JPH08325621A - Production of high carbon molten iron from iron scrap - Google Patents

Production of high carbon molten iron from iron scrap

Info

Publication number
JPH08325621A
JPH08325621A JP13311295A JP13311295A JPH08325621A JP H08325621 A JPH08325621 A JP H08325621A JP 13311295 A JP13311295 A JP 13311295A JP 13311295 A JP13311295 A JP 13311295A JP H08325621 A JPH08325621 A JP H08325621A
Authority
JP
Japan
Prior art keywords
iron
slag
molten iron
carbonaceous material
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13311295A
Other languages
Japanese (ja)
Other versions
JP3286114B2 (en
Inventor
Yoji Idemoto
庸司 出本
Shinya Kitamura
信也 北村
Yuji Ogawa
雄司 小川
Kyoji Okumura
恭司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13311295A priority Critical patent/JP3286114B2/en
Publication of JPH08325621A publication Critical patent/JPH08325621A/en
Application granted granted Critical
Publication of JP3286114B2 publication Critical patent/JP3286114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE: To efficiently produce a high carbon molten iron from iron scrap by using a top-bottom combined blowing converter type vessel. CONSTITUTION: The converter type vessel 1 is used and the iron scrap is charged into the vessel 1, in which molten iron seed exists, and the slag quantity in the furnace is made to 100-1000kg/t of molten iron, and while blowing oxygen by adjusting one or more kinds among the height of a top-blowing lance 3, a nozzle shape of the lance 3 and an oxygen blowing velocity so that the ratio Ls /Lso of the slag recessed depth Ls caused by the oxygen jet and the slag thickness Lso , at the part where the oxygen jet does not hit, becomes in the range of 0.5-1, carbonaceous material 5 in the furnace is burnt to produce the high carbon molten iron 4 from the iron scrap 8. At this time, the carbonaceous material quantity in the slag 6 is held to 5-200% of the slag quantity and the carbonaceous material 10 is bottom-blown at 10-120kg/t of supplied iron scrap to produce the high carbon molten iron 4 from the iron scrap 8. By this method, the carbonaceous material 7 obtd. at a low cost is used as a fuel to melt the iron scrap 8 and the high carbon molten iron 4 is stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、上底吹転炉型の容器を
用いて屑鉄から、高炭素溶融鉄を製造する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high carbon molten iron from scrap iron by using an upper-bottom blow converter type container.

【0002】[0002]

【従来の技術】近年、資源、環境問題からスクラップを
リサイクル使用して、効率的に溶融金属を製造すること
が技術課題となってきている。その金属スクラップの種
類は種々のものがあるが、発生量の多い屑鉄を用いて溶
融鉄を得る方法として、従来はほとんど電気炉で行われ
てきた。しかし、電気炉の場合は、屑鉄の溶解、精錬に
多くの電力を消費するため、わが国のように電力価格が
著しく高い国ではコストアップして好ましくない。そこ
で、電気炉によらずに経済的に屑鉄を溶解、精錬する方
法として、高吹酸能力を有する転炉の余剰生産能力を利
用して安価な炭材を用いた屑鉄の溶解、精錬方法が検討
されるようになってきた。
2. Description of the Related Art In recent years, it has become a technical subject to efficiently produce molten metal by recycling scraps due to resource and environmental problems. There are various kinds of metal scraps, but as a method for obtaining molten iron by using scrap iron, which has a large amount of generation, conventionally, most of it has been carried out in an electric furnace. However, in the case of an electric furnace, a large amount of electric power is consumed for melting and refining scrap iron, so that it is not preferable in a country where the electric power price is extremely high, such as Japan. Therefore, as a method of economically melting and refining scrap iron without using an electric furnace, there is a method of melting and refining scrap iron using inexpensive carbonaceous materials by utilizing the surplus production capacity of a converter having a high blowing acid capacity. It has come to be considered.

【0003】このような状況の中で、一般的には既存の
上底吹の複合吹錬転炉を利用することで設備費増を控え
るとともに、屑鉄と炭材を炉内に装入し、酸素ガスを上
吹して溶解、精錬する方法が提案されている。例えば特
開昭60−174812号公報で、溶銑等の高炭素溶融
鉄の存在する転炉内に含鉄冷材、炭材、酸素を供給し、
含鉄冷材を高炭素溶融鉄中で溶解し高炭素溶融鉄を得る
第1工程と、上記高炭素溶融鉄を原料として別の転炉で
酸素吹錬し所要の温度、成分の溶鋼を得る第2工程より
なる転炉製鋼法が知られている。
Under such circumstances, generally, the existing upper-bottom-blown composite smelting converter is used to suppress the increase in equipment cost, and scrap iron and carbonaceous materials are charged into the furnace. A method has been proposed in which oxygen gas is blown upward to dissolve and refine. For example, in JP-A-60-174812, an iron-containing cold material, carbonaceous material, and oxygen are supplied into a converter in which high-carbon molten iron such as hot metal exists.
The first step of melting the iron-containing cold material in the high-carbon molten iron to obtain the high-carbon molten iron, and the oxygen blowing of the high-carbon molten iron in another converter to obtain the molten steel of the required temperature and composition A converter steelmaking method comprising two steps is known.

【0004】また、特開昭62−73997号公報で、
種湯の存在する溶解専用転炉に含鉄冷材、炭材、酸素を
供給して高炭素溶鉄を得、この溶鉄を原料として別の精
錬専用転炉において、上記精錬専用転炉での所要精錬量
と溶解専用転炉での所要種湯量の合計量の高炭素溶鉄を
得、上記溶解専用転炉から上記精錬専用転炉での所要精
錬量の高炭素溶鉄を1回の出湯にて酸素精錬に供する一
方、高炭素溶鉄の残部種湯量を溶解専用転炉に残して前
記含鉄冷材溶解のための種湯として使用することを特徴
とする転炉製鋼法が知られている。
Further, in JP-A-62-73997,
High-carbon molten iron is obtained by supplying iron-containing cold material, carbonaceous material, and oxygen to a dedicated melting furnace where seed water is present, and this molten iron is used as a raw material in another dedicated refining furnace for the required refining in the above-mentioned dedicated refining furnace. Amount of high-carbon molten iron of the total amount of the required amount of seed hot water in the dedicated melting furnace and the required amount of refined high-carbon molten iron in the above-mentioned dedicated melting furnace is oxygen-refined in one tap. On the other hand, there is known a converter steel making method which is characterized in that the amount of the residual seed hot water of high carbon molten iron is left in a dedicated melting furnace for use as the seed hot water for melting the iron-containing cold material.

【0005】上記のような、炭材を供給しつつ炉内のC
を酸素で燃焼させてその燃焼熱により屑鉄を溶解する方
法においては、できるだけCを完全燃焼に近いところま
で燃焼させ、大きな燃焼熱を得て、かつその熱を効率よ
く屑鉄に伝えることが、少ない炭材・酸素原単位で効率
よく屑鉄を溶解するための鍵となる。すなわち、下式で
定義される二次燃焼率と着熱効率をできるだけ100%
近くまで向上することが重要である。 二次燃焼率=(排ガス中CO2 濃度)/(排ガス中CO濃度 +排ガス中CO2 濃度)×100(%) 着熱効率=〔1−{排ガス顕熱のうちのメタル温度以上の分}/ {二次燃焼発熱量(CO→CO2 分)}〕×100(%)
As described above, while supplying the carbonaceous material, the C in the furnace is
In the method of burning waste iron with oxygen and melting the scrap iron by the heat of combustion, it is rare that C is burned as close to complete combustion as possible to obtain a large heat of combustion and the heat is efficiently transmitted to the scrap iron. It is the key to efficiently dissolve scrap iron with carbon materials and oxygen intensity. That is, the secondary combustion rate and heat transfer efficiency defined by
It is important to improve close. Secondary combustion rate = (CO 2 concentration in exhaust gas) / (CO concentration in exhaust gas + CO 2 concentration in exhaust gas) x 100 (%) Heat transfer efficiency = [1- {min of exhaust gas sensible heat above metal temperature} / {Secondary combustion calorific value (CO → CO 2 minutes)}] × 100 (%)

【0006】しかるに、上記の方法では、着熱効率が9
0%を超えるような条件下での最大の二次燃焼率は高々
30%程度であり、屑鉄を溶解するための炭材や酸素の
原単位が高く、上吹酸素の供給能力の上限から溶解時間
も長いという問題があった。また、上吹ランスの高さを
上昇させることで、空間で二次燃焼(CO→CO2 の燃
焼)を促進させ、二次燃焼を40〜50%程度まで高め
ることも可能ではあるが、その場合には、高温の二次燃
焼帯が上部にあるため着熱効率が低下し、転炉の炉肩付
近の耐火物が異常溶損して耐火物コストが大幅に増大す
るのが実状であった。
However, in the above method, the heat transfer efficiency is 9
The maximum secondary combustion rate under conditions of more than 0% is at most about 30%, the carbonaceous material for dissolving scrap iron and the basic unit of oxygen are high, and it melts from the upper limit of the upper blowing oxygen supply capacity. There was a problem that it took a long time. Further, by increasing the height of the upper blowing lance, it is possible to promote secondary combustion (combustion of CO → CO 2 ) in the space and increase the secondary combustion to about 40 to 50%. In this case, since the high temperature secondary combustion zone is located in the upper part, the heat deposition efficiency is lowered, and the refractory in the vicinity of the shoulder of the converter is abnormally melted, resulting in a substantial increase in refractory cost.

【0007】これらに対し、本出願人らは先に特願平7
−63835号にて、転炉型の容器を用いて屑鉄を溶解
する新プロセスを提案し、その優位性を確認した。すな
わち、前記新プロセスの要旨とするところは、転炉型の
容器を用いて、上吹き吹酸をしながら炉内の炭材を燃焼
させつつ屑鉄を溶解するに際し、種湯が存在する容器に
屑鉄を装入し、炉内のスラグ量を炉内の溶融鉄1t当た
り100kg以上1000kg以下として、酸素ジェッ
トによるスラグ凹み深さLS と酸素ジェットが当たって
いない部分のスラグ厚みLSOの比LS /LSOが0.5〜
1の範囲内になるように、上吹きランス高さ、ランスの
ノズル形状および吹酸速度の1種または2種以上を調整
することを特徴とする屑鉄の溶解方法にある。この方法
により屑鉄溶解に必要な炭材および酸素の原単位を顕著
に低減することが可能となった。
On the other hand, the present applicants previously filed Japanese Patent Application No.
In No. -63835, a new process for melting scrap iron using a converter type vessel was proposed, and its superiority was confirmed. That is, the gist of the new process is to use a converter-type vessel to melt the scrap iron while burning the carbonaceous material in the furnace while spraying top-blown acid, and Scrap iron is charged, and the amount of slag in the furnace is set to 100 kg or more and 1000 kg or less per 1 t of molten iron in the furnace, and the ratio L of the slag dent depth L S due to the oxygen jet to the slag thickness L SO not hit by the oxygen jet is L S / L SO is 0.5 ~
It is a method for melting scrap iron, characterized in that one or more kinds of the height of the upper blowing lance, the shape of the nozzle of the lance, and the velocity of blowing acid are adjusted so as to fall within the range of 1. By this method, it became possible to remarkably reduce the basic unit of carbonaceous material and oxygen required for melting scrap iron.

【0008】[0008]

【発明が解決しようとする課題】上述した溶解方法を、
本出願人らは大型の上底吹転炉に適用すべく、試験を進
めていく中で、特願平7−63835号の如き屑鉄の溶
解法は、屑鉄の溶解速度に比較して加炭速度が追従せ
ず、高炭素溶融鉄の安定的な製造が困難であることが判
明した。その結果、脱炭処理工程で熱源が不足するとい
う問題、また炭材やFe−Siなどの昇熱材を用いた場
合には硫黄による溶融鉄の汚染や、スラグ量の増大、さ
らには終点濃度の的中率が低下するといった問題が顕在
化した。本発明者らは、この加炭遅れは転炉の大型化に
伴う溶融鉄と、スラグ中炭材の接触面積の低下が原因で
あると推定した。すなわち、屑鉄溶解量は体積(単位長
さの3乗)で増加するのに対し、溶融鉄と炭材が接触す
る面積(単位長さの2乗)は体積の増加分に見合うまで
には増加しないためと考えた。本発明はかかる問題点を
有利に解決したものであり、上底吹転炉型の容器炉にお
いて,屑鉄から高炭素溶融鉄を製造する方法を提供する
ものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
While the applicants are proceeding with the test so as to apply it to a large-scale top-and-bottom blowing converter, the method for melting scrap iron, such as Japanese Patent Application No. 7-63835, is used in comparison with the melting speed of scrap iron for carburizing. It was found that the speed did not follow and stable production of high carbon molten iron was difficult. As a result, there is a problem of insufficient heat source in the decarburization process, and when using a carbonaceous material or a heat-raising material such as Fe-Si, contamination of molten iron with sulfur, an increase in the amount of slag, and further an end point concentration. The problem that the hit rate of the target has decreased has become apparent. The present inventors presumed that this delay in carburization was caused by a decrease in the contact area between the molten iron and the carbonaceous material in the slag as the converter size increased. In other words, the amount of dissolved scrap iron increases with the volume (the cube of the unit length), whereas the area where the molten iron and the carbonaceous material contact (the square of the unit length) increases until the volume increases. I thought not to do it. The present invention advantageously solves such problems, and provides a method for producing high carbon molten iron from scrap iron in a container furnace of the upper and lower blown converter type.

【0009】[0009]

【課題を解決するための手段】即ち、本発明の要旨とす
るところは、上底吹転炉型の容器を用いて、屑鉄から高
炭素溶融鉄を製造する方法において、種湯が存在する容
器に屑鉄を装入し、炉内のスラグ量を炉内の溶融鉄1t
当たり100kg以上1000kg以下とし、該スラグ
内の炭材量をスラグ量の5%〜200%に保ち、供給屑
鉄1t当たり10〜120kgの炭材をキャリアーガス
とともに底吹きしながら、上吹酸素ジェットによるスラ
グ凹み深さLS と酸素ジェットが当たっていない部分の
スラグ厚みLSOの比LS /LSOが0.5〜1の範囲内に
なるように、上吹きランス高さ、ランスのノズル形状お
よび吹酸速度の1種または2種以上を調整して吹酸しな
がら炉内の炭材を燃焼させて、屑鉄を溶解することを特
徴とする屑鉄から高炭素溶融鉄を製造する方法にある。
That is, the gist of the present invention is to provide a method for producing high carbon molten iron from scrap iron using an upper-bottom blowing converter type vessel, in which seed water is present. Scrap iron was charged into the furnace, and the amount of slag in the furnace was adjusted to 1 t of molten iron in the furnace.
The amount of carbonaceous material in the slag is kept at 5% to 200% of the slag amount, and 10 to 120 kg of carbonaceous material per 1 ton of supplied scrap iron is blown with the carrier gas by the top blowing oxygen jet. The upper blowing lance height and the nozzle shape of the lance so that the ratio L S / L SO of the slag depression depth L S and the slag thickness L SO of the portion not hit by the oxygen jet is within the range of 0.5 to 1. And a method of producing high carbon molten iron from scrap iron, characterized in that one or more of the spraying acid velocity is adjusted and the carbonaceous material in the furnace is burned while spraying acid to dissolve scrap iron. .

【0010】上述のLS は(1)式により計算される。 2.5ρg 〔(cHC )/X+LS 2 =ρS gLS ・・・・(1) ρg :常温、常圧での酸素ガスの密度(=1.43kg
/m3 ) ρs :見掛けのスラグ密度(kg/m3 ) c :常温、常圧での酸素ガス中の音速(=326m3
/s) HC :操業条件と同一ランスノズル形状、同一ランス二
次圧で噴出される常温でのジェットコア長(ノズル先端
から噴流中心流速が音速cとなるまでの距離)(m) X :ランスノズル先端から、酸素ジェットが当たって
いない部分のスラグ面までの鉛直距離(m) g :重力加速度=9.8(m/s2
The above-mentioned L S is calculated by the equation (1). 2.5 ρ g [(cH C ) / X + L S ] 2 = ρ S gL S ... (1) ρ g : Density of oxygen gas at normal temperature and pressure (= 1.43 kg)
/ M 3 ) ρ s : Apparent slag density (kg / m 3 ) c: Velocity of sound in oxygen gas at normal temperature and pressure (= 326 m 3
/ S) H C : Jet core length (distance from nozzle tip to jet velocity at sonic velocity c) at room temperature ejected with the same lance nozzle shape and the same lance secondary pressure as operating conditions (m) X: Vertical distance from the tip of the lance nozzle to the slag surface where the oxygen jet is not hit (m) g: Gravity acceleration = 9.8 (m / s 2 )

【0011】[0011]

【数1】 [Equation 1]

【0012】MP :ランスノズルの設計マッハ数 d :ランスノズルのスロート径(m) P :ランスの操業二次圧(Pa) PP :ランスの設計二次圧(Pa) また、本発明における高炭素溶融鉄とは炭素含有量が3
〜5%のものをいう。
M P : Design Mach Number of Lance Nozzle d: Throat Diameter of Lance Nozzle (m) P: Lance Operation Secondary Pressure (Pa) P P : Lance Design Secondary Pressure (Pa) High-carbon molten iron has a carbon content of 3
~ 5%.

【0013】[0013]

【作用】以下、本発明について図面に従って詳細に説明
する。図1は本発明に係わる屑鉄の溶解精錬を行う溶解
炉の概念図である。図1に示すように、上底吹転炉1は
耐火物2で内張りされており、酸素上吹ランス3を備え
ている。酸素上吹ランス3より酸素ガスを高炭素溶融鉄
4上の、炭材5を含んだ溶融スラグ6に向けて吹き付け
る。石炭やコークスなどの炭材7および屑鉄8を上方か
ら添加する。炉底にはノズル9を配置し微粉炭材10を
底吹ガス11をキャリアーにして、炉内に供給する。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a conceptual diagram of a melting furnace for melting and refining scrap iron according to the present invention. As shown in FIG. 1, an upper bottom blowing converter 1 is lined with a refractory material 2 and is provided with an oxygen upper blowing lance 3. Oxygen gas is blown toward the molten slag 6 containing the carbonaceous material 5 on the high carbon molten iron 4 from the oxygen top blowing lance 3. Carbon material 7 such as coal and coke and scrap iron 8 are added from above. A nozzle 9 is arranged at the bottom of the furnace, and fine carbonaceous material 10 is supplied into the furnace by using a bottom blowing gas 11 as a carrier.

【0014】このように上底吹転炉の上方から酸素上吹
ランスを通して吹き込まれるのは酸素ガスである。この
酸素は高濃度の酸素含有ガスであり、純酸素ガス、或い
は70%以上の酸素を含む比較的純度の低い酸素ガス、
或いは純酸素ガスと空気、窒素のような希釈ガスの混合
物で、酸素濃度の70〜100%のものをいう。このよ
うな酸素ガスは溶融スラグ4の上から供給するものや、
斜め上方より吹いても良い。なお、複数の穴から酸素を
供給するときは一部は微粉炭バーナーを利用することも
可能である。屑鉄ならびに造滓材は主として上方より投
入される。屑鉄は、予熱されないもの、予熱されたもの
を連続的に投入ないしは間欠装入のいずれを組み合わせ
て、適宜分割して装入する。一方、造滓材は例えば、石
灰、硅砂、レンガ屑、高炉スラグ、転炉スラグが挙げら
れ、これらの組み合わせで塩基度を0.7〜2.2に制
御することが好ましい。炭材は上方添加、および底吹ノ
ズルからの微粉炭材の吹込を組み合わせて炉内に供給す
る。
As described above, oxygen gas is blown from above the upper-bottom blowing converter through the oxygen upper-blowing lance. This oxygen is a high-concentration oxygen-containing gas, and is pure oxygen gas or oxygen gas with a relatively low purity containing 70% or more oxygen,
Alternatively, it means a mixture of pure oxygen gas and a diluting gas such as air and nitrogen, which has an oxygen concentration of 70 to 100%. Such oxygen gas is supplied from above the molten slag 4,
You may blow from diagonally above. When supplying oxygen from a plurality of holes, a pulverized coal burner can be partially used. Scrap iron and slag material are mainly charged from above. The scrap iron is not preheated, or the preheated one is continuously charged or intermittently charged, and is appropriately divided and charged. On the other hand, examples of the slag material include lime, silica sand, brick waste, blast furnace slag, and converter slag, and it is preferable to control the basicity to 0.7 to 2.2 by combining these. The carbonaceous material is fed into the furnace by a combination of upward addition and injection of fine carbonaceous material from the bottom blowing nozzle.

【0015】そして、酸素ガスは炭材、溶融鉄中の炭素
および発生COなどの可燃ガス成分を燃焼させて発熱
し、屑鉄の溶解熱を供給する。一方、底吹ガスには溶融
物を攪拌する効果があり、伝熱進行に必要である。この
底吹ガスとしては、前述したように、N2 、CO2 、ア
ルゴン、炭化水素系ガスなどの1種ないしは2種以上の
混合ガスが用いられる。微粉炭材とともに炉内に吹き込
むキャリアーガスには、N2 、Arなどの不活性ガスを
用いる。
The oxygen gas burns the carbonaceous material, carbon in the molten iron and combustible gas components such as generated CO to generate heat, and supplies the heat of dissolution of scrap iron. On the other hand, the bottom blowing gas has the effect of stirring the melt and is necessary for the progress of heat transfer. As the bottom blowing gas, as described above, one kind or a mixed gas of two or more kinds such as N 2 , CO 2 , argon and hydrocarbon type gas is used. An inert gas such as N 2 or Ar is used as the carrier gas blown into the furnace together with the fine carbonaceous material.

【0016】本発明は、一定量の溶融鉄が存在する転炉
に屑鉄を装入し、石炭やコークス等の炭材を供給しつ
つ、酸素の上吹きにより炉内のCを燃焼させ、その燃焼
熱を利用して屑鉄を溶解する。この際、屑鉄の溶解速度
は主としてCの移動律速であるため、屑鉄装入前に一定
量の溶融鉄すなわち種湯が存在しないと、固体Cが固体
屑鉄中に拡散していかなくてはならず、溶解速度が著し
く低下する。従って溶解速度を向上させるためには、予
め種湯を転炉内に残しておき、液体である種湯中のCが
屑鉄に拡散するようにしておく必要がある。
According to the present invention, scrap iron is charged into a converter in which a certain amount of molten iron is present, and while carbonaceous material such as coal and coke is supplied, C in the furnace is burned by top blowing oxygen, Uses heat of combustion to dissolve scrap iron. At this time, the rate of dissolution of scrap iron is mainly the rate-determining movement of C, so solid C must diffuse into solid scrap iron unless a certain amount of molten iron, that is, seed water, exists before charging scrap iron. However, the dissolution rate is significantly reduced. Therefore, in order to improve the dissolution rate, it is necessary to leave the seed hot water in the converter in advance so that C in the liquid seed hot water diffuses into the scrap iron.

【0017】屑鉄溶解操業の際、先に提案した方法のよ
うに、炉内のスラグ量を炉内の溶融鉄1t当たり100
kg以上1000kg以下とし、酸素ジェットによるス
ラグ凹み深さLS と酸素ジェットが当たっていない部分
のスラグ厚みLSOの比LS /LSOが0.5〜1の範囲内
になるように、上吹きランス高さ、ランスのノズル形状
および吹酸速度を調整する。この条件下では、多量のス
ラグによって上吹酸素ジェットとバルク溶融鉄の接触が
防止でき、先に述べた二次燃焼率を高めることが可能に
なる。ここで、炉内のスラグ量やLS /LSOを限定した
のは、炉内のスラグ量が溶融鉄1t当たり100kg未
満の場合やLS /LSOが1.0超の場合には、酸素ジェ
ットがスラグを突き抜け、バルク溶融鉄に衝突して2C
+O2 =2COの如く反応して二次燃焼率を低下させて
しまうためであり、LS /LSOが0.5未満の場合には
90%以上の着熱効率が達成できず、スラグ量が生成溶
融鉄1t当たり1000kgを超えると、出銑時にスラ
グが炉口から溢れてきて所定の量を出銑できないためで
ある。
In the scrap iron melting operation, the amount of slag in the furnace is set to 100 per 1 t of molten iron in the furnace, as in the method proposed above.
1 kg or more and 1000 kg or less so that the ratio L S / L SO of the slag dent depth L S due to the oxygen jet and the slag thickness L SO not hit by the oxygen jet falls within the range of 0.5 to 1. Adjust the blowing lance height, lance nozzle shape, and blowing acid velocity. Under this condition, the contact between the top-blown oxygen jet and the bulk molten iron can be prevented by the large amount of slag, and the secondary combustion rate described above can be increased. Here, the amount of slag in the furnace and L S / L SO are limited only when the amount of slag in the furnace is less than 100 kg per 1 t of molten iron, or when L S / L SO is more than 1.0. The oxygen jet penetrates the slag and collides with the bulk molten iron, resulting in 2C
This is because it reacts like + O 2 = 2CO to lower the secondary combustion rate, and when L S / L SO is less than 0.5, the heat deposition efficiency of 90% or more cannot be achieved, and the amount of slag increases. This is because when the amount of generated molten iron exceeds 1,000 kg, the slag overflows from the furnace port during tapping and a predetermined amount cannot be tapped.

【0018】当該スラグ内の炭材量はスラグ量の5%〜
200%に保つよう操業を行う。これは当該スラグ内の
炭材量がスラグ量の5%未満では、スラグの泡立ち(フ
ォーミング)が著しく、スラグが炉外に溢れ出るなどし
て、安定操業が困難になる。また当該スラグ内の炭材量
がスラグ量の200%超では、炭材がスラグ内に均一に
存在することが困難で、スラグ上部に炭材が積み重なっ
た状態となり、炭材の燃焼で一旦発生したCO2 が炭材
とCO2 +C=2COの如く反応して二次燃焼率が低下
し、好ましくない。また微粉炭材の底吹供給量は、供給
屑鉄1t当たり10〜120kgとするが、10kg未
満では屑鉄の溶解速度に対し加炭速度が追従せず、安定
的に高炭素溶融鉄を製造することが困難になる。一方1
20kg超では、加炭、燃焼で消費されなかった炭材の
排ガス中に混入して飛散ロスが著しくなり、熱ロスなら
びに炭材原単位の上昇を招き好ましくない。
The amount of carbonaceous material in the slag is 5% to 5% of the amount of slag.
Operate to maintain at 200%. This is because when the amount of carbonaceous material in the slag is less than 5% of the amount of slag, foaming (forming) of the slag is remarkable and the slag overflows to the outside of the furnace, which makes stable operation difficult. If the amount of carbonaceous material in the slag exceeds 200% of the amount of slag, it is difficult for the carbonaceous material to be present uniformly in the slag, and the carbonaceous material is piled up on the upper part of the slag and once generated by combustion of the carbonaceous material. and CO 2 is reduced carbonaceous material and CO 2 + C = 2CO reaction to post combustion ratio as was unfavorable. Further, the bottom blowing supply amount of the fine carbonaceous material is set to 10 to 120 kg per 1 ton of supplied scrap iron, but if it is less than 10 kg, the carburizing speed does not follow the dissolution rate of the scrap iron, and stable production of high carbon molten iron is possible. Becomes difficult. While 1
If it exceeds 20 kg, the carbonaceous material that has not been consumed by carburization and combustion is mixed in the exhaust gas, and the scattering loss becomes significant, resulting in heat loss and an increase in the carbonaceous material unit.

【0019】[0019]

【実施例】溶融スラグ35tと、該スラグ内に16tの
炭材が浮遊している300t規模の転炉に高炉溶銑15
0tを装入した。このときのスラグおよび溶融鉄の温度
は1400℃、溶融鉄中の炭素濃度は4.5%であっ
た。上吹ランスからは35000Nm3 /hの純酸素
を、炉底に設けた6本の底吹羽口からは、N2 ガスを4
500Nm3 /h、酸素を3600Nm3 /h、空気を
700Nm3 /h、LPGを500Nm3 /h、および
微粉炭材を24t/hで供給した。上方からは炭材を合
計9t、また塩基度調整用に生石灰を合計4.5t添加
した。微粉炭材ならびに、上方から添加する炭材には、
いずれも無煙炭(T−C:81.5%)を用いた。屑鉄
は溶融鉄の温度が1350〜1450℃の範囲となるよ
うに供給速度を調整しながら炉内に装入し、合計150
tの屑鉄を溶解した。溶解期間中の各諸元を表1に示
す。
EXAMPLE A molten slag 35t and a blast furnace hot metal 15 of a 300t scale converter in which 16t of carbonaceous material floats in the slag.
I loaded 0t. At this time, the temperatures of the slag and the molten iron were 1400 ° C., and the carbon concentration in the molten iron was 4.5%. 35,000 Nm 3 / h of pure oxygen was supplied from the top blowing lance, and N 2 gas of 4 was supplied from the six bottom blow holes installed in the furnace bottom.
500 Nm 3 / h, oxygen was 3600 Nm 3 / h, air was 700 Nm 3 / h, LPG was 500 Nm 3 / h, and fine carbonaceous material was supplied at 24 t / h. A total of 9 t of carbonaceous material and a total of 4.5 t of quicklime were added from above to adjust the basicity. For fine carbonaceous materials and carbonaceous materials added from above,
Both used anthracite (TC: 81.5%). Scrap iron was charged into the furnace while adjusting the feed rate so that the temperature of the molten iron was in the range of 1350 to 1450 ° C, and a total of 150
The scrap iron of t was melted. Table 1 shows each parameter during the dissolution period.

【0020】[0020]

【表1】 [Table 1]

【0021】比較例 用いた炉は実施例1と同一のものである。溶融スラグ3
5tと、該スラグ内に16tの炭材が浮遊している30
0t規模の転炉に高炉溶銑150tを装入した。このと
きのスラグおよび溶融鉄の温度は1420℃、溶融鉄中
の炭素濃度は4.7%であった。上吹ランスからは35
000Nm3 /hで純酸素を、炉底に設けた6本の底吹
ノズルからは、N2 ガスを4500Nm3 /h、酸素を
3600Nm3 /h、空気を700Nm3 /hで供給
し、底吹ノズルからの微粉炭材の吹込は行わなかった。
上方からは炭材を合計20t、また塩基度調整用に生石
灰を合計4.0t添加した。上方から添加する炭材に
は、実施例と同様に無煙炭(T−C:81.5%)を用
いた。屑鉄は溶融鉄の温度が1350〜1450℃の範
囲となるように供給速度を調整しながら炉内に装入し、
合計150tの屑鉄を溶解した。溶解期間中の各諸元を
表1に示す。この操業では、操業期間中に溶融鉄中の炭
素濃度の低下が認められ、溶解終了時点での炭素濃度は
2.8%であった。
Comparative Example The furnace used is the same as in Example 1. Molten slag 3
5t and 16t of carbonaceous material suspended in the slag 30
150 tons of blast furnace hot metal was charged into a 0 ton scale converter. At this time, the temperatures of the slag and the molten iron were 1420 ° C., and the carbon concentration in the molten iron was 4.7%. 35 from Kamabuki Lance
000Nm 3 / h in pure oxygen from the six bottom blowing nozzle provided in the furnace bottom, and supplies N 2 gas 4500 nm 3 / h, the oxygen 3600 nm 3 / h, the air at 700 Nm 3 / h, bottom The pulverized carbonaceous material was not blown from the blowing nozzle.
From the upper side, a total of 20 t of carbonaceous material and a total of 4.0 t of lime were added for adjusting the basicity. As the carbonaceous material added from above, anthracite (TC: 81.5%) was used as in the example. Scrap iron was charged into the furnace while adjusting the feed rate so that the temperature of the molten iron was in the range of 1350 to 1450 ° C.
A total of 150 tons of scrap iron was melted. Table 1 shows each parameter during the dissolution period. In this operation, a decrease in the carbon concentration in the molten iron was observed during the operation period, and the carbon concentration at the end of melting was 2.8%.

【0022】[0022]

【発明の効果】以上述べたように、本発明を実施するこ
とによって、屑鉄を溶解しつつ、安定して高炭素溶融鉄
を得ることが可能となった。
As described above, by carrying out the present invention, it becomes possible to stably obtain high carbon molten iron while melting scrap iron.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる屑鉄溶解法に使用する反応容器
の概念図である。
FIG. 1 is a conceptual diagram of a reaction vessel used in a scrap iron melting method according to the present invention.

【符号の説明】[Explanation of symbols]

1 上底吹転炉 2 耐火物 3 酸素上吹ランス 4 高炭素溶融鉄 5 炭材 6 溶融スラグ 7 炭材 8 屑鉄 9 底吹ノズル 1 0 微粉炭材 1 1 攪拌ガス 1 Top-bottom blow converter 2 Refractory 3 Oxygen top-blowing lance 4 High carbon molten iron 5 Carbon material 6 Molten slag 7 Carbon material 8 Scrap iron 9 Bottom blowing nozzle 1 0 Fine carbon material 1 1 Stirred gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 恭司 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyoji Okumura 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corp. Technology Development Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 上底吹転炉型の容器を用いて、屑鉄から
高炭素溶融鉄を製造する方法において、種湯が存在する
容器に屑鉄を装入し、炉内のスラグ量を炉内の溶融鉄1
t当たり100kg以上1000kg以下とし、該スラ
グ内の炭材量をスラグ量の5%〜200%に保ち、供給
屑鉄1t当たり10〜120kgの炭材をキャリアーガ
スとともに底吹きしながら、上吹酸素ジェットによるス
ラグ凹み深さLS と酸素ジェットが当たっていない部分
のスラグ厚みLSOの比LS /L SOが0.5〜1の範囲内
になるように、上吹きランス高さ、ランスのノズル形状
および吹酸速度の1種または2種以上を調整して吹酸し
ながら炉内の炭材を燃焼させて屑鉄を溶解することを特
徴とする屑鉄から高炭素溶融鉄を製造する方法。
1. From scrap iron using an upper-bottom blow converter type container
Seed water is present in the method for producing high carbon molten iron
Charge scrap iron into the container and set the amount of slag in the furnace to the molten iron in the furnace 1
100 kg or more and 1000 kg or less per t
Supply the amount of carbonaceous material inside the slag at 5% to 200% of the slag amount
Carrier gas of 10 to 120 kg of carbonaceous material per ton of scrap iron
While blowing bottom with the spray,
Depth of lug LSAnd the part not hit by the oxygen jet
Slag thickness LSORatio ofS/ L SOWithin the range of 0.5 to 1
Top blowing lance height, lance nozzle shape
And one or more of the blowing acid rates are adjusted
While melting the scrap iron by burning the carbonaceous material in the furnace
A method for producing high carbon molten iron from scrap iron.
JP13311295A 1995-05-31 1995-05-31 Method for producing high carbon molten iron from scrap iron Expired - Fee Related JP3286114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13311295A JP3286114B2 (en) 1995-05-31 1995-05-31 Method for producing high carbon molten iron from scrap iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13311295A JP3286114B2 (en) 1995-05-31 1995-05-31 Method for producing high carbon molten iron from scrap iron

Publications (2)

Publication Number Publication Date
JPH08325621A true JPH08325621A (en) 1996-12-10
JP3286114B2 JP3286114B2 (en) 2002-05-27

Family

ID=15097096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13311295A Expired - Fee Related JP3286114B2 (en) 1995-05-31 1995-05-31 Method for producing high carbon molten iron from scrap iron

Country Status (1)

Country Link
JP (1) JP3286114B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057498A (en) * 2018-11-16 2020-05-26 주식회사 포스코 Manufacturing method for molten iron and apparatus thereof
KR20200057499A (en) * 2018-11-16 2020-05-26 주식회사 포스코 Manufacturing method for molten iron and apparatus thereof
CN114096685A (en) * 2019-07-22 2022-02-25 杰富意钢铁株式会社 Method for dephosphorizing molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200057498A (en) * 2018-11-16 2020-05-26 주식회사 포스코 Manufacturing method for molten iron and apparatus thereof
KR20200057499A (en) * 2018-11-16 2020-05-26 주식회사 포스코 Manufacturing method for molten iron and apparatus thereof
CN114096685A (en) * 2019-07-22 2022-02-25 杰富意钢铁株式会社 Method for dephosphorizing molten iron

Also Published As

Publication number Publication date
JP3286114B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
EP2380995B1 (en) Smelting vessel, steel making plant and steel production method
AU676203B2 (en) A method for intensifying the reactions in metallurgical reaction vessels
US8845779B2 (en) Process for producing molten iron
CN107419051B (en) Promote the smelting process of converter scrap melting using gasification dephosphorized slag
US4324583A (en) Supersonic injection of oxygen in cupolas
JP2004503681A (en) Direct smelting method and equipment
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
US5084093A (en) Method for manufacturing molten pig iron
JP3290844B2 (en) Scrap iron dissolution method
JP2983087B2 (en) Operation method of smelting reduction
JP7136390B1 (en) Molten iron smelting method
WO2022234762A1 (en) Electric furnace and steelmaking method
JPS61195909A (en) Method for melting iron scrap in converter
JP2002003917A (en) Method for supplying oxygen in vertical melting furnace
Stone Oxygen in Steelmaking
JPH08209219A (en) Method for smelting stainless steel
JPH01195211A (en) Method for melting and reducing iron oxide
JPH03111507A (en) Method and apparatus for producing molten ferrous alloy
JPH08283818A (en) Production of low sulfur and high carbon molten iron from scrap
JPH07207325A (en) Method for melting scrap using carbonaceous material as fuel
JPH0379709A (en) Slag bath type smelting reduction producing apparatus for molten ferrous alloy and method thereof
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material
JPH032306A (en) Production of molten pig iron combined with recovery of rare metal
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JPH09143522A (en) Method for melting iron scrap at high speed

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees