JPH08337725A - Aqueous dispersion and its production - Google Patents

Aqueous dispersion and its production

Info

Publication number
JPH08337725A
JPH08337725A JP17024195A JP17024195A JPH08337725A JP H08337725 A JPH08337725 A JP H08337725A JP 17024195 A JP17024195 A JP 17024195A JP 17024195 A JP17024195 A JP 17024195A JP H08337725 A JPH08337725 A JP H08337725A
Authority
JP
Japan
Prior art keywords
aqueous dispersion
weight
parts
acid
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17024195A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
信幸 伊藤
Masayuki Hattori
雅幸 服部
Akio Hiraharu
晃男 平春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP17024195A priority Critical patent/JPH08337725A/en
Publication of JPH08337725A publication Critical patent/JPH08337725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: To produce an aqueous dispersion, comprising specific polymer particles and a specified water-soluble polymer, having high dispersibility of a π-conjugated system electroconductive polymer particles, excellent in stability with time, good in film-forming properties and useful as an electroconductive coating material. CONSTITUTION: This aqueous dispersion comprises (A) polymer particles, comprising (ii) a π-conjugated system electroconductive polymer containing (i) a low- molecular protonic acid (e.g. a mineral acid such as sulfuric acid) and having 0.01-2μm average particle diameter and (B) a water-soluble polymer (e.g. polyvinyl alcohol) having 10000-100000 number-average molecular weight expressed in terms of polystyrene. Furthermore, at least one monomer for constituting the component (ii) (e.g. a heterocyclic 5-membered ring compound) is preferably polymerized in the presence of the component (B), a transition metallic compound (e.g. ferric sulfate) and the component (i) using an oxidizing agent (e.g. ferric chloride).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、π共役系導電性重合体
粒子の水性分散体およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to an aqueous dispersion of π-conjugated conductive polymer particles and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポリアセチレン、ポリピロール、
ポリチオフェン、ポリアニリンなどの導電性高分子は、
新しい導電性材料として、コンデンサーの固体電解質、
電池の電極材料、帯電防止材料、各種センサーや表示素
子などの分野への応用が広く検討されている。しかしな
がら、これらの導電性高分子は、一般に溶媒に不溶であ
り、また高温においても不溶であるため、成形、加工が
困難であるなどの問題があった。
2. Description of the Related Art In recent years, polyacetylene, polypyrrole,
Conductive polymers such as polythiophene and polyaniline
As a new conductive material, the solid electrolyte of the capacitor,
Application to the fields of battery electrode materials, antistatic materials, various sensors and display elements, etc. has been widely studied. However, these conductive polymers are generally insoluble in solvents and also insoluble at high temperatures, so that there is a problem that molding and processing are difficult.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記従来の
技術的課題を背景になされたもので、導電性重合体微粒
子の水への分散性を良好にし、成形、加工性を向上さ
せ、導電性および経時安定性の優れた導電性重合体微粒
子の水性分散体およびその製造法を提供することを目的
とする。
The present invention has been made against the background of the above-mentioned conventional technical problems, and improves the dispersibility of conductive polymer fine particles in water to improve the molding and processability, An object of the present invention is to provide an aqueous dispersion of conductive polymer fine particles having excellent conductivity and stability over time, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は、低分子プロト
ン酸を含有するπ共役系導電性重合体からなる平均粒子
径0.01〜2μmの重合体粒子とポリスチレン換算数
平均分子量1万〜10万の水溶性高分子化合物とを含む
ことを特徴とする水性分散体ならびにπ共役系導電性重
合体を構成するための単量体(以下、単に「特定単量
体」という)少なくとも1種を、分子量1万〜10万の
水溶性高分子化合物、遷移金属化合物および低分子プロ
トン酸の存在下、酸化剤により重合することを特徴とす
る水性分散体の製造方法を提供するものである。以下、
本発明について詳細に説明する。
Means for Solving the Problems The present invention is directed to polymer particles made of a π-conjugated conductive polymer containing a low molecular weight protonic acid and having an average particle diameter of 0.01 to 2 μm, and a polystyrene reduced number average molecular weight of 10,000 to At least one monomer for forming an aqueous dispersion and a π-conjugated conductive polymer characterized by containing 100,000 water-soluble polymer compounds (hereinafter, simply referred to as “specific monomer”) The present invention provides a method for producing an aqueous dispersion, which comprises polymerizing the above with an oxidizing agent in the presence of a water-soluble polymer compound having a molecular weight of 10,000 to 100,000, a transition metal compound and a low molecular weight protonic acid. Less than,
The present invention will be described in detail.

【0005】本発明で用いる低分子プロトン酸は、ポリ
スチレン換算数平均分子量が10,000以下程度のドーパン
トであり、例えば塩酸、硫酸、過塩素酸、テトラフルオ
ロほう酸、ヘキサフルオロリン酸などの鉱酸、あるいは
ベンゼンスルホン酸、p−トルエンスルホン酸、ナフタ
レンスルホン酸、アルキルベンゼンスルホン酸、アルキ
ルナフタレンスルホン酸などの芳香族スルホン酸などが
上げられる。これらは、1種または複数併用して使用す
ることが可能であり、製造時のコロイド安定性から鉱酸
と芳香族スルホン酸の併用が好ましい。本発明におい
て、π共役系導電性重合体中に低分子プロトン酸は10
-3重量%以上、特に10ー2重量%以上含有されているこ
とが好ましい。本発明において特定単量体としては複素
5員環化合物、芳香族アミン化合物が挙げられる。これ
らのうち、複素5員環化合物としては、ピロール、チオ
フェン、フランなどが挙げられ、この中ではピロールが
好ましい。また、これらの誘導体としてピロールを例に
とれば、N−メチルピロール、N−エチルピロール、N
−フェニルピロール、3−メチルピロール、3−エチル
ピロール、3−メトキシピロール、3−エトキシピロー
ル、3−フェノキシピロール、3−アミノピロール、3
−メチルフェニルアミノピロール、3,4−ジメチルピ
ロール、3,4−ジフェニルピロール、N−メチル−3
−メチルピロール、N−フェニル−3−メチルピロール
などが挙げられる。また、芳香族アミン化合物の例とし
ては、アニリン、p−フェニレンジアミン、m−フェニ
レンジアミン、トルエン−2、5−ジアミン、p−アミ
ノフェノール、m−アミノフェノール、2,6−ジアミ
ノピリジン、およびこれらの塩などが挙げられる。本発
明で使用するπ共役系導電性重合体粒子の平均粒子径は
0.01〜2μm、好ましくは0.02〜0.6μm、
さらに好ましくは0.04〜0.2μmである。2μm
を越えると水性分散体を長期に保存した場合の再分散性
が悪く、乾燥後の成膜性も悪くなり好ましくない。ま
た、0.01μm未満では水性分散体の粘度が非常に高
くなり、コーティングしにくくなり好ましくない。ここ
での平均粒子径は、透過型電子顕微鏡写真により直接1
00個の粒子について計測した粒子径(粒子が円球でな
い場合は、長径と短径を測定しその平均値を求めた。)
の平均値を求めることにより行なう。
The low molecular weight protic acid used in the present invention is a dopant having a polystyrene reduced number average molecular weight of about 10,000 or less. For example, a mineral acid such as hydrochloric acid, sulfuric acid, perchloric acid, tetrafluoroboric acid or hexafluorophosphoric acid, or Aromatic sulfonic acids such as benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid can be used. These can be used alone or in combination of two or more, and it is preferable to use a mineral acid and an aromatic sulfonic acid together in view of colloidal stability during production. In the present invention, the low molecular weight protonic acid is 10 in the π-conjugated conductive polymer.
-3% by weight or more, it is preferably contained particularly 10 -2% by weight or more. In the present invention, the specific monomer includes a 5-membered heterocyclic compound and an aromatic amine compound. Among these, examples of the 5-membered heterocyclic compound include pyrrole, thiophene and furan, and of these, pyrrole is preferable. Further, taking pyrrole as an example of these derivatives, N-methylpyrrole, N-ethylpyrrole, N
-Phenylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-phenoxypyrrole, 3-aminopyrrole, 3
-Methylphenylaminopyrrole, 3,4-dimethylpyrrole, 3,4-diphenylpyrrole, N-methyl-3
-Methylpyrrole, N-phenyl-3-methylpyrrole and the like can be mentioned. Examples of aromatic amine compounds include aniline, p-phenylenediamine, m-phenylenediamine, toluene-2,5-diamine, p-aminophenol, m-aminophenol, 2,6-diaminopyridine, and these. And the like. The average particle size of the π-conjugated conductive polymer particles used in the present invention is 0.01 to 2 μm, preferably 0.02 to 0.6 μm,
More preferably, it is 0.04 to 0.2 μm. 2 μm
If it exceeds, the redispersibility is poor when the aqueous dispersion is stored for a long period of time, and the film-forming property after drying is also unfavorable. On the other hand, if it is less than 0.01 μm, the viscosity of the aqueous dispersion becomes very high, and it becomes difficult to coat, which is not preferable. The average particle size here is 1 directly from the transmission electron micrograph.
Particle diameter measured for 00 particles (when the particles are not spherical, the major axis and the minor axis were measured and the average value thereof was obtained).
This is done by obtaining the average value of.

【0006】本発明で用いる水溶性高分子化合物として
は、ポリビニルピロリドン、ポリビニルアルコール、ポ
リエチレンイミン、ポリエチレンオキサイド、ポリアク
リル酸塩、ポリベンゼンスルホン酸塩、ポリイソプレン
スルホン酸塩、およびヒドロキシエチルセルロース、カ
ルボキシメチルセルロース、メチルセルロース、デキス
トラン、ブルランなどのセルロース類、ゼラチン、コラ
ーゲン、カゼインなどの両性高分子が挙げられる。これ
らは、1種または複数併用して使用することが可能であ
るがこのうち、ポリビニルピロリドン、ポリビニルアル
コールが特に好ましい。本発明で用いる上記の水溶性高
分子化合物のポリスチレン換算数平均分子量は1万〜1
0万である。分子量が1万未満の場合は重合工程での分
散安定性が著しく悪化して好ましくない。また、分子量
10万を越えると水性分散体の粘度が高くなり、好まし
くない。本発明で用いる水溶性高分子化合物の使用量
は、π共役系導電性重合体粒子100重量部に対し、好
ましくは1〜1000重量部、さらに好ましくは5〜5
00重量部であり、特に好ましくは10〜100重量部
である。高分子化合物の使用量が1重量部以下では水性
分散体の不安定化により凝集、沈澱が生じ好ましくな
い。また、1000重量部を越えると水性分散体を塗布
して性膜した膜の導電性が不良となり好ましくない。
As the water-soluble polymer compound used in the present invention, polyvinylpyrrolidone, polyvinyl alcohol, polyethyleneimine, polyethylene oxide, polyacrylic acid salt, polybenzene sulfonic acid salt, polyisoprene sulfonic acid salt, and hydroxyethyl cellulose, carboxymethyl cellulose. , Celluloses such as methyl cellulose, dextran and vullan, and amphoteric polymers such as gelatin, collagen and casein. These can be used alone or in combination of two or more, and among these, polyvinylpyrrolidone and polyvinyl alcohol are particularly preferable. The water-soluble polymer compound used in the present invention has a polystyrene reduced number average molecular weight of 10,000 to 1
It is 0,000. When the molecular weight is less than 10,000, the dispersion stability in the polymerization step is significantly deteriorated, which is not preferable. Further, if the molecular weight exceeds 100,000, the viscosity of the aqueous dispersion becomes high, which is not preferable. The amount of the water-soluble polymer compound used in the present invention is preferably 1 to 1000 parts by weight, more preferably 5 to 5 parts by weight based on 100 parts by weight of the π-conjugated conductive polymer particles.
It is 00 parts by weight, particularly preferably 10 to 100 parts by weight. When the amount of the polymer compound used is 1 part by weight or less, the aqueous dispersion is destabilized to cause aggregation and precipitation, which is not preferable. On the other hand, if it exceeds 1000 parts by weight, the conductivity of the film formed by coating the aqueous dispersion is poor, which is not preferable.

【0007】また、上記の水溶性高分子化合物の使用に
おいて、重合反応系の安定性を高めるため、界面活性剤
を用いることができ、例えば、ドデシルベンゼンスルホ
ン酸塩、ドデシル硫酸塩、ラウリル硫酸塩、ジアルキル
スルホコハク酸塩、ポリオキシエチレンアルキルフェニ
ルエーテル硫酸塩、ポリオキシエチンアナルキルプロペ
ニルフェニルエーテル硫酸塩、ナフタレンスルホン酸の
ホルマリン縮合物などのアニオン系界面活性剤を例示す
るこができる。ここで、塩としてナトリウム、アンモニ
ウムなどを挙げることができる。さらに、ポリオキシエ
チレンノニルフェニルエーテル、ポリエチレングリコー
ルモノステアレート、ポリオキシエチレンアルキルプロ
ペニルフェニルエーテル、ソルビタンモノステアレート
などのノニオン系界面活性剤を使用することも可能であ
る。
Further, in the use of the above water-soluble polymer compound, a surfactant can be used in order to enhance the stability of the polymerization reaction system, for example, dodecylbenzene sulfonate, dodecyl sulfate, lauryl sulfate. Examples thereof include anionic surfactants such as dialkyl sulfosuccinate, polyoxyethylene alkylphenyl ether sulfate, polyoxyethynylalkylpropenyl phenyl ether sulfate, and formalin condensate of naphthalenesulfonic acid. Here, examples of the salt include sodium and ammonium. Furthermore, it is also possible to use nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol monostearate, polyoxyethylene alkylpropenyl phenyl ether, sorbitan monostearate.

【0008】本発明で使用する水性媒体は水であり、水
以外の溶媒としてメタノール、エタノール、アセトン、
アセトニトリルなどを含有できるが、水性分散媒体に対
し、好ましくは50重量%以下、さらに好ましくは30
重量%以下、特に好ましくは10重量%以下である。本
発明の水性分散体の固形分濃度は、通常、20重量%以
下、好ましくは10重量%である。本発明の水性分散体
の表面張力は40〜72mN/m、好ましくは50m〜
70N/m、さらに好ましくは55〜69mN/mであ
る。表面張力が40mN/m未満では起泡性が高く、コ
ーティングや含浸に使用した場合に基材への浸透性が高
くなり過ぎ好ましくない。
The aqueous medium used in the present invention is water, and as a solvent other than water, methanol, ethanol, acetone,
Although it may contain acetonitrile or the like, it is preferably 50% by weight or less, more preferably 30% by weight, based on the aqueous dispersion medium.
It is not more than 10% by weight, particularly preferably not more than 10% by weight. The solid concentration of the aqueous dispersion of the present invention is usually 20% by weight or less, preferably 10% by weight. The surface tension of the aqueous dispersion of the present invention is 40 to 72 mN / m, preferably 50 m to.
70 N / m, more preferably 55-69 mN / m. When the surface tension is less than 40 mN / m, the foaming property is high, and when used for coating or impregnation, the permeability to the base material is too high, which is not preferable.

【0009】次に、本発明の水性分散体の好ましい製造
方法を説明する。上記の導電性重合体粒子を得るための
酸化重合方法としては、水性媒体に予め遷移金属化合物
と低分子プロトン酸とを溶解し、次に水溶性高分子を混
合し、次に特定単量体を加え乳化させたのち、酸化剤を
加えて酸化重合を開始させることが出来る。また、酸化
重合方法としては、水性媒体中で水溶性高分子と特定単
量体を乳化させておいた後、遷移金属化合物、低分子プ
ロトン酸および酸化剤を加えて酸化重合を開始させるこ
とも可能である。水性分散体の製造における低分子プロ
トン酸の使用量としては、特定単量体100重量部に対
して、好ましくは1〜1000重量部、さらに好ましく
は5〜300重量部、特に好ましくは10〜200重量
部である。低分子プロトン酸が1000重量部を越える
と、重合時のコロイド安定性が悪くなり凝集物が増え、
また1重量部より少ないと導電性が低くなり好ましくな
い。本発明で用いる遷移金属化合物は、原子番号21〜
30、39〜48、57〜80、および89以上の元素
の酸化物、塩、キレート化合物が挙げられる。これらの
遷移金属化合物のうち、鉄、コバルト、ニッケル、銅な
どの塩、マンガンなどの酸化物などが好ましく、具体的
には硫酸鉄(II)、硫酸鉄(III)、塩化鉄(I
I)、塩化鉄(III)、硫酸銅(II)、塩化銅(I
I)などが特に好ましい。これらの遷移金属化合物の使
用量は、特定単量体に100重量部に対して、通常0.
1〜50重量部、好ましくは1〜10重量部である。本
発明で用いる酸化剤は、塩化第二鉄、三フッ化ホウ素、
塩化アルミニウムなどの金属ハロゲン化物、過酸化水
素、過酸化ベンゾイルなどの過酸化物、過硫酸カリウ
ム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫
酸塩、過ヨウ素酸、過塩素酸カリウムもしくは過塩素酸
アンモニウムなどの過ハロゲン酸、またはその塩、過マ
ンガン酸カリウム、重クロム酸アンモニウムなどの遷移
金属化合物、あるいは酸素、オゾンなどが挙げられる。
これらは単独または混合して使用でき、酸化剤の使用量
は特定単量体1モルに対して0.1〜10モル、好まし
くは0.3〜5モルである。上記の重合方法において、
必要に応じて特定単量体や酸化剤の添加を、全量一括添
加、一部または全量を連続的または間欠的に添加する方
法をとることもできる。また、π共役系導電性重合体と
は別の重合体粒子を酸化重合時に共存させ、いわゆるシ
ード乳化重合法を用いることもできる。なお、重合温度
は、好ましくは0℃〜100℃、さらに好ましくは5〜
50℃である。重合時間は、特に制限されるものではな
いが0.1〜50時間で終了させることができる。ま
た、重合系における特定単量体濃度は、好ましくは0.
1〜10重量%、さらに好ましくは0.2〜5重量%で
ある。
Next, a preferred method for producing the aqueous dispersion of the present invention will be described. As the oxidative polymerization method for obtaining the above conductive polymer particles, a transition metal compound and a low molecular weight protonic acid are previously dissolved in an aqueous medium, then a water-soluble polymer is mixed, and then a specific monomer is added. After adding and emulsifying, an oxidizing agent can be added to initiate oxidative polymerization. Further, as the oxidative polymerization method, after the water-soluble polymer and the specific monomer are emulsified in an aqueous medium, a transition metal compound, a low-molecular-weight protonic acid and an oxidizing agent may be added to initiate the oxidative polymerization. It is possible. The amount of the low molecular weight protonic acid used in the production of the aqueous dispersion is preferably 1 to 1000 parts by weight, more preferably 5 to 300 parts by weight, and particularly preferably 10 to 200 parts by weight based on 100 parts by weight of the specific monomer. Parts by weight. If the low molecular weight protonic acid exceeds 1000 parts by weight, the colloidal stability at the time of polymerization is deteriorated and aggregates increase,
On the other hand, if the amount is less than 1 part by weight, the conductivity becomes low, which is not preferable. The transition metal compound used in the present invention has an atomic number of 21 to 21.
Examples include oxides, salts, and chelate compounds of 30, 39 to 48, 57 to 80, and 89 or more elements. Of these transition metal compounds, salts of iron, cobalt, nickel, copper and the like, oxides of manganese and the like are preferable, and specifically, iron (II) sulfate, iron (III) sulfate, iron chloride (I
I), iron (III) chloride, copper (II) sulfate, copper chloride (I
I) and the like are particularly preferable. The amount of these transition metal compounds used is usually 0.
It is 1 to 50 parts by weight, preferably 1 to 10 parts by weight. The oxidizing agent used in the present invention is ferric chloride, boron trifluoride,
Metal halides such as aluminum chloride, hydrogen peroxide, peroxides such as benzoyl peroxide, potassium persulfate, sodium persulfate, persulfates such as ammonium persulfate, periodate, potassium perchlorate or ammonium perchlorate. Perhalogenic acid or a salt thereof, a transition metal compound such as potassium permanganate or ammonium dichromate, or oxygen or ozone.
These can be used alone or as a mixture, and the amount of the oxidizing agent used is 0.1 to 10 mol, preferably 0.3 to 5 mol, per 1 mol of the specific monomer. In the above polymerization method,
If necessary, the addition of the specific monomer or the oxidizing agent may be carried out in a batch manner, or a part or the whole quantity may be continuously or intermittently added. It is also possible to use a so-called seed emulsion polymerization method in which polymer particles other than the π-conjugated conductive polymer are allowed to coexist during the oxidative polymerization. The polymerization temperature is preferably 0 ° C to 100 ° C, more preferably 5 ° C.
50 ° C. The polymerization time is not particularly limited, but it can be completed in 0.1 to 50 hours. The concentration of the specific monomer in the polymerization system is preferably 0.
It is 1 to 10% by weight, and more preferably 0.2 to 5% by weight.

【0010】本発明の水性分散体には、必要に応じて架
橋用のエポキシ系エマルジョン、ウレタン系エマルジョ
ンを添加したり、光重合開始剤と増感剤を添加すること
ができる。これらを添加することにより乾燥時あるいは
紫外線照射時に分散媒の官能基と架橋して、コーティン
グ材の硬度を高めることができる。また、必要に応じて
物性を損なわない範囲内で、紫外線吸収剤、酸化防止
剤、表面改質剤、消泡剤などを添加することができる。
本発明の水性分散体は導電性を付与する導電性コーティ
ング材として好適であり、PETフィルムやOPPフィ
ルムなどの熱可塑性樹脂フィルムにコーティングして帯
電防止フィルムを得ることができ、半導体ウエハーの保
存容器、ICのキャリアテープや収納トレー、CRTの
画面用フィルター、フロッピーディスクや磁気テープな
どの磁気記録媒体のベースフィルムに用いることが可能
である。また、ポリウレタンフォームなどの発泡基材に
含浸させることで、帯電防止充填剤、静電記録のプリン
ターや複写機の静電除去用スポンジロール、帯電防止性
輸送梱包用緩衝材、圧力センサー、圧力センサーに用い
ることが可能である。さらに、紙や繊維に塗布すること
によっても導電性を付与できることから、カーペット、
帯電防止作業服、無塵衣、産業資材に用いることも可能
である。本発明の水性分散体は、従来のコーティング組
成物に混合することにより、コーティング組成物に導電
性を付与することも可能である。例えば、フロアーポリ
ッシュ組成物に本発明の水性分散体を加えることによ
り、塗布後の床材の導電性を高めることが可能である。
To the aqueous dispersion of the present invention, an epoxy emulsion or urethane emulsion for crosslinking may be added, or a photopolymerization initiator and a sensitizer may be added, if necessary. By adding these, it is possible to increase the hardness of the coating material by crosslinking with the functional groups of the dispersion medium at the time of drying or ultraviolet irradiation. Further, if necessary, an ultraviolet absorber, an antioxidant, a surface modifier, an antifoaming agent, etc. can be added within a range that does not impair the physical properties.
The aqueous dispersion of the present invention is suitable as a conductive coating material that imparts conductivity, and can be coated on a thermoplastic resin film such as a PET film or an OPP film to obtain an antistatic film, which is a storage container for semiconductor wafers. , IC carrier tapes and storage trays, CRT screen filters, floppy disks, magnetic tapes, and other magnetic recording media base films. Also, by impregnating a foamed base material such as polyurethane foam, an antistatic filler, a sponge roll for removing static electricity of electrostatic recording printers and copying machines, a cushioning material for antistatic transport packaging, a pressure sensor, a pressure sensor. Can be used for. Furthermore, since it is possible to impart conductivity by applying it to paper or fiber, carpet,
It can also be used for antistatic work clothes, dust-free clothing, and industrial materials. The aqueous dispersion of the present invention can be mixed with a conventional coating composition to impart conductivity to the coating composition. For example, by adding the aqueous dispersion of the present invention to the floor polish composition, it is possible to enhance the conductivity of the floor material after coating.

【0011】[0011]

【実施例】以下、本発明の実施例を説明するが、本発明
はこれらに限定されるものではない。なお、以下の記載
において「部」は重量部、「%」は「重量%」を表わ
す。また、実施例中の各種評価は、次のとおりに行っ
た。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited thereto. In the following description, "part" means "part by weight" and "%" means "% by weight". Moreover, various evaluations in the examples were performed as follows.

【0012】平均粒子径 : 透過型電子顕微鏡(JE
M100SX 日本電子(製))の写真から直接100個
の粒子について計測した粒子径(粒子が円球でない場合
は、長径と短径を測定しその平均値を求めた。)の平均
値を求めることにより行なった。表面張力 : 得られた水性分散体をそのまま、表面張
力測定機(RTM−1DC 離合社(製))により測定し
た。重合安定性 : ガラス板上に重合後の分散液を一滴落と
し、凝集物の有無を目視で判定した。殆どない状態を
○、一部に凝集物がある状態を△、全体に凝集している
ものを×とした。導電性 : 得られた水性分散体を上質紙に約10g/
2塗布し、室温で1日乾燥させた後、4端子法により
測定した。
Average particle size : Transmission electron microscope (JE
M100SX JEOL (manufactured by Japan)), and obtain the average value of the particle diameters (100 particles, if the particles are not spheres, the major axis and minor axis were measured and the average value was calculated) of 100 particles directly. It was done by. Surface tension : The obtained aqueous dispersion was measured as it was with a surface tension measuring device (RTM-1DC Separating Co., Ltd.). Polymerization stability : One drop of the dispersion liquid after polymerization was dropped on a glass plate, and the presence or absence of aggregates was visually determined. The state in which there is almost no is indicated by ◯, the state in which some aggregates are present is indicated by Δ, and the state in which the aggregates are aggregated is indicated by x. Conductivity : About 10 g / g of the obtained aqueous dispersion on high-quality paper
m 2 was applied, dried at room temperature for 1 day, and then measured by the 4-terminal method.

【0013】実施例1 イオン交換水1300部、5%濃度の硫酸水溶液50
部、1%濃度の硫酸第二鉄50部、あらかじめ溶解させ
ておいた10%濃度のポリビニルアルコール(分子量=
5万 以下PVA5と略す)水溶液400部を反応容器
に仕込み、よく攪拌した。ついでp−トルエンスルホン
酸一水和物50部を仕込み、溶解するまでよく攪拌し、
ピロール100部を仕込んだ。反応温度を10℃に保ち
ながら、5%濃度の過酸化水素水1200部を2時間か
けて連続的に添加し、さらに2時間攪拌した。反応終了
後、得られた水性分散体1の評価を行った。結果を表1
に記す。
EXAMPLE 1 1300 parts of ion-exchanged water, 50% sulfuric acid aqueous solution 50%
Parts, 1% concentration of ferric sulfate 50 parts, pre-dissolved 10% concentration of polyvinyl alcohol (molecular weight =
A reaction vessel was charged with 400 parts of an aqueous solution of 50,000 or less (abbreviated as PVA5) and stirred well. Then, 50 parts of p-toluenesulfonic acid monohydrate was charged and well stirred until dissolved,
I prepared 100 parts of pyrrole. While maintaining the reaction temperature at 10 ° C, 1200 parts of a 5% hydrogen peroxide solution was continuously added over 2 hours, and the mixture was further stirred for 2 hours. After completion of the reaction, the obtained aqueous dispersion 1 was evaluated. The results are shown in Table 1.
Note.

【0014】実施例2 10%濃度のPVA5水溶液400部に代えて10%濃
度のポリビニルアルコール(分子量=3万、以下PVA
3と略す)350部と10%濃度のポリイソプレンスル
ホン酸ナトリウム(分子量=3万、以下PIS3と略
す)水溶液50部、pトルエンスルホン酸一水和物50
部に代えてナフタレンスルホン酸一水和物100部にす
る以外は実施例1と全く同様にして水性分散体2を得
た。結果を表1に記す。
Example 2 Polyvinyl alcohol (molecular weight = 30,000, hereinafter PVA) having a concentration of 10% was used in place of 400 parts of an aqueous solution of PVA5 having a concentration of 10%.
(Abbreviated as “3”) 350 parts, 50% aqueous solution of sodium polyisoprene sulfonate (molecular weight = 30,000, hereinafter abbreviated as PIS3) having a concentration of 10%, p-toluenesulfonic acid monohydrate (50)
Aqueous Dispersion 2 was obtained in exactly the same manner as in Example 1 except that 100 parts of naphthalene sulfonic acid monohydrate was used instead of parts. The results are shown in Table 1.

【0015】実施例3 10%濃度のPVA5水溶液400部に代えて10%濃
度のPIS3水溶液350部、pトルエンスルホン酸一
水和物50部に代えてpトルエンスルホン酸一水和物1
00部、ピロール100部に代えて塩化アニリン100
部、反応温度を10℃に代えて20℃にする以外は実施
例1と全く同様にして導電性重合体微粒子の水性分散体
3を得た。結果を表1に記す。比較例1 10%濃度のPVA5水溶液400部に代えて10%濃
度のドデシルベンゼンスルホン酸ナトリウム(DBSS
と略す)20部、5%濃度の硫酸水溶液50部に代えて
5%濃度の硫酸水溶液10部、pトルエンスルホン酸一
水和物50部に代えて水50部にする以外は実施例1と
全く同様にして本発明の範囲外となる導電性重合体微粒
子の水性分散体4を得た。結果を表1に記す。
Example 3 350 parts of 10% aqueous PIS3 solution in place of 400 parts of 10% PVA5 aqueous solution, p toluenesulfonic acid monohydrate in place of 50 parts of p-toluenesulfonic acid monohydrate 1
Aniline chloride 100 instead of 00 parts and pyrrole 100 parts
Aqueous dispersion 3 of conductive polymer fine particles was obtained in exactly the same manner as in Example 1 except that the temperature and the reaction temperature were changed to 20 ° C instead of 10 ° C. The results are shown in Table 1. Comparative Example 1 Instead of 400 parts of 10% concentration PVA5 aqueous solution, 10% concentration sodium dodecylbenzenesulfonate (DBSS
20 parts, 5 parts of sulfuric acid aqueous solution having a concentration of 5%, 10 parts of 5% strength sulfuric acid aqueous solution, and 50 parts of water instead of 50 parts of p-toluenesulfonic acid monohydrate. In exactly the same manner, an aqueous dispersion 4 of fine conductive polymer particles falling outside the scope of the present invention was obtained. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】試験例1 2軸延伸・熱固定後の厚さ100μmのポリエチレンテ
レフタレートフィルムの両面に8W分/m2のコロナ放
電処理を施し、実施例1〜2および比較例1で得られた
水性分散体1、2、および4を乾燥膜厚0.8μmにな
るようにバーコーターで塗布し100℃で1分間乾燥
し、帯電防止シートとした。得られた帯電防止シートの
塗りむら、導電性を以下の方法で測定した。結果を表2
に示した。 (塗りむら) 凝集物による塗りむらを目視により評
価。 塗りむらが殆どない状態を○、一部にある状態を
△、全体に分布しているものを×とした。 (導電性) 4端子法により測定した。
Test Example 1 Aqueous solutions obtained in Examples 1 and 2 and Comparative Example 1 were subjected to a corona discharge treatment of 8 W min / m 2 on both sides of a polyethylene terephthalate film having a thickness of 100 μm after biaxial stretching and heat setting. Dispersions 1, 2 and 4 were applied with a bar coater to a dry film thickness of 0.8 μm and dried at 100 ° C. for 1 minute to obtain an antistatic sheet. The coating unevenness and conductivity of the obtained antistatic sheet were measured by the following methods. Table 2 shows the results
It was shown to. (Uneven coating) Uneven coating due to aggregates is visually evaluated. The state where there was almost no unevenness of coating was marked with ◯, the state where there was partial unevenness was marked with Δ, and the one distributed over the whole was marked with x. (Conductivity) It was measured by the 4-terminal method.

【0018】[0018]

【表2】 [Table 2]

【0019】試験例2 市販の軟質ポリエーテル系ポリウレタンフォームを30
0×200×5(厚さ)mmの大きさに切り出し、これ
に実施例1、3、比較例1で得られた水性分散体1、
3、および4を乾燥塗布量10%(ウレタンフォームに
対する百分率)になるようにバーコーターで塗布し12
0℃×5分間乾燥し、帯電防止フォームとした。得られ
た帯電防止フォームの密度、硬さ、導電性を以下の方法
で測定した。結果を表3に示した。 (密度) 外形寸法から体積を求め、重量を測定し
て計算により求めた。 (硬さ) JIS K6401によって測定した。 (導電性) 4端子法により測定した。
Test Example 2 A commercially available flexible polyether polyurethane foam was used.
It was cut into a size of 0 × 200 × 5 (thickness) mm, and the aqueous dispersion 1 obtained in Examples 1 and 3 and Comparative Example 1,
Apply 3 and 4 with a bar coater to a dry coating amount of 10% (percentage with respect to urethane foam).
It was dried at 0 ° C for 5 minutes to obtain an antistatic foam. The density, hardness and conductivity of the obtained antistatic foam were measured by the following methods. The results are shown in Table 3. (Density) The volume was obtained from the external dimensions, the weight was measured, and the volume was calculated. (Hardness) Measured according to JIS K6401. (Conductivity) It was measured by the 4-terminal method.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明の水性分散体はπ共役系導電性重
合体粒子の分散性が高く、経時安定性に優れ、成る膜性
が良好であり、導電性コーティング材として有用であ
る。そして、得られた水性分散体を絶縁性の熱可塑性樹
脂フィルムや発泡体、紙、繊維基材に塗布や浸漬するこ
とにより、これら基材を簡便に導電化することができ
る。
INDUSTRIAL APPLICABILITY The aqueous dispersion of the present invention has high dispersibility of π-conjugated conductive polymer particles, is excellent in stability over time, has good film properties, and is useful as a conductive coating material. Then, by applying or immersing the obtained aqueous dispersion in an insulating thermoplastic resin film, foam, paper, or fiber base material, these base materials can be easily made conductive.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低分子プロトン酸を含有するπ共役系導
電性重合体からなる平均粒子径0.01〜2μmの重合
体粒子とポリスチレン換算数平均分子量1万〜10万の
水溶性高分子化合物とを含むことを特徴とする水性分散
体。
1. Polymer particles comprising a π-conjugated conductive polymer containing a low molecular weight protonic acid and having an average particle diameter of 0.01 to 2 μm, and a water-soluble polymer compound having a polystyrene reduced number average molecular weight of 10,000 to 100,000. An aqueous dispersion comprising:
【請求項2】 π共役系導電性重合体を構成するための
単量体少なくとも1種を、ポリスチレン換算数平均分子
量1万〜10万の水溶性高分子化合物、遷移金属化合物
および低分子プロトン酸の存在下、酸化剤により重合す
ることを特徴とする水性分散体の製造方法。
2. A water-soluble polymer compound having a polystyrene-reduced number average molecular weight of 10,000 to 100,000, a transition metal compound and a low-molecular-weight protonic acid, wherein at least one monomer for constituting the π-conjugated conductive polymer is used. A method for producing an aqueous dispersion, which comprises polymerizing in the presence of an oxidizing agent.
JP17024195A 1995-06-13 1995-06-13 Aqueous dispersion and its production Pending JPH08337725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17024195A JPH08337725A (en) 1995-06-13 1995-06-13 Aqueous dispersion and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17024195A JPH08337725A (en) 1995-06-13 1995-06-13 Aqueous dispersion and its production

Publications (1)

Publication Number Publication Date
JPH08337725A true JPH08337725A (en) 1996-12-24

Family

ID=15901293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17024195A Pending JPH08337725A (en) 1995-06-13 1995-06-13 Aqueous dispersion and its production

Country Status (1)

Country Link
JP (1) JPH08337725A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036382A1 (en) * 1999-11-16 2001-05-25 Mitsui Chemicals, Inc. Process for producing benzenesulfonic acid derivative compound, dopant, conductive polymeric material, and solid electrolytic capacitor
JP2007016133A (en) * 2005-07-07 2007-01-25 Nippon Soda Co Ltd Polypyrrole and method for producing the same
JP2007204689A (en) * 2006-02-03 2007-08-16 Seiko Pmc Corp Water-based electroconductive resin emulsion
WO2009019855A1 (en) * 2007-08-06 2009-02-12 Nisshin Steel Co., Ltd. Aqueous emulsion coating material and coated steel sheet using the same
US20150279502A1 (en) * 2012-10-16 2015-10-01 Mitsubishi Rayon Co., Ltd. Conductive composition and solid electrolytic capacitor obtained using aforementioned composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036382A1 (en) * 1999-11-16 2001-05-25 Mitsui Chemicals, Inc. Process for producing benzenesulfonic acid derivative compound, dopant, conductive polymeric material, and solid electrolytic capacitor
JP2007016133A (en) * 2005-07-07 2007-01-25 Nippon Soda Co Ltd Polypyrrole and method for producing the same
JP2007204689A (en) * 2006-02-03 2007-08-16 Seiko Pmc Corp Water-based electroconductive resin emulsion
WO2009019855A1 (en) * 2007-08-06 2009-02-12 Nisshin Steel Co., Ltd. Aqueous emulsion coating material and coated steel sheet using the same
JP5249925B2 (en) * 2007-08-06 2013-07-31 日新製鋼株式会社 Water-based emulsion paint and coated steel plate using the same
US20150279502A1 (en) * 2012-10-16 2015-10-01 Mitsubishi Rayon Co., Ltd. Conductive composition and solid electrolytic capacitor obtained using aforementioned composition
US9852825B2 (en) * 2012-10-16 2017-12-26 Mitsubishi Chemical Corporation Conductive composition and solid electrolytic capacitor obtained using aforementioned composition
US10186343B2 (en) 2012-10-16 2019-01-22 Mitsubishi Chemical Corporation Conductive composition and solid electrolytic capacitor obtained using aforementioned composition

Similar Documents

Publication Publication Date Title
JP4004214B2 (en) Antistatic coating composition
JP3299616B2 (en) Permanent antistatic primer layer
JP3710832B2 (en) Antistatic coating composition
KR100910435B1 (en) Conductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, conductive coating film, antistatic pressure-sensitive adhesive, antisatatic pressure-sensitive adhesive layer, protective material, and process for producing the same
EP0361429B1 (en) Organic polymer, conducting organic polymer, production methods and uses of the same
KR100902033B1 (en) Manufacturing method of anti-static polyester film
JP4922569B2 (en) Antistatic coating composition, antistatic film formed by applying the composition, and method for producing the same
JP5444707B2 (en) Method for producing antistatic polyester film, antistatic polyester film produced by the method, and use thereof
KR100902034B1 (en) Manufacturing method of anti-static polyester film
JPH0790060A (en) New polythiophene dispersion and its preparation
JP6670043B2 (en) Conductive composition, conductor, method for forming conductor, and method for producing polymer
JPH08337725A (en) Aqueous dispersion and its production
JP4621950B2 (en) Antistatic coating composition
KR20200081927A (en) Anti-static silicone release film
JP2003286336A (en) Method for producing transparent electrically conductive layer, thus produced layer and its use
JP6543928B2 (en) Method of forming resist pattern
JP2007161794A (en) Polyaniline, polyaniline composition, and shaped article
KR20010036582A (en) Transparent Anti-static Polyester Films
JP2020023632A (en) Thin film and laminate
JP2002319315A (en) Conductive polyurethane foam
JP3713314B2 (en) Polypyrrole-containing latex and method for producing the same, latex composition and conductive foam
JP3272796B2 (en) Antistatic polyester film
TWI478952B (en) Conductive polyester film
JP2001064487A (en) Semiconductive composition, its production, electrophotographic functional member
JP2002317129A (en) Semiconductive coating film, its manufacturing method and functional member for electrophotograph having the same