JPH083613A - 製銑製鋼方法 - Google Patents

製銑製鋼方法

Info

Publication number
JPH083613A
JPH083613A JP16065194A JP16065194A JPH083613A JP H083613 A JPH083613 A JP H083613A JP 16065194 A JP16065194 A JP 16065194A JP 16065194 A JP16065194 A JP 16065194A JP H083613 A JPH083613 A JP H083613A
Authority
JP
Japan
Prior art keywords
slag
converter
blast furnace
hot metal
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16065194A
Other languages
English (en)
Inventor
Masahito Tsuda
誠仁 津田
Hiroyuki Ikemiya
洋行 池宮
Yujo Marukawa
雄浄 丸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16065194A priority Critical patent/JPH083613A/ja
Publication of JPH083613A publication Critical patent/JPH083613A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

(57)【要約】 【目的】 格別に特殊な設備を要することなく製鋼工程
でのスラグ発生量を極力低減すると共に、発生するスラ
グの有効利用範囲を拡大し、これによってスラグの無為
な廃棄を極めて少なくし得る製銑製鋼方法を確立する。 【構成】 図1に示したように、製銑製鋼のための高炉
製錬工程と転炉精錬工程との間に溶銑の炉外予備脱燐工
程を設けると共に、この溶銑の炉外予備脱燐工程でP濃
度が0.17〜0.50%の高含燐溶銑を予備脱燐することによ
りP濃度の高い有用スラグを生成させてこれを排出し、
一方、この時得られる予備脱燐銑を転炉精錬して低燐鋼
となした後、該転炉精錬で生成した含燐スラグあるいは
この含燐スラグと他の転炉操業で生成した転炉スラグと
を高炉装入原料の一部として高炉に装入することにより
高炉から出銑される溶銑中のP濃度を0.17〜0.50%に維
持する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、製鋼工程から排出さ
れるスラグの量を減らすと共に発生するスラグの利用価
値を向上させ、これによって廃棄スラグの低減を可能と
する製銑製鋼方法に関するものである。
【0002】
【従来技術とその課題】現在、わが国では鉄鋼の多くは
“銑鋼一貫製造工程”により製造されている。これは、
「高炉において鉄鉱石を炭材で還元して炭素リッチな銑
鉄を得る製銑工程(高炉製錬工程)」と「この溶銑を転
炉に装入し酸素吹錬により脱炭して鋼を得る製鋼工程」
を連結し一貫工程としたもので、製造能率や製造コスト
等の点で非常に有利であることから鉄鋼製造法の本流を
なすものとなっている。
【0003】ところで、高炉製錬で得られる銑鉄は、前
述したC(炭素)の他に、鉄鉱石に起因する不純物とし
てSi,P等を含んでいる。そのため、製鋼工程ではこれ
らの不純物の低減が図られる。なお、これら不純物のう
ちのPに関しては、わが国で使用されている鉄鉱石はP
分が比較的少ないので溶銑中のP濃度は通常 0.1重量%
程度であるものの、製品中の許容量は多くの場合0.01%
以下であるため、P分の低減にも格別な配慮が払われて
いる。
【0004】C,Si,P等を含む溶銑は、一般には転炉
での酸素吹錬によってこれら元素の低減が図られる。た
だ、脱炭,脱珪が酸素吹錬によりそれほど問題なく進行
するのに対して、脱燐はスラグの塩基度,酸素ポテンシ
ャル,温度等に依存する複雑な反応であるため、脱燐を
円滑に進行させるには操業条件の注意深い調整が必要で
ある。特に処理温度の影響は大きく、終点温度が160
0℃を超える転炉精錬は脱燐に関しては不利である。こ
のため、転炉に投入する造滓剤(特に生石灰)の量を増
やし、高塩基度のスラグを大量に造ることによって脱燐
処理の促進を図っている〔この方法を“従来法”と呼
び、 そのプロセスを図3に示す〕。
【0005】こうして、転炉精錬において発生する転炉
スラグは年間1000万トン近くにのぼる。この膨大な
量の転炉スラグは、主として未滓化石灰に起因する水和
膨張のため路盤材等としての有効利用が困難であり、現
在のところ殆どが埋め立てに処されている。しかし、埋
め立て処理は、高炉スラグがセメント原料,路盤材等と
して有効利用されていることに比べれば極めて次元の低
い処理法と言わざるを得ない。更に、埋め立てにしても
何処にでも行うことができる処理ではなく、特に近年で
は埋め立て地の確保が困難になりつつあるという問題が
生じている。こうした状況に鑑み、埋め立て処理に代わ
る転炉スラグの有効利用の方法が広く検討されるように
なった。
【0006】そして、このような検討の中から、転炉ス
ラグ有効利用の一手段として転炉スラグを製銑材料(高
炉装入原料)に用いることの可能性が注目され出した。
ただ、転炉スラグは前述したように塩基度が高いので製
銑材料として十分な製錬能を有してはいたが、同時に次
のような問題点も併せ持つものであった。即ち、転炉ス
ラグ中には製鋼工程で移行してきたかなりのP(燐)が
酸化燐の形で存在するが、高炉炉内は還元雰囲気となっ
ているので、酸化燐を含有する転炉スラグを製銑材料と
して使用した場合には高炉炉内でこの酸化燐が還元され
てしまい、スラグ中のP分はほぼ完全に溶銑中へ移行す
る。このため、製銑製鋼工程を通してP分は溶銑と転炉
スラグの間を循環して系外へ排出されなくなり、また更
に鉄鉱石に起因する新たなP分が次々と加わることから
溶銑中のPは次第に濃化する。その結果、遂には転炉で
脱燐できる限界を超えてしまう。
【0007】もっとも、こうした事態を避けるための手
段も検討されており、例えば特開昭55−94420号
や特公平3−66372号として提案されている方法で
は、転炉炉外において予め溶銑に脱燐処理を施すことで
溶銑中のP分をスラグ中に移行させ(このスラグを“脱
燐スラグ”と呼ぶ)、これを系外に排出した後、この予
備脱燐された溶銑(脱燐銑)を転炉精錬に供している
〔この方法を“先行発明法”と呼ぶ〕。つまり、このよ
うに炉外で溶銑の予備脱燐処理を施しておけば転炉で発
生するスラグ(転炉スラグ)中にはPが殆ど含まれなく
なり、図4で示したように、これを製銑材料として利用
しても高炉内における溶銑中へのPの濃化は微々たるも
のとなって無視できるようになるわけである。
【0008】なお、図4に示したプロセスを採る上記
“先行発明法”では溶銑を炉外予備脱燐する際にも造滓
剤が用いられるが、この炉外予備脱燐は前記“従来法”
と比較して脱燐処理温度が低い点で有利であり、そのた
めスラグの発生量は“従来法”よりもかなり少なくて済
む。具体的には、“従来法”ではスラグの発生量は溶銑
1トン当り70〜100kg程度であるが、炉外予備脱燐
の場合には溶銑1トン当り50kg程度でしかない。
【0009】しかしながら、この炉外予備脱燐で発生す
る脱燐スラグは比較的高い濃度でPを含有しているので
(図4中のP濃度は代表例である)製銑材料として使用
することはできなかった。このため、前記“先行発明
法”では、発生する転炉スラグについては製銑材料とし
て利用できるものの、炉外予備脱燐で発生する脱燐スラ
グはやはり埋め立てによる処分に頼らざるを得ず、埋め
立て処分を必要とする脱燐スラグの量は“従来法”で発
生する要埋め立て処分スラグ量と比較して30〜50%
ばかり減少する程度に過ぎない。もっとも、炉外予備脱
燐で発生する脱燐スラグは“従来法”で発生する転炉ス
ラグと比べればP分を多めに含有しているので、これを
肥料,燐酸等の原料として利用することも考えられない
ではないが、このような脱燐スラグ程度のP含有量では
コスト的に釣り合わず、現実的な方策とは言えなかっ
た。
【0010】一方、特公昭59−37322号公報に
は、「特殊な“純酸素底吹転炉”を用いる製鋼方法の場
合には処理溶銑のP濃度が0.26重量%までであればP濃
度の増大による生石灰使用量の増加は非常に少ない」と
の知見を基に、高炉から出銑される溶銑のP濃度が0.26
重量%を超えない範囲で“上吹転炉スラグ”を高炉装入
原料として利用し、この結果得られる高炉銑を“純酸素
底吹転炉”で処理するようにした「上吹転炉スラグの再
利用法」が提案されている。しかし、この方法は、上記
高炉銑を精錬する際、通常使用されている“酸素上吹転
炉(攪拌ガス等の底吹きを併用するものも含む)”を適
用することができずに特殊な“純酸素底吹転炉”を用い
なければならないという問題を有しており、そのため
「どの工場においても一般的に採用することができる転
炉スラグの再利用法」と言えるものではなかった。しか
も、高炉銑に求められるP濃度の許容値もそれほど高く
はないため、高炉装入原料として利用できる上吹転炉ス
ラグの量が限られる上、“純酸素底吹転炉から排出され
るスラグ”についてはやはり埋め立て地等へ廃棄する以
外の途を示すものではなかった。
【0011】このようなことから、本発明が目的とした
のは、格別に特殊な設備を要することなく製鋼工程での
スラグ発生量を極力低減すると共に、発生するスラグの
有効利用範囲を拡大し、これによってスラグの無為な廃
棄を極めて少なくし得る製銑製鋼方法を確立することで
ある。
【0012】
【課題を解決するための手段】そこで、本発明者等は上
記目的を達成すべく鋭意研究を行い、次のような知見を
得るに至った。即ち、本発明者等は、種々検討の結果、
埋め立て地等へ無為に廃棄せざるを得ないスラグの量を
低減するためには生成するスラグ(特に製鋼工程で発生
するスラグ)の有用性が高まる方策を講じてその有効利
用の途を開くと共に、スラグの発生量自体が少なくなる
ように図る必要があると考えた。そして、まず、製鋼工
程において発生するスラグでは、そのP濃度を高めて肥
料又は燐酸等の含燐原料として利用することが最も現実
的であるとの結論に達した。
【0013】しかし、脱炭吹錬が主体となる転炉精錬中
に脱燐を行う“従来法”では、精錬温度(Pの分配比に
大きく影響する)等の関係から生成スラグのP濃度を高
めることは製品品質(鋼の品質)に悪影響するので採用
できない。ところが、溶銑の炉外予備脱燐を実施する
と、転炉(脱炭)吹錬に比べて低い温度の処理であるの
で少ないスラグで高効率の脱Pができ、高いP濃度のス
ラグを形成することができる。しかも、この場合、炉外
予備脱燐に供する高炉銑のP濃度がある値を上回る高い
範囲であると、予備脱燐で発生する脱燐スラグのP濃度
も著しく高くなって、肥料や燐酸等の製造原料として利
用できるほどの含燐原料となる。
【0014】その上、炉外予備脱燐後の仕上げ転炉吹錬
で生成される転炉スラグを“前記炉外予備脱燐工程へ銑
鉄を供給する高炉”の装入原料の一部として循環させる
と、高炉銑のP濃度を高い範囲に保つことが可能にな
り、該高炉から出銑される高炉銑は“前記炉外予備脱燐
にて高P脱燐スラグを発生させるための溶銑”として好
都合となる上、転炉スラグを廃棄する必要もなくなる。
一方、溶銑の炉外予備脱燐を実施すると、転炉(脱炭)
吹錬に比べて低い温度の処理であるので少ないスラグで
高効率の脱Pができ、脱燐スラグ自体の排出量を少なく
することもできる。
【0015】従って、従来の認識に反してP濃度を高め
た溶銑を製鋼工程に供し、まず炉外予備脱燐を施して続
く転炉吹錬で低燐鋼の製造が可能な程度にまで溶銑中P
を低減することにより高P脱燐スラグを発生させた後、
この脱燐銑を転炉吹錬して脱炭と仕上げ脱燐を行い、こ
の時発生した転炉スラグを高炉装入原料の一部として
“前記炉外予備脱燐工程へ溶銑を供給する高炉”に装入
するという製銑製鋼操業サイクルを構成することによっ
て、製鋼工程で発生するスラグの量を著しく低減できる
上に、発生するスラグもP濃度が著しく高いものとなっ
て肥料又は燐酸等の含燐原料として有効利用することが
可能になる。
【0016】本発明は、上記知見事項等に基づいて完成
されたものであり、「製銑製鋼のための高炉製錬工程と
転炉精錬工程との間に溶銑の炉外予備脱燐工程を設ける
と共に、 この溶銑の炉外予備脱燐工程でP含有量(P濃
度)が0.17〜0.50重量%の高含燐溶銑を予備脱燐するこ
とによりP濃度の高い有用スラグを生成させてこれを排
出し、 一方、 この時得られる予備脱燐銑を転炉精錬して
低燐鋼となした後、 該転炉精錬で生成した含燐スラグあ
るいはこの含燐スラグと他の転炉操業で生成した転炉ス
ラグとを高炉装入原料の一部として高炉に装入すること
により高炉から出銑される溶銑中のP含有量(P濃度)
を0.17〜0.50重量%に維持することで、 製鋼工程でのス
ラグの系外排出を実質的に溶銑の炉外予備脱燐時のみに
止めると共にその排出量を少なくし、 かつこの系外排出
スラグの高いP濃度に基づく有効利用性の確保によって
廃棄スラグの低減を可能とした点」に大きな特徴を有し
ている。
【0017】なお、図1及び図2は本発明法に係る製銑
製鋼プロセス例の説明図であり、図1は“P濃度の高い
スラグを排出した予備脱燐銑”を転炉精錬した時に発生
する転炉スラグを高炉装入原料の一部として高炉に装入
する場合の例を、そして図2はこの転炉スラグに加えて
“他の転炉操業で生成した転炉スラグ”をも高炉装入原
料の一部として高炉に装入する場合の例をそれぞれ示し
ている。
【0018】
【作用】この図1あるいは図2に示す“本発明法”と前
記図4に示す“先行発明法”とを比較した場合、両者は
プロセスが見掛け上類似しているようにも見えるが、そ
の技術思想には大きな差異がある。つまり、従来は溶銑
中のP濃度が増加すると脱燐の負荷が増すので転炉精錬
に供する溶銑のP濃度を高めないことに努力が払われて
おり、“先行発明法”ではこの転炉精錬に供する溶銑の
P濃度低減策として溶銑の炉外予備脱燐を位置付けてい
るのに対し、“本発明法”はこれらの思想とは逆で、炉
外予備脱燐の対象になる溶銑としてP濃度の高いものを
使用するだけでなく、溶銑の炉外予備脱燐の位置付けは
むしろ溶銑P濃度を高位に保つためのものであり、これ
によってP濃度の高い脱燐スラグ(炉外予備脱燐で発生
するスラグ)を生成させようとしている。
【0019】このように、本発明はP濃度の高い溶銑を
炉外予備脱燐し、P濃度の高い脱燐スラグを生成させる
ことを1つの特徴点としているが、このため脱燐スラグ
には肥料又は燐酸等の含燐原料として有効利用できる途
が開かれる。なお、本発明で言う「P含有量の高い有用
スラグ」とは、例えばP含有量が5重量%以上(通常は
15重量%近い高濃度となる)と高くて肥料又は燐酸等
の含燐原料として有効利用できるスラグを意味してい
る。また、炉外予備脱燐は一般的に用いられる取鍋,ト
−ピ−ドあるいは予備脱燐の容器として好適であること
が既に知られている転炉等を使って実施すれば良いが、
何れにしても転炉(脱炭)精錬に比べて低い温度の処理
であるため少ないスラグで高効率の脱燐が可能で、この
点とP濃度の高い脱燐スラグを生成させることが本発明
をして排出する脱燐スラグの発生量を少なくすることに
もつながっている。
【0020】なお、製銑製鋼プロセスにおいてP濃度の
低い良品質鋼を安定して製造するためには、鉄鉱石中の
不純物としてメタル中にPが持ち込まれるのと同一速度
でPを排出することが必要であるが、鉄鉱石から持ち込
まれるPをスラグ(勿論“製鋼工程”で発生するスラ
グ)として排出する際の「スラグ中のP濃度とスラグ量
との関係」を前記“従来法", "先行発明法”及び“本発
明法”間で比較すると、図5の通りとなる。この図5か
らも確認できるように、同じP濃度の鋼を製造する場合
には“従来法" や "先行発明法”ではP濃度の低いスラ
グが多量に排出されるのに対して、“本発明法”ではP
濃度の高いスラグを少量だけ造れば良く、スラグの排出
量を大幅に減少させることができる。
【0021】ここで、溶銑の炉外予備脱燐時にP濃度の
高い脱燐スラグを生成させるのに最も効果的かつ実際的
な手段は、処理溶銑としてP濃度の高いものを用いるこ
とである。即ち、スラグの脱燐能は次式(P分配比に係
る式)で表される。 この式からも、一定の脱燐能を有するスラグに含有され
るPの濃度を増加させるにはそのスラグと共存するメタ
ル中に含まれるPの濃度を増加させる必要があり、P濃
度の高い脱燐スラグを生成させようとすると炉外予備脱
燐に供する溶銑のP濃度を高めねばならないことが分か
る。
【0022】本発明法において炉外予備脱燐に適用する
溶銑のP濃度は、具体的には0.17〜0.50重量%の範囲と
するのが良い。なぜなら、この範囲よりP濃度が低いと
P分配比の関係からスラグ中のP濃度が十分に高くなら
ず、脱燐スラグ発生量の低減効果が低いばかりか、脱燐
スラグを有効利用する途も開かれない。一方、上記範囲
よりも溶銑P濃度が高い場合には、溶銑の炉外予備脱燐
によっても溶銑P濃度が所望値まで低下せず、予備処理
後もなおP濃度が高いためにその後に転炉精錬を行って
も必要なレベルまで脱燐ができない。
【0023】炉外予備脱燐に処する溶銑のP濃度を0.17
〜0.50重量%とするには、“高炉から出銑される溶銑”
中のP濃度を増加させ、これを0.17〜0.50重量%と通常
の溶銑の場合よりも高く調整することが必要である。そ
のため、本発明では、脱燐銑を転炉で精錬(脱炭と仕上
げ脱燐)した際に発生する転炉スラグを高炉装入原料の
一部として高炉に装入する。ここでの高炉装入原料と
は、直接高炉に装入する原料だけでなく、焼結鉱やペレ
ットの形にしてから装入する原料をも含むものであり、
後者の場合には、転炉スラグは焼結鉱やペレットの原料
として用いられる。
【0024】つまり、本発明に係る炉外予備脱燐ではP
濃度の高い脱燐スラグを生成させるため、得られる溶銑
は「脱燐銑」とは言うものの通常の予備脱燐で得られる
脱燐銑よりもP濃度が高めとなるが、この問題は続く転
炉(脱炭)精錬の際に多めの造滓剤を使用して高塩基度
のスラグを形成するようにすれば十分に解決することが
でき、所望する低燐鋼の安定製造に格別な支障を与える
ことはない。そればかりか、この際に発生する転炉スラ
グは、未滓化の生石灰を多く含むので高炉装入原料の一
部として高炉に装入すれば製銑原料の原単位減につなが
るばかりか、3重量%以下程度のレベルではあるが溶鋼
からのPを吸収しているので、高炉へ装入すると酸化物
の形態で転炉スラグ中含まれていたPは炉内の還元雰囲
気のために還元されて溶銑中へ移行し“比較的P含有量
の低い鉄鉱石を使用するわが国の高炉製錬”においても
高炉内溶銑のP濃度を高めて0.17〜0.50重量%のレベル
を維持するのに役立ち、前記炉外予備脱燐にP濃度の高
い溶銑を安定供給することを可能にする。
【0025】しかも、上述のように、炉外予備脱燐後の
転炉精錬で発生した転炉スラグは高炉装入原料の一部と
して高炉に装入されるので、転炉スラグの投棄処分とい
った困難な問題を生じることもない。更に、本発明では
脱燐銑を転炉(脱炭)精錬する際に多少多めの造滓剤を
使用するものの、この転炉スラグ原単位増によるコスト
アップは、転炉スラグを高炉装入原料として使用するこ
とでもたらされる“バ−ジンの製銑原料の原単位減によ
るコストダウン”と相殺するので問題とはならない。
【0026】この場合、図2で示すような「本発明に係
る予備脱燐銑を転炉精錬して生成した含燐スラグに加え
て他の転炉操業で生成した転炉スラグ(従来の銑鋼一貫
プロセスから発生したスラグ等)も高炉装入原料の一部
として高炉に装入する方法」を採用すれば、これら転炉
スラグ中の残留石灰を製銑原料として有効に使用できて
高炉装入原料の更なる節減にもつながる。その上、他の
転炉操業で生成した転炉スラグ(従来の銑鋼一貫プロセ
スから発生したスラグ等)の廃棄を懸念することもなく
なり、スラグ発生量低減効果を最大限に享受できる。
【0027】なお、具体的には、本発明法によると系外
に排出されるスラグの量を容易に溶鋼トン当り20kg以
下とすることができ、従来法の 1/3 1/5に減少する。
しかも、この系外に排出されるスラグも、含有される酸
化燐濃度が15重量%近い高濃度となるので燐酸肥料や
工業用燐酸の原料として有効に利用することが可能であ
る。
【0028】続いて、本発明を実施例により更に具体的
に説明する。
【実施例】
〔実施例1〕本発明法を実際の製銑製鋼プロセスに適用
し、以下の結果を得た。まず、図3に示すプロセスを採
る銑鋼一貫工場において発生した転炉スラグを製銑原料
として連続的に高炉に装入した。このため、出銑された
溶銑中のP濃度は当初の約0.10重量%から次第に濃化し
ていった。
【0029】溶銑P濃度が0.15重量%を超えると図3の
プロセスでは溶鋼中のP濃度を必要レベルまで低下させ
ることが困難となり、特に0.17重量%以上になると必要
レベルへのP濃度の低下が叶わなくなるため、この時点
で図1に示したような溶銑予備処理脱燐プロセスを導入
した。ここで、図1に示す溶銑予備処理脱燐プロセスを
導入した当初は、予備脱燐の際に発生した脱燐スラグも
転炉スラグと同様に製銑原料として高炉への装入を実施
した。このため、溶銑中のP濃度は更に上昇し0.20重量
%に到達したが、この時点から本発明に係る製銑製鋼法
(図1に示されるプロセスでの製銑製鋼法)を定常状態
で続行した。
【0030】この製銑製鋼法において、予備脱燐では上
底吹転炉を予備脱燐容器として使用し、高炉から供給さ
れたP濃度が0.20重量%の溶銑に造滓剤を1トン当り1
5kg添加して上底吹転炉内で酸素吹精し脱燐を行った。
この結果、溶銑中のP濃度は0.11重量%にまで低下し、
脱燐スラグ中のP濃度は 7.3重量%に達した。この脱燐
スラグは系外に排出した。
【0031】次に、こうして得られた脱燐銑を別の上底
吹転炉に装入し、1トン当り95kgの造滓剤を添加して
酸素吹精を行った。その結果、得られた溶鋼のP濃度
は、従来法の場合と同様に 0.008重量%にまで低減され
た。また、この転炉吹錬で発生した転炉スラグはP濃度
が 1.2重量%であったが、この転炉スラグを製銑原料と
して高炉に装入した。
【0032】そして、このように高炉から供給されるP
濃度の高い溶銑を予備脱燐してから転炉精錬し、この転
炉精錬で発生した転炉スラグを製銑原料として利用する
(高炉に装入する)というプロセスを繰り返したとこ
ろ、高炉から出銑される溶銑中のP濃度は0.18〜0.23重
量%に安定して維持され、またこれを予備脱燐し転炉精
錬して得られる溶鋼中のP濃度は0.01重量%以下に安定
して維持された。
【0033】また、この際に系外へ排出される脱燐スラ
グは溶鋼1トン当り15〜20kgの範囲に収まってい
た。これは、前記“従来法”の 1/3以下であり、このプ
ロセスによるスラグ減量効果が現れている。また、系外
へ排出される前記脱燐スラグ中のP濃度は 7.0〜 7.5重
量%の範囲にあり、この脱燐スラグを燐鉱石の代替品と
して燐酸プラントで使用した結果、脱燐スラグは特に問
題なく燐鉱石の代わりに利用できることを確認した。
【0034】〔実施例2〕本発明法を、ほぼ等しい生産
能力を持つ2系統の高炉−製鋼工場を持つ製銑製鋼プロ
セスに適用し、以下の結果を得た。まず、両製鋼工場で
発生した転炉スラグを製銑原料として連続的に一方の高
炉に装入した。このため、該高炉から出銑された溶銑中
のP濃度は当初の約0.10重量%から次第に濃化していっ
た。
【0035】溶銑P濃度が0.15重量%を超えると予備脱
燐せずに溶鋼中のP濃度を必要レベルまで低下させるこ
とが困難となり、特に0.17重量%以上になると必要レベ
ルへのP濃度の低下が叶わなくなるため、この時点でP
の濃化した溶銑を受銑する製鋼工場に図2に示す如く溶
銑予備処理脱燐プロセスを導入した。なお、図2に示し
たような予備脱燐プロセスを導入した当初は、予備脱燐
の際に発生した脱燐スラグも転炉スラグと同様に製銑原
料として前記高炉への装入を実施した。このため、該高
炉から出銑される溶銑中のP濃度は更に上昇し、0.30重
量%に到達したが、この時点から本発明に係る製銑製鋼
法(図2に示されるプロセスでの製銑製鋼法)を定常状
態で続行した。
【0036】この製銑製鋼法において、予備脱燐では上
底吹転炉を予備脱燐容器として使用し、高炉から供給さ
れたP濃度が0.30重量%の溶銑に造滓剤を1トン当り3
0kg添加して上底吹転炉内で酸素吹精し脱燐を行った。
この結果、溶銑中のP濃度は0.10重量%にまで低下し、
脱燐スラグ中のP濃度は 7.5重量%に達した。この脱燐
スラグは系外に排出した。
【0037】次に、こうして得られた脱燐銑を別の上底
吹転炉に装入し、1トン当り80kgの造滓剤を添加して
酸素吹精を行った。その結果、得られた溶鋼のP濃度を
0.009重量%にまで低減された。また、この転炉吹錬で
発生した転炉スラグはP濃度が 1.2重量%であったが、
この転炉スラグを“他の転炉(図2参照)”で発生した
転炉スラグと共に製銑原料の一部として前記高炉に装入
した。なお、この間、“他の高炉(図2参照)”あるい
は“他の転炉(図2参照)”からの溶銑又は溶鋼のP濃
度はそれぞれ約0.10重量%,0.01重量%を維持してい
た。
【0038】そして、このように特定の高炉から供給さ
れるP濃度の高い溶銑を予備脱燐してから転炉精錬し、
更にこの転炉精錬で発生した転炉スラグと“他の転炉
(図2参照)”から発生した転炉スラグとを共に前記特
定高炉での製銑原料として利用する(つまり2つの製鋼
工場から発生する転炉スラグを前記特定の高炉に装入す
る)というプロセスを繰り返したところ、前記特定の高
炉から出銑される溶銑中のP濃度は0.18〜0.23重量%に
安定して維持され、またこれを予備脱燐し転炉精錬して
得られる溶鋼中のP濃度は0.01重量%以下を安定して維
持された。
【0039】また、この際に系外へ排出される脱燐スラ
グは溶鋼1トン当り15〜20kgの範囲に収まってい
た。これは、前記“従来法”の 1/3以下であり、このプ
ロセスによるスラグ減量効果が現れている。また、系外
へ排出される脱燐スラグ中のP濃度は、燐酸プラントで
燐鉱石の代替品として利用できる 7.0〜 7.5重量%の範
囲にあることも確認された。
【0040】
【効果の総括】以上に説明した如く、この発明によれ
ば、特殊な設備を要することなく、製鋼プロセスから排
出されるスラグの量を大幅に低減できる上に、この製鋼
プロセスから排出されるスラグを燐酸,肥料等の原料と
して有効利用することが可能な製銑製鋼一貫工程が確立
され、製銑製鋼工程の系外に排出される“廃棄処分が必
要なスラグ”の量を激減させ得る途が開かれるなど、産
業上極めて有用な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明に係る製銑製鋼プロセスの概要を示す説
明図である。
【図2】本発明に係る製銑製鋼プロセスの別例を示す概
要説明図である。
【図3】従来法に係る製銑製鋼プロセスの概要を示す説
明図である。
【図4】先行発明法に係る製銑製鋼プロセスの概要を示
す説明図である。
【図5】鉄鉱石から持ち込まれるPをスラグとして排出
する際の「スラグ中のP濃度とスラグ量との関係」を従
来法,先行発明法及び本発明法とで比較したグラフであ
る。

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 高炉製錬工程と転炉精錬工程との間に溶
    銑の炉外予備脱燐工程を設けると共に、この溶銑の炉外
    予備脱燐工程でP含有量が0.17〜0.50重量%の高含燐溶
    銑を予備脱燐することによりP含有量の高い有用スラグ
    を生成させてこれを排出し、一方、この時得られる予備
    脱燐銑を転炉精錬して低燐鋼となした後、該転炉精錬で
    生成した含燐スラグを高炉装入原料の一部として高炉に
    装入することにより高炉から出銑される溶銑中のP含有
    量を0.17〜0.50重量%に維持することを特徴とする、廃
    棄スラグの低減を可能とする製銑製鋼方法。
  2. 【請求項2】 高炉製錬工程と転炉精錬工程との間に溶
    銑の炉外予備脱燐工程を設けると共に、この溶銑の炉外
    予備脱燐工程でP含有量が0.17〜0.50重量%の高含燐溶
    銑を予備脱燐することによりP含有量の高い有用スラグ
    を生成させてこれを排出し、一方、この時得られる予備
    脱燐銑を転炉精錬して低燐鋼となした後、該転炉精錬で
    生成した含燐スラグと他の転炉操業で生成した転炉スラ
    グとを高炉装入原料の一部として高炉に装入することに
    より高炉から出銑される溶銑中のP含有量を0.17〜0.50
    重量%に維持することを特徴とする、廃棄スラグの低減
    を可能とする製銑製鋼方法。
JP16065194A 1994-06-20 1994-06-20 製銑製鋼方法 Pending JPH083613A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16065194A JPH083613A (ja) 1994-06-20 1994-06-20 製銑製鋼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16065194A JPH083613A (ja) 1994-06-20 1994-06-20 製銑製鋼方法

Publications (1)

Publication Number Publication Date
JPH083613A true JPH083613A (ja) 1996-01-09

Family

ID=15719548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16065194A Pending JPH083613A (ja) 1994-06-20 1994-06-20 製銑製鋼方法

Country Status (1)

Country Link
JP (1) JPH083613A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228101A (ja) * 2008-03-25 2009-10-08 Nippon Steel Corp 溶銑予備処理方法
CN103031401A (zh) * 2012-09-26 2013-04-10 新疆八一钢铁股份有限公司 一种lf精炼炉还原渣用于转炉炼钢的方法
CN103031405A (zh) * 2011-11-29 2013-04-10 新疆八一钢铁股份有限公司 电炉热兑转炉液态钢渣的炼钢工艺
CN103320576A (zh) * 2013-06-09 2013-09-25 济钢集团有限公司 精炼渣倒铁水包回收利用方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228101A (ja) * 2008-03-25 2009-10-08 Nippon Steel Corp 溶銑予備処理方法
CN103031405A (zh) * 2011-11-29 2013-04-10 新疆八一钢铁股份有限公司 电炉热兑转炉液态钢渣的炼钢工艺
CN103031401A (zh) * 2012-09-26 2013-04-10 新疆八一钢铁股份有限公司 一种lf精炼炉还原渣用于转炉炼钢的方法
CN103320576A (zh) * 2013-06-09 2013-09-25 济钢集团有限公司 精炼渣倒铁水包回收利用方法

Similar Documents

Publication Publication Date Title
WO2014112432A1 (ja) 転炉製鋼法
JP3239197B2 (ja) 転炉製鋼法
JP6693536B2 (ja) 転炉製鋼方法
JPH0437132B2 (ja)
JPH083613A (ja) 製銑製鋼方法
JPH083612A (ja) 清浄鋼の精錬方法
JP3829543B2 (ja) 高燐鉱石を原料とする鉄鋼製造方法
JPH07310110A (ja) ステンレス鋼の製造方法
JP2958842B2 (ja) 転炉精錬方法
JPH01147011A (ja) 製鋼法
CN111635975B (zh) 一种转炉炉渣回收利用的方法
JPH0435529B2 (ja)
JP2004010935A (ja) 溶鋼の製造方法
JPS6393813A (ja) 製鋼方法
JPH0718318A (ja) 転炉精錬方法
JP3823595B2 (ja) 溶銑精錬方法
JPH0557327B2 (ja)
JPH09256020A (ja) 転炉型精錬容器における溶銑の脱燐精錬方法
JPS62290815A (ja) 製鋼方法
JPH01142009A (ja) 製鋼方法
JPH0762414A (ja) 転炉製鋼法
JPH0219410A (ja) 精錬方法
JPS63223112A (ja) 鉄鉱石の溶融還元方法
JPH01252715A (ja) 鉄浴式溶融還元炉の操業方法
JPS61104014A (ja) 酸化精錬炉におけるMn鉱石高効率還元法