-01 2014-11-19 リナム システムズ、リミテッド 廃熱空調システム
US8365540B2 (en) 2009-09-04 2013-02-05 Pax Scientific, Inc. System and method for heat transfer
US20110162821A1 (en) * 2010-01-05 2011-07-07 International Business Machines Corporation Self-pumping liquid and gas cooling system for the cooling of solar cells and heat-generating elements
US20120006024A1 (en) * 2010-07-09 2012-01-12 Energent Corporation Multi-component two-phase power cycle
EP2622290A4 (en) 2010-09-29 2018-04-11 Regal Beloit America, Inc. Energy recovery apparatus for a refrigeration system
CN102538305A (zh) * 2012-02-10 2012-07-04 杭州哲达科技股份有限公司 带全液体透平装置的能量自平衡中央空调实现方法及***
DE102012014967A1 (de) * 2012-07-30 2014-01-30 Isabelle Oelschlägel D.I.O. -device to intelligente generate own electricity Integrierte Vorrichtung zur Stromgewinnung während des Betriebes einer Wärme- bzw. Kältemaschine.
US20140250944A1 (en) * 2013-03-07 2014-09-11 Regal Beloit America, Inc. Energy Recovery Apparatus for a Refrigeration System
US9537442B2 (en) 2013-03-14 2017-01-03 Regal Beloit America, Inc. Methods and systems for controlling power to an electric motor
FR3005489B1 (fr) 2013-05-07 2017-03-17 Airbus Operations Sas Dispositif de commande d'une tuyere a section variable d'un aeronef
FR3005488B1 (fr) * 2013-05-07 2015-05-29 Airbus Operations Sas Dispositif de commande d'une tuyere a section variable d'un aeronef
KR20150017610A (ko) * 2013-08-07 2015-02-17 삼성테크윈 주식회사 압축기 시스템
EP2889558B1 (en) * 2013-12-30 2019-05-08 Rolls-Royce Corporation Cooling system with expander and ejector
US9562705B2 (en) 2014-02-13 2017-02-07 Regal Beloit America, Inc. Energy recovery apparatus for use in a refrigeration system
CN105042920A (zh) * 2014-07-31 2015-11-11 摩尔动力(北京)技术股份有限公司 容积型变界流体机构制冷***
US20160138815A1 (en) * 2014-11-17 2016-05-19 Appollo Wind Technologies Llc Isothermal-turbo-compressor-expander-condenser-evaporator device
US10294826B2 (en) * 2015-08-12 2019-05-21 Colorado State University Research Foundation Ultra efficient turbo-compression cooling
DE102016007949B4 (de) 2016-06-28 2022-02-17 Richard Bethmann Wärmepumpenanlage
CN106524579A (zh) * 2016-12-28 2017-03-22 深圳智慧能源技术有限公司 数据中心节能制冷***
IT201600132467A1 (it) 2017-01-04 2018-07-04 H2Boat Turboespansore a strato limite e macchina a ciclo inverso provvista di tale turboespansore
RU2659696C1 (ru) * 2017-06-06 2018-07-03 Александр Андреевич Панин Воздушная турбохолодильная установка (варианты), турбодетандер и способ работы воздушной турбохолодильной установки (варианты)
CN107940786A (zh) * 2017-12-20 2018-04-20 白皓天 一种制冷设备的节能***及具有其的制冷设备
CN108317581A (zh) * 2018-01-31 2018-07-24 天津商业大学 一种非共沸工质机械辅助过冷co2跨临界热泵供暖***
JP7094824B2 (ja) * 2018-08-10 2022-07-04 三菱重工サーマルシステムズ株式会社 冷凍サイクルシステム
US11187437B2 (en) 2019-01-09 2021-11-30 Heatcraft Refrigeration Products Llc Cooling system
EP3772126B1 (de) 2019-08-02 2021-06-30 Helmholtz-Zentrum hereon GmbH System und verfahren zum wärmemanagement von hochtemperatursystemen
EP3901469A1 (en) * 2020-04-20 2021-10-27 Hamilton Sundstrand Corporation An impeller
CN112761739A (zh) * 2020-12-31 2021-05-07 沈阳鼓风机集团股份有限公司 膨胀机喷嘴调节装置及膨胀机
AU2022221740A1 (en) * 2021-02-22 2023-10-05 Barrington Pumps Pty Ltd Centrifugal incompressible fluid pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187105A (ja) * 1984-03-07 1985-09-24 Mitsubishi Electric Corp アンテナ装置
JPS62115343A (ja) * 1985-11-14 1987-05-27 Matsushita Electric Ind Co Ltd フレ−ムレス原子吸光光度計
JPH05322347A (ja) * 1992-05-25 1993-12-07 Techno Ryowa:Kk 冷凍機

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1440000A (en) * 1920-05-03 1922-12-26 Charles E Bonine Refrigeration
US2519010A (en) * 1947-08-02 1950-08-15 Philco Corp Refrigeration system and method
US2615615A (en) * 1949-08-12 1952-10-28 Panhandle Eastern Pipe Line Co Field compressor
US2737031A (en) * 1952-02-12 1956-03-06 William A Wulle Heat energy-converting system and process
DE2040486A1 (de) * 1970-08-14 1972-02-17 Renner Ewald Dipl Ing Pumpen-Turbine
US3938336A (en) * 1973-10-23 1976-02-17 Michael Eskeli Turbine with heating and cooling
US3932159A (en) * 1973-12-07 1976-01-13 Enserch Corporation Refrigerant expander compressor
US3934424A (en) * 1973-12-07 1976-01-27 Enserch Corporation Refrigerant expander compressor
DE2450710A1 (de) * 1974-10-25 1976-05-13 Bbc Brown Boveri & Cie Verfahren zum betrieb einer turbomaschinenanlage und anlage zur durchfuehrung des verfahrens
US4086772A (en) * 1975-10-02 1978-05-02 Williams Kenneth A Method and apparatus for converting thermal energy to mechanical energy
US4106294A (en) * 1977-02-02 1978-08-15 Julius Czaja Thermodynamic process and latent heat engine
JPS54100551A (en) * 1978-01-24 1979-08-08 Mitsubishi Heavy Ind Ltd Refrigerator
IL56763A (en) * 1978-04-10 1981-12-31 Hughes Aircraft Co Cryogenic refrigeration system comprising screw compressorexpander
US4209998A (en) * 1978-12-21 1980-07-01 Dunham-Bush, Inc. Air source heat pump with displacement doubling through multiple slide rotary screw compressor/expander unit
US4235079A (en) * 1978-12-29 1980-11-25 Masser Paul S Vapor compression refrigeration and heat pump apparatus
US4438638A (en) * 1980-05-01 1984-03-27 Biphase Energy Systems Refrigeration process using two-phase turbine
US4336693A (en) * 1980-05-01 1982-06-29 Research-Cottrell Technologies Inc. Refrigeration process using two-phase turbine
US4304104A (en) * 1980-05-02 1981-12-08 Northern Natural Gas Company Pitot heat pump
US4361015A (en) * 1981-01-08 1982-11-30 Apte Anand J Heat pump
JPS5855655A (ja) * 1981-09-30 1983-04-02 株式会社東芝 冷凍サイクル用タ−ビン
DE3204784A1 (de) * 1982-02-11 1983-08-25 Siemens AG, 1000 Berlin und 8000 München Fluessigkeitsringvakuumpumpe mit vorgeschaltetem vorverdichter
US4463567A (en) * 1982-02-16 1984-08-07 Transamerica Delaval Inc. Power production with two-phase expansion through vapor dome
FR2541437B1 (fr) * 1982-05-13 1985-08-23 Zimmern Bernard Economiseur centrifuge pour refrigeration
US4507939A (en) * 1983-12-16 1985-04-02 The Garrett Corporation Three wheel center fan cooling turbine apparatus and associated methods
US4503683A (en) * 1983-12-16 1985-03-12 The Garrett Corporation Compact cooling turbine-heat exchanger assembly
US4576006A (en) * 1984-06-11 1986-03-18 Mitsui Engineering & Shipbuilding Co., Ltd. Geothermal hot water transportation and utilization system
US4563201A (en) * 1984-07-16 1986-01-07 Mobil Oil Corporation Method and apparatus for the production of liquid gas products
US4658592A (en) * 1985-08-30 1987-04-21 Rockwell International Corporation Single-loop, rankine-cycle power unit with supersonic condenser-radiator
US4876855A (en) * 1986-01-08 1989-10-31 Ormat Turbines (1965) Ltd. Working fluid for rankine cycle power plant
US4905481A (en) * 1988-01-06 1990-03-06 Mainstream Engineering Corp. Supersonic compressor for thermally powered heat pumping applications
JPH01285692A (ja) * 1988-05-12 1989-11-16 Kobe Steel Ltd 膨張機駆動スクリュ圧縮機の制御方法
GB8913001D0 (en) * 1989-06-06 1989-07-26 Boc Group Plc Air separation
US5216899A (en) * 1990-11-29 1993-06-08 Gracio Fabris Rotating single cycle two-phase thermally activated heat pump
US5136854A (en) * 1991-01-25 1992-08-11 Abdelmalek Fawzy T Centrifugal gas compressor - expander for refrigeration
US5214932A (en) * 1991-01-25 1993-06-01 Abdelmalek Fawzy T Hermetically sealed electric driven gas compressor - expander for refrigeration
US5249934A (en) * 1992-01-10 1993-10-05 United Technologies Corporation Air cycle machine with heat isolation having back-to-back turbine and compressor rotors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187105A (ja) * 1984-03-07 1985-09-24 Mitsubishi Electric Corp アンテナ装置
JPS62115343A (ja) * 1985-11-14 1987-05-27 Matsushita Electric Ind Co Ltd フレ−ムレス原子吸光光度計
JPH05322347A (ja) * 1992-05-25 1993-12-07 Techno Ryowa:Kk 冷凍機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150811A1 (ja) * 2008-06-11 2009-12-17 ダイキン工業株式会社 タービン羽根車、タービン、タービン発電機及び冷凍装置
JP2009299533A (ja) * 2008-06-11 2009-12-24 Daikin Ind Ltd タービン羽根車、タービン、タービン発電機及び冷凍装置
JP2010275924A (ja) * 2009-05-28 2010-12-09 Daikin Ind Ltd 冷凍サイクルに使用される膨張タービン
WO2020036018A1 (ja) * 2018-08-17 2020-02-20 三菱重工サーマルシステムズ株式会社 二相流タービンおよびそれを備えた冷凍機

Also Published As

Publication number Publication date
DE69518686D1 (de) 2000-10-12
US5467613A (en) 1995-11-21
CN1090744C (zh) 2002-09-11
CA2144492A1 (en) 1995-10-06
EP0676600B1 (en) 2000-09-06
DK0676600T3 (da) 2000-12-27
EP0676600A3 (en) 1996-12-18
MX9501594A (es) 1997-02-28
JP3222350B2 (ja) 2001-10-29
EP0676600A2 (en) 1995-10-11
BR9501437A (pt) 1995-11-07
ES2151948T3 (es) 2001-01-16
CN1117573A (zh) 1996-02-28
CA2144492C (en) 1998-05-05

Similar Documents

Publication Publication Date Title
JP3222350B2 (ja) 単流体冷却装置
US6644062B1 (en) Transcritical turbine and method of operation
US4336693A (en) Refrigeration process using two-phase turbine
US4438638A (en) Refrigeration process using two-phase turbine
JP2686060B2 (ja) 単流体圧縮/膨張冷凍装置
US3934424A (en) Refrigerant expander compressor
US4235079A (en) Vapor compression refrigeration and heat pump apparatus
JP3799220B2 (ja) 複合型ロータ容積式装置および単一流体圧縮/膨張冷凍装置
US6430937B2 (en) Vortex generator to recover performance loss of a refrigeration system
CA2161792A1 (en) Zero superheat refrigeration
US2737031A (en) Heat energy-converting system and process
KR20020031409A (ko) 터보형 압축기 및 그것을 구비한 냉동 장치
US4214170A (en) Power generation-refrigeration system
US20030221434A1 (en) Expander driven motor for auxiliary machinery
JP2005312272A (ja) ターボ冷凍機及びターボ冷凍機用モータ
US3932159A (en) Refrigerant expander compressor
JP5136096B2 (ja) ターボ圧縮機及び冷凍機
KR100309011B1 (ko) 냉동사이클
KR930003924B1 (ko) 원판압축 팽창형 냉 난방장치
Hays et al. A transcritical CO2 turbine-compressor
US3864065A (en) Refrigerant expander compressor
JPS6375446A (ja) 小型冷房装置
JP2000074506A (ja) 電動機内蔵型圧縮式冷凍機
JP2019184114A (ja) 冷凍機
KR20040042090A (ko) 냉매의 팽창일을 이용한 냉동시스템

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees