JPH01195211A - Method for melting and reducing iron oxide - Google Patents

Method for melting and reducing iron oxide

Info

Publication number
JPH01195211A
JPH01195211A JP1723588A JP1723588A JPH01195211A JP H01195211 A JPH01195211 A JP H01195211A JP 1723588 A JP1723588 A JP 1723588A JP 1723588 A JP1723588 A JP 1723588A JP H01195211 A JPH01195211 A JP H01195211A
Authority
JP
Japan
Prior art keywords
slag
iron oxide
molten
iron
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1723588A
Other languages
Japanese (ja)
Inventor
Mitsutaka Matsuo
充高 松尾
Mitsuru Sato
満 佐藤
Hideki Ishikawa
英毅 石川
Hiroyuki Katayama
裕之 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1723588A priority Critical patent/JPH01195211A/en
Publication of JPH01195211A publication Critical patent/JPH01195211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently reduce iron oxide by charging a raw material into a reaction vessel, agitating molten iron with bottom-blown gas, and blowing the high-temp. gas jet of a top-blowing lance against the surface of molten slag under specified conditions. CONSTITUTION:The melting and reducing furnace for iron oxide is provided with a top-blowing lance 9 capable of burning a powdered carbonaceous material having <=1mm grain size with oxygen into a high-temp. gas jet and the reaction vessel 1 into which a gas can be blown from the bottom. Molten iron 5 and molten slag 6 are charged into the vessel 1. The molten iron 5 is agitated by the bottom-blown gas while charging iron oxide and coal blocks from the top of the vessel 1. The high-temp. gas jet of the top-blowing lance 9 is blown against the surface of the molten slag 6 so that Ls<Hs is fulfilled [where Ls is the depth (mm) of the cavity formed by the high-temp. gas jet, and Hs is the thickness (mm) of slag].

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化鉄を還元して溶鉄とする溶融還元法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a smelting reduction method for reducing iron oxide into molten iron.

[従来の技術] 酸化鉄を溶融還元炉で還元して溶鉄を製造する方法とし
ては、酸素を上底吹できる反応容器を用い、酸化鉄と塊
状の石炭を反応容器の上部から反応容器内の溶融物に投
入しながら吹酸する方法が一般的である。投入された塊
状の石炭は、(イ)酸化鉄を還元し、(ロ)スラグの泡
立ちを防止し、(ハ)燃焼して還元反応に必要な熱量を
生ずる。酸化鉄のCによる還元反応は吸熱反応であるた
め。
[Prior art] A method for producing molten iron by reducing iron oxide in a smelting reduction furnace uses a reaction vessel in which oxygen can be blown from the top and bottom, and iron oxide and lump coal are poured into the reaction vessel from the top of the reaction vessel. A common method is to blow acid while pouring it into the melt. The injected lumpy coal (a) reduces iron oxide, (b) prevents foaming of the slag, and (c) burns to generate the amount of heat necessary for the reduction reaction. This is because the reduction reaction of iron oxide with C is an endothermic reaction.

還元反応を能率よく進行させるには(ハ)で述べた多量
の熱量が必要である。
In order for the reduction reaction to proceed efficiently, a large amount of heat as described in (c) is required.

塊状の炭材を得るに際しては、粒度が1m111以下の
炭材粉例えば石炭粉も多量発生するため、(ハ)で述べ
た熱量として使用できると好ましいが、石炭粉を反応容
器の上部から添加すると、石炭粉は反応容器内の強いガ
ス流で反応容器外に吹き飛ばされて、熱量とはならない
。従って従来は、粉状の炭材は成形工場で塊状に成形し
て用いられているが、この成形工程は炭材のコストアッ
プとなる。
When obtaining lumpy carbonaceous material, a large amount of carbonaceous powder, such as coal powder, with a particle size of 1 m111 or less is generated, so it is preferable that it can be used as the heat amount mentioned in (c), but if coal powder is added from the top of the reaction vessel. , the coal powder is blown out of the reaction vessel by the strong gas flow inside the reaction vessel and does not become a heat source. Therefore, conventionally, powdered carbonaceous material has been molded into blocks in a molding factory, but this molding process increases the cost of the carbonaceous material.

特開昭60−67610号には、中心部に炭素質の吹込
み用ノズルと、外側にガス他剤吹込用ノズルと酸素吹込
用ノズルを有する上吹用のランスを用いて、炭素質のガ
ス化を行うと同時に燃焼を行わせつつスクラップを溶解
する方法が述べられている。
JP-A No. 60-67610 discloses that a top-blowing lance having a carbonaceous blowing nozzle in the center, a gas other agent blowing nozzle and an oxygen blowing nozzle on the outside is used to blow carbonaceous gas. A method is described in which scrap is melted while simultaneously being oxidized and combusted.

しかしこの方法はスクラップの配合比率を高めるため溶
鋼を加熱する製鋼法で、本発明の酸化鉄の溶融還元法と
は異なる。即ち特開昭60−67610号は溶鋼を加熱
するため、高温ガス流は溶鋼と接触する方がよいが、酸
化鉄の溶融還元で高温ガス流が溶鉄と接触すると、後で
述べる如く溶鉄中のCが失われて酸化鉄の還元能率が損
われる。又本発明者等の知見によると、酸化鉄の溶融還
元では、還元反応は主としてスラグ内で進行している。
However, this method is a steel manufacturing method in which molten steel is heated in order to increase the blending ratio of scrap, and is different from the iron oxide melt reduction method of the present invention. In other words, in order to heat molten steel in JP-A No. 60-67610, it is better for the high-temperature gas flow to come into contact with the molten steel. C is lost and the reduction efficiency of iron oxide is impaired. Furthermore, according to the findings of the present inventors, in the melt reduction of iron oxide, the reduction reaction mainly proceeds within the slag.

従って前記の(ハ)で述べた還元反応に必要な熱量はス
ラグ内において必要で、溶鉄よりもスラグを加熱するこ
とが必要である。
Therefore, the amount of heat required for the reduction reaction described in (c) above is required within the slag, and it is necessary to heat the slag more than the molten iron.

[発明が解決しようとする課題] 本発明は、粒度が1mm以下の炭材粉を用いて、酸化鉄
を能率よく還元する、酸化鉄の溶融還元法を開示するも
のである。
[Problems to be Solved by the Invention] The present invention discloses a method for melting and reducing iron oxide, which efficiently reduces iron oxide using carbonaceous powder having a particle size of 1 mm or less.

[課題を解決するための手段] 本発明は、 底吹きガスの吹込が可能な反応容器と、粒度が1鵬m以
下の炭材粉を酸素で燃焼し高熱ガスジェットとする上吹
きランスとを備えた酸化鉄の溶融還元炉において、反応
容器に溶鉄と溶融スラグとを装入し、反応容器の上部か
ら酸化鉄と石炭塊を連続的あるいは断続的に投入しなが
ら、底吹きガスで溶鉄を攪拌し、かつ下記(1)式を満
足するように上吹ランスの高熱ガスジェットを溶融スラ
グ而に吹きつける事を特徴とする、酸化鉄の溶融還元方
法である。
[Means for Solving the Problems] The present invention comprises a reaction vessel into which bottom-blown gas can be blown, and a top-blowing lance that burns carbonaceous powder with a particle size of 1 Pm or less with oxygen to produce a high-temperature gas jet. In the iron oxide smelting reduction furnace equipped with the following equipment, molten iron and molten slag are charged into a reaction vessel, and while iron oxide and coal lumps are continuously or intermittently introduced from the top of the reaction vessel, the molten iron is heated with bottom blowing gas. This is a method for melting and reducing iron oxide, which is characterized by stirring and blowing a high-temperature gas jet from a top blowing lance onto the molten slag so as to satisfy the following formula (1).

Ls<Hs・・・・・・・・・(1) 但し、Ls:高温ガスジェットで作られるスラグキャビ
ティ深さ(mm)、スラグ厚さ(mm)第1図は本発明
を実施する溶融還元炉の例を示す図である。反応容器l
は耐火物で内張すされた転炉状で、炉の下部にはガス吹
込羽口2を備えている。本発明ではガス吹込羽口2から
底吹ガスを吹き込んで溶鉄を攪拌して、酸化鉄の還元反
応を促進させる。底吹ガスとしては不活性ガスや酸素ガ
スを用いる。炉の下部に炭材粉吹込口3や酸化鉄粉吹込
口4を設けて炭材粉や酸化鉄粉を溶鉄中に吹き込んでも
よい。この際は底吹ガスとしては酸素ガスが適当である
Ls<Hs・・・・・・(1) However, Ls: Depth of slag cavity created by high-temperature gas jet (mm), Thickness of slag (mm) It is a figure showing an example of a furnace. reaction vessel l
The furnace is in the form of a converter lined with refractory material, and a gas injection tuyere 2 is provided at the bottom of the furnace. In the present invention, bottom blowing gas is blown through the gas blowing tuyere 2 to stir the molten iron and promote the reduction reaction of iron oxide. Inert gas or oxygen gas is used as the bottom blowing gas. A carbonaceous powder inlet 3 and an iron oxide powder inlet 4 may be provided in the lower part of the furnace to blow the carbonaceous powder and iron oxide powder into the molten iron. In this case, oxygen gas is suitable as the bottom blowing gas.

酸化鉄の溶融還元法では、溶鉄5および溶融スラグ6よ
りなる反応容器内の溶融物に、酸化鉄と石炭塊を加え、
酸化鉄を鉄に還元して溶鉄量を増加せしめ、所定の溶鉄
量に達すると出湯し、例えば別に設けた製鋼炉で出湯し
た溶鉄を脱炭し精錬する。最初の溶鉄や溶融スラグは、
例えば前回の出湯に際して溶鉄や溶融スラグを全量は出
湯しないで、一部を反応容器内に残留せしめて得られる
In the iron oxide smelting reduction method, iron oxide and coal lumps are added to a molten material in a reaction vessel consisting of molten iron 5 and molten slag 6,
Iron oxide is reduced to iron to increase the amount of molten iron, and when a predetermined amount of molten iron is reached, the molten iron is tapped, and the tapped molten iron is decarburized and refined, for example, in a separately provided steelmaking furnace. The first molten iron and molten slag were
For example, the molten iron or molten slag can be obtained by not tapping all of the molten iron or molten slag during the previous tapping, but leaving a portion of the molten iron or molten slag remaining in the reaction vessel.

第1図で9は上吹きランスの例である。即ち、中心部に
炭材粉供給ノズル8を有し、8の外側に酸素ガス吹込ノ
ズル7を有するランスの例である。本発明では炭材粉を
酸素で高熱ガスジェットとする。
In FIG. 1, numeral 9 is an example of a top-blown lance. That is, this is an example of a lance that has a carbonaceous powder supply nozzle 8 in the center and an oxygen gas blowing nozzle 7 outside of the nozzle 8. In the present invention, carbonaceous powder is converted into a high-temperature gas jet using oxygen.

従って炭材粉は高濃度の酸素下で完全燃焼させることを
目標とする。石炭中のCが燃焼してCOとなっても発熱
量は少なく十分高熱のガスジェットは得られないが、石
炭中のCやHが純酸素によって燃焼してCO2や11□
0になると大きな発熱量が得られる。従って本発明で上
吹ランスは炭材粉をCO□やH2Oに燃焼させるに適し
た構造が必要で1例えば完全燃焼に適した公知の純酸素
を用いる微粉炭バーナー等が使用でき、従って第1図の
9で示した上吹ランスの例に限定されるものではない。
Therefore, the goal is to completely burn carbonaceous powder under high concentration of oxygen. Even if C in coal burns and becomes CO, the calorific value is small and a sufficiently hot gas jet cannot be obtained, but C and H in coal burn with pure oxygen, producing CO2 and 11□.
When it reaches 0, a large amount of heat is obtained. Therefore, in the present invention, the top blowing lance needs to have a structure suitable for burning carbonaceous powder into CO□ and H2O.1 For example, a known pulverized coal burner using pure oxygen suitable for complete combustion can be used. The present invention is not limited to the example of the top blowing lance shown at 9 in the figure.

本発明では、粒度雅1m+s以下の炭材粉を純酸素で燃
焼して高ガスジェットとする。粒度が1mn+超では、
炭材粒子の中心まで酸化されるのに時間を要するため、
純酸素を用いても炭材粒子を完全燃焼し尽くす事は難し
い。
In the present invention, carbonaceous powder with a particle size of 1 m+s or less is burned with pure oxygen to produce a high-gas jet. If the particle size exceeds 1mm+,
It takes time for the carbon particles to be oxidized to the center, so
Even if pure oxygen is used, it is difficult to completely burn out the carbon particles.

本発明では反応容器の上部から酸化鉄と石炭塊を連続的
あるいは断続的に投入する。この投入した酸化鉄や石炭
塊は溶鉄よりも軽いために主としてスラグ中に留る。石
炭塊はスラグよりも軽いためにスラグ上に浮上し易いが
、スラグが強く攪拌されているためスラグ中に留ってい
る。従って石炭塊による酸化鉄の還元反応は主としてス
ラグ層中で進行する。既に述べた如く石炭塊による酸化
鉄の還元反応は吸熱反応であるため、この還元反応をス
ムーズに進行させるにはスラグを加熱する事が肝要であ
る。又石炭塊のスラグ上への浮上を防止しかつ反応をス
ムーズに進行させるためスラグを強く攪拌する事が肝要
である。本発明では炭材粉を酸素で燃焼して得られた高
熱ガスジェットをスラグに吹き付けて、スラグを加熱す
ると共に強く攪拌する。しかし高熱ガスジェットによる
スラグの攪拌は(1)式のLs<Hsの条件で行う。
In the present invention, iron oxide and coal lumps are continuously or intermittently introduced from the upper part of the reaction vessel. The iron oxide and coal lumps introduced are lighter than molten iron, so they mainly remain in the slag. Since the coal lumps are lighter than the slag, they easily float on the slag, but because the slag is strongly stirred, they remain in the slag. Therefore, the reduction reaction of iron oxide by coal lumps mainly proceeds in the slag layer. As already mentioned, the reduction reaction of iron oxide by coal lumps is an endothermic reaction, so it is important to heat the slag in order to make this reduction reaction proceed smoothly. It is also important to strongly stir the slag in order to prevent the coal lumps from floating onto the slag and to allow the reaction to proceed smoothly. In the present invention, a high-temperature gas jet obtained by burning carbonaceous powder with oxygen is blown onto the slag to heat the slag and stir it strongly. However, stirring of the slag by a high-temperature gas jet is performed under the condition of Ls<Hs of equation (1).

高熱ガスジェットによる攪拌が強過ぎて高熱ガスジェッ
トで作られたキャビティが深くなり過ぎると、高熱ガス
ジェットが溶鉄と当接し、高熱ガスジェット中のCO□
やN20が溶鉄と当接して、下記(2)式や(3)式の
如くに溶鉄中に溶解しているCと反応し、CO2ガスや
N2ガスを発生させるに至る。
If the stirring by the high-temperature gas jet is too strong and the cavity created by the high-temperature gas jet becomes too deep, the high-temperature gas jet will come into contact with the molten iron, and the CO in the high-temperature gas jet will be
and N20 come into contact with the molten iron and react with C dissolved in the molten iron as shown in equations (2) and (3) below, resulting in the generation of CO2 gas and N2 gas.

CO□+[C]→2GO・・・・・・・・・(2)N2
0+[Ca−Th CO+ N2・・−−−・(3)(
2)式や(3)式が起ると、溶鉄中の炭素含有量が下っ
て酸化鉄の還元性が悪くなるし、又上記の(2)式や(
3)式の反応は吸熱反応で、熱経済上も好ましくない。
CO□+[C]→2GO・・・・・・・・・(2) N2
0+[Ca-Th CO+ N2・・---・(3)(
When equations 2) and (3) occur, the carbon content in the molten iron decreases and the reducibility of iron oxide deteriorates.
The reaction of formula 3) is an endothermic reaction, which is not favorable from a thermoeconomic standpoint.

本発明では(1)式に示した如く、Ls<Hsとなるよ
うに高熱ガスジェットでスラグを攪拌するため、Lsは
深くなり過ぎることはなく、従って(2)式や(3)式
の反応が抑制される。
In the present invention, as shown in equation (1), since the slag is stirred with a high-temperature gas jet so that Ls<Hs, Ls does not become too deep, and therefore the reaction of equations (2) and (3) is suppressed.

[実施例] 第1図に示された反応容器内に溶銑(C: 4.5%)
を50トン、スラグ(Cab/Sin、 : 1.2.
 MgO: 15%。
[Example] Hot metal (C: 4.5%) was placed in the reaction vessel shown in Figure 1.
50 tons of slag (Cab/Sin): 1.2.
MgO: 15%.

AQ20.:15%)を20トン、またコークスを3を
装入し、上吹酸素: 850ON m3/h、底吹酸素
: 50ONm3八を吹込んだ。このときのHs(スラ
グ厚さ)=1000 mmで、Ls(スラグキャビティ
) = 600mo+とした。
AQ20. : 15%) and 3 tons of coke were charged, and top-blown oxygen: 850 ON m3/h and bottom-blown oxygen: 50 ON m3/h were blown. At this time, Hs (slag thickness) = 1000 mm, and Ls (slag cavity) = 600mo+.

また粒子の大きさが1mm以下の粉状石炭を3 T/h
の供給速度で第1図9に示す上吹ランスの炭材粉供給ノ
ズルからN2ガスをキャリアガスとしてスラグに吹きつ
けた。また7、57/hで3mm以上の塊状石炭を炉上
方から投入した。これにより、スラグ中の炭材量が常に
(炭材/スラグ)重量比で10〜20%に確保した。ま
た鉄鉱石は塊状のものを反応容器の上方から12 T/
hで投入した。
In addition, powdered coal with a particle size of 1 mm or less is used at 3 T/h.
N2 gas was blown onto the slag as a carrier gas from the carbon powder supply nozzle of the top blowing lance shown in FIG. 1 at a supply rate of . Further, lump coal of 3 mm or more was charged from above the furnace at a rate of 7.57/h. This ensured that the amount of carbonaceous material in the slag was always 10 to 20% in weight ratio (charcoal material/slag). In addition, iron ore is a lump of iron ore that is collected from the top of the reaction vessel at 12 T/min.
I put it in at h.

約1時間吹錬を行い、7.6トンの溶銑が生成した。Blowing was carried out for about 1 hour, and 7.6 tons of hot metal was produced.

このときの二次燃焼率は約35〜45%であった。吹錬
中の温度は1450〜1550℃で、スラグ中(T、F
e)%は常に4%以下であった。また石炭のダストロス
は約5%程度であった。
The secondary combustion rate at this time was approximately 35-45%. The temperature during blowing was 1450-1550℃, and the temperature in the slag (T, F
e) % was always below 4%. In addition, the dust loss of coal was about 5%.

また粉炭の使用比率を変更したところ、第2図に示すよ
うに粉炭使用比率が約30%までは二次燃焼率の改善効
果が大きい。しかし過大な粉炭使用比率は好ましくない
。操業条件によるが、第2図の例では粉炭使用比率が4
0%をこえると急激にダストロスが増加し、二次燃焼率
も低下した。
Furthermore, when the usage ratio of pulverized coal was changed, as shown in FIG. 2, the effect of improving the secondary combustion rate was large until the usage ratio of pulverized coal was about 30%. However, excessive pulverized coal usage ratio is not preferable. Although it depends on the operating conditions, in the example shown in Figure 2, the powder coal usage ratio is 4.
When it exceeded 0%, the dust loss increased rapidly and the secondary combustion rate also decreased.

[発明の効果] 本発明は、酸化鉄の溶融還元炉において、粒度が1mm
以下の炭材粉を用いて、酸化鉄を能率よく還元できるた
め、産業上の効果が大きい。
[Effects of the invention] The present invention provides iron oxide melting and reduction furnaces with a particle size of 1 mm.
The following carbonaceous powder can be used to efficiently reduce iron oxide, which has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する酸化鉄の溶融還元炉の例を示
す図、 第2図は粉炭比率と二次燃焼率の例を示す図。 である。 第1図 (X−X防面図)
FIG. 1 is a diagram showing an example of an iron oxide smelting reduction furnace in which the present invention is implemented, and FIG. 2 is a diagram showing an example of pulverized coal ratio and secondary combustion rate. It is. Figure 1 (XX-X front view)

Claims (1)

【特許請求の範囲】  底吹きガスの吹込が可能な反応容器と、粒度が1mm
以下の炭材粉を酸素で燃焼し高熱ガスジェットとする上
吹きランスとを備えた酸化鉄の溶融還元炉において、反
応容器に溶鉄と溶融スラグとを装入し、反応容器の上部
から酸化鉄と石炭塊を連続的あるいは断続的に投入しな
がら、底吹きガスで溶鉄を攪拌し、かつ下記(1)式を
満足するように上吹ランスの高熱ガスジェットを溶融ス
ラグ面に吹きつける事を特徴とする、酸化鉄の溶融還元
方法 Ls<Hs・・・・・・・・・・・・(1) 但し、Ls:高温ガスジェットで作られるスラグキャビ
ティ深さ(mm)、 Hs:スラグ厚さ(mm)
[Claims] A reaction vessel capable of blowing bottom-blown gas, and a particle size of 1 mm.
In an iron oxide smelting reduction furnace equipped with a top blowing lance that burns the following carbonaceous powder with oxygen to produce a high-temperature gas jet, molten iron and molten slag are charged into a reaction vessel, and the iron oxide is poured from the top of the reaction vessel. While continuously or intermittently introducing lumps of coal into the molten iron, the molten iron is stirred with bottom-blown gas, and a high-temperature gas jet from a top-blowing lance is blown onto the molten slag surface so as to satisfy the following formula (1). Features: Melting and reduction method of iron oxide Ls<Hs (1) However, Ls: depth of slag cavity created by high-temperature gas jet (mm), Hs: slag thickness Thickness (mm)
JP1723588A 1988-01-29 1988-01-29 Method for melting and reducing iron oxide Pending JPH01195211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1723588A JPH01195211A (en) 1988-01-29 1988-01-29 Method for melting and reducing iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1723588A JPH01195211A (en) 1988-01-29 1988-01-29 Method for melting and reducing iron oxide

Publications (1)

Publication Number Publication Date
JPH01195211A true JPH01195211A (en) 1989-08-07

Family

ID=11938285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1723588A Pending JPH01195211A (en) 1988-01-29 1988-01-29 Method for melting and reducing iron oxide

Country Status (1)

Country Link
JP (1) JPH01195211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247517A (en) * 1988-03-30 1989-10-03 Nippon Steel Corp Method for operating smelting reduction
US7727304B2 (en) 2003-01-24 2010-06-01 Ausmelt Limited Smelting process for the production of iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247517A (en) * 1988-03-30 1989-10-03 Nippon Steel Corp Method for operating smelting reduction
US7727304B2 (en) 2003-01-24 2010-06-01 Ausmelt Limited Smelting process for the production of iron

Similar Documents

Publication Publication Date Title
US4089677A (en) Metal refining method and apparatus
US5302184A (en) Manufacture of ferroalloys using a molten bath reactor
JP4212895B2 (en) Method for generating molten iron in electric furnace
JP2007177295A (en) Method for producing molten iron
JPH0447004B2 (en)
JPS62290841A (en) Manufacture of chromium-containing iron
JPH01195211A (en) Method for melting and reducing iron oxide
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JPH0471965B2 (en)
JPS61213310A (en) Production of molten ferrous alloy
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JP2022117935A (en) Molten iron refining method
US3640701A (en) Direct reduction of oxides
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JPH02221310A (en) Production of ni-and cr-containing molten metal
JPS62247013A (en) Apparatus for producing molten ferrous metal
JP2837282B2 (en) Production method of chromium-containing hot metal
JP2666397B2 (en) Hot metal production method
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JPH01191719A (en) Method for operating smelting reduction furnace
JPH01195210A (en) Method for supplying coat to melting and reducing furnace for iron oxide
JPH032312A (en) Production of low-phosphorus pig iron
JPH01195209A (en) Operation of iron bath type melting and reducing furnace
JPH01195213A (en) Method for supplying raw powdery material into iron bath type melting and reducing furnace